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Abstract: To achieve the seamless characteristics of displays, liquid crystal (LC) devices need a
super-narrow bezel design. This device architecture can be constructed using functional adhesives
that possess excellent physical and chemical properties. In this study, mechanically robust ultraviolet
(UV)/heat dual-curable adhesives with outstanding reliability and processability have been fabricated
using reactive poly(methyl methacrylate) (PMMA)/polyethyleneimine (PEI) core-shell nanoparticles.
Their curing characteristics, narrow drawing processability, adhesive strength, elongation at break,
and the contact contamination of LCs have been investigated. Compared to conventional adhesive
material, the proposed adhesive containing multifunctional PMMA/PEI nanoparticles afforded a
high adhesion strength of 40.2 kgf cm−2 and a high elongation of 64.8% due to the formation of a
firm crosslinked network with matrix resins comprising bisphenol A epoxy resin and bisphenol
A glycerolate dimethacrylate. Moreover, the proposed adhesive showed an excellent narrow
drawing width of 1.2 mm, which is a prerequisite for super-narrow bezel display. With regard to
LC contamination, it was found that the level of contamination could be remarkably reduced to
61 µm by a high-temperature curing process. This study makes a significant contribution to the
development of advanced display, because it provides robust and sustainable display adhesives
based on nanomaterials, thereby enhancing the life and sustained operability of displays.

Keywords: adhesion strength; display adhesive; liquid crystal display; polymer nanoparticle;
super-narrow bezel

1. Introduction

Liquid crystal (LC) displays have been widely used in large-sized applications, such as tablets,
monitors, televisions, and digital signage panels. In modern manufacturing technology for large-area
displays, the display bezel, which is the outer frame around the active screen area, is getting thinner to
facilitate larger display screens and provide a truly immersive experience for users. For this reason,
display adhesive in the narrow bezel area of a device requires effective properties, such as high adhesive
strength, high toughness, narrow wettability, and low LC contact pollution. The previous studies for
increasing the adhesive strength have utilized various methods, such as polyblending or curing with
polythiourethanes and epoxy-acrylate oligomers [1–4]. Polyblending the epoxy resin with lignin can
promote the curing degree and shear strength of epoxy adhesives [1,2]. Polythiourethanes can be used
as polymeric hardeners for increasing the adhesive properties and promoting the low-temperature
curing reaction [3]. Some researchers have synthesized partially acrylated resin based on epoxy-acrylate
oligomers for dual curing and have investigated their mechanical properties [4].
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Commonly, epoxy resin shows several desirable properties, such as high chemical resistance and
excellent adhesive properties [5–7]. Hence, epoxy resins are widely used in protective coatings and
electrical laminates as well as in adhesives. In particular, adhesive materials based on epoxy resins
are highly suitable for bonding with various surfaces, such as steel, plastic, wood, and composites
owing to the formation of a network-like structure after curing of the epoxy resin [8]. However,
epoxy resin, which is a thermosetting polymer, is typically brittle owing to its high crosslinking
density. As a consequence, it shows low impact resistance and is prone to formation of cracks.
For this reason, tougheners are commonly employed in most commercial adhesives containing epoxy
resins. Usually, carboxyl-terminated butadiene acrylonitrile copolymers (CTBNs), amine-terminated
butadiene acrylonitrile copolymers (ATBNs), and epoxy-terminated butadiene acrylonitrile copolymers
(ETBNs) are used as tougheners for epoxy resins [9,10]. However, the isolated rubber particles are
formed due to phase separation during the curing process, and such phase separation can adversely
affect the fracture toughness of modified epoxies. Moreover, it is found to decrease the thermal and
mechanical properties owing to some part of the rubber remaining in the epoxy continuous phase.
In addition, CTBNs may reduce the glass transition temperature (Tg) of the epoxy matrix.

Recently, nano-sized filler particles can be used as a candidate for toughener of epoxy resin in
order to overcome these undesirable side effects [11–17]. A filler accounting for most of the adhesive
material is usually an inorganic material, such as silicon dioxide, calcium carbonate, magnesium
carbonate, magnesium sulfate, aluminum oxide (alumina), magnesium oxide, iron oxide, and glass
fiber. The interfacial morphology of the filler greatly affects its properties. The mechanical properties,
such as tensile strength, are reduced by an increase in the particle size due to low surface area of filler
particles [11,12]. In addition, an increase in filler content and specific surface area serves to increase the
mechanical properties of the adhesive [18]. Especially, core-shell particles (CSPs), which consist of
soft rubbery cores and hard shells around them, are used as tougheners for epoxy resin, and they are
well-dispersed within the epoxy system [16,17]. Moreover, CSPs have the advantage of easily being
able to control their particle size.

In this work, highly adhesive and sustainable UV/heat dual-curable adhesives with high toughness
and low LC contamination level for super-narrow bezel display have been prepared using reactive
core-shell polymer nanoparticles. As shown in Figure 1, a functional polymer nanoparticle comprising
poly(methyl methacrylate) (PMMA) as a core and polyethyleneimine (PEI) shell was prepared
through one-pot graft copolymerization. The UV/heat dual curable adhesive embedded with reactive
PMMA/PEI polymer nanoparticles was fabricated with reactive resins comprising bisphenol A epoxy
resin and bisphenol A glycerolate dimethacrylate (BisGMA) by using revolution–rotation mixing
process. The embedded core-shell polymer nanoparticles with a number of amine reactive groups
play a dual function in the toughening and multi-curing of epoxy resin within the adhesive through
formation of a crosslinked nanoparticle network, so that the adhesive can possess high adhesion
strength, high toughness, and low LC contamination. In addition, the proposed adhesive can be
drawn narrowly due to nano-sized nature of core-shell polymer nanoparticle. It is expected that the
proposed adhesive materials, which have the advantages of excellent mechanical properties, narrow
processability, and outstanding reliability, could be useful in various electronic fields, such as advanced
optical devices, sensors, and flexible displays. The adhesive strength, elongation at break, and contact
contamination level of the adhesive embedded with PMMA/PEI nanoparticles were compared with
those of conventional adhesive material.
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Figure 1. Schematic diagram of UV/heat dual-curable adhesive embedded with reactive core-shell 
polymer nanoparticles for super-narrow bezel display. 
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Table 1. Composition of conventional and new UV/heat dual-curable adhesives. 
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Hardener ADH 1.5 - - - 

 PMMA/PEI - 0.5 1.0 1.5 
Photoinitiator Irgacure 651 2.5 2.5 2.5 2.5 

Figure 1. Schematic diagram of UV/heat dual-curable adhesive embedded with reactive core-shell
polymer nanoparticles for super-narrow bezel display.

2. Materials and Methods

2.1. Materials

The epoxy resin was bisphenol A type resin (YD-128, Kukdo Chemical, Seoul, Korea). Bisphenol
A glycerolate dimethacrylate (BisGMA) as acrylate resin and fumed silica with a particle size of
0.25 µm and specific surface area of 395 m2 g−1 were purchased from Sigma-Aldrich (Sigma-Aldrich
Korea, Seoul, Korea). Adipic acid dihydrazide (ADH) as conventional hardener was received from
Tokyo Chemical Industry. Irgacure 651 (Ciba Specialty Chemicals, Basel, Switzerland) was used as a
photoinitiator. To synthesize the PMMA/PEI core-shell nanoparticle, methyl methacrylate (MMA),
branched PEI (Mn = 60,000), and tert-butyl hydroperoxide (TBHP; 70 wt% in H2O) were obtained from
Sigma-Aldrich (Sigma-Aldrich Korea, Seoul, Korea).

2.2. Synthesis of Multifunctional PMMA/PEI Core-Shell Nanoparticle

PMMA/PEI core-shell nanoparticles were synthesized as described in a previous study [19]. 2.0 g
of branched PEI was dissolved in 16.8 g of deionized water for 30 min under nitrogen purging. After
0.8 g of MMA and 256.0 µg of TBHP were added, the PMMA/PEI core-shell nanoparticles were reacted
at 80 ◦C for 2 h under controlled agitation using a magnetic stir bar. The PMMA homopolymer was
separated by filtration. Unreactive residues were purified by centrifugation, and then the synthesized
PMMA/PEI nanoparticles were obtained by lyophilization.

2.3. Preparation of UV/Heat Dual-Curable Adhesives Embedded with PMMA/PEI Nanoparticles

The mixture of YD-128 epoxy resin, BisGMA acrylate resin, and fumed silica was prepared by
using a rotation and revolution mixer (Thinky, AR-100, Tokyo, Japan) at 2200/1300 rpm for 15 min.
Then, Irgacure 651 photoinitiator and hardeners involving conventional ADH or reactive PMMA/PEI
core-shell nanoparticle were added to the mixture and blended twice at 2200/1300 rpm for 5 min. After
mixing, the adhesive mixtures were defoamed in a vacuum oven at 25 ◦C for 2 h. As shown in Table 1,
the contents of the synthesized PMMA/PEI nanoparticle were 0.5, 1.0, and 1.5 wt%.

2.4. Characterization

A field emission scanning electron microscopy (FE-SEM; Hitachi, SU-70, Tokyo, Japan) with an
accelerating voltage of 15 kV was conducted to analyze the morphology and particle size of PMMA/PEI
nanoparticles. Fourier transform infrared (FT-IR; Jasco, FT/IR-460 Plus, Easton, PA, USA) spectroscopy
and differential scanning calorimetry (DSC; TA instrument, Q20, New Castle, DE, USA) were used
for confirming the conversion ratio and glass transition temperature of the UV/heat dual-curable
adhesive. An attenuated total reflectance accessory and KBr pellets were used for FT-IR measurements.
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The adhesive was heated from 50 ◦C to 200 ◦C at the rate 10 ◦C min−1 for DSC scanning. In order to
confirm the conversion ratio, the curing condition for the adhesive was UV irradiation with an energy
of 3.0 J cm−2 (Daihan Labtech, WUV-L50, Seoul, Korea), followed by heat-curing at 120 ◦C or 130 ◦C
for 1 h. The narrow drawing experiment was conducted on Janome seal dispenser with pressure and
drawing speed of 60 psi and 1 mm s−1, respectively.

Table 1. Composition of conventional and new UV/heat dual-curable adhesives.

Composition (wt%) Conventional
Adhesive

New Adhesives Embedded with
PMMA/PEI Nanoparticles

Resin YD-128 40 40 40 40
BisGMA 40 40 40 40

Filler Fumed silica 16 17 16.5 16
Hardener ADH 1.5 - - -

PMMA/PEI - 0.5 1.0 1.5
Photoinitiator Irgacure 651 2.5 2.5 2.5 2.5

In order to examine the adhesive strength, the UV/heat dual-curable adhesive was cured between
two indium tin oxide (ITO) glass substrates. The two ITO glass substrates were assembled crosswise,
and the diameter of the adhesive was 3 mm. Curing was performed similar to the process adopted for
the conversion ratio analysis. The adhesive strength was measured using the pull-off method by a
universal testing machine (UTM; LLOYD, LR-5K, Bognor Regis, UK) with a crosshead speed of 1.3 mm
min−1. The elongation at the break of the adhesive was analyzed using lap shear method. The curing
and evaluation procedure proceeded in the same manner as the measurement of adhesion strength.

To measure the contact contamination of the LCs, a test cell was fabricated using two ITO glass
substrates, which were covered with a polyimide (PI) layer on the surface using a spin coater. The PI
layer on the ITO glass substrate was soft-baked on a hotplate at 80 ◦C for 10 min and then hard-baked
in an oven at 230 ◦C for 1 h. The adhesive was cured between PI-layer-coated ITO glass substrates
according to the same curing condition as conversion ratio analysis, and then the LC was injected
into the test cell. The fabricated LC test cells were examined by polarized optical microscopy (POM;
Olympus, BX51, Tokyo, Japan) for detection of contact contamination of the LCs.

3. Results and Discussion

3.1. Synthesis of Multifunctional PMMA/PEI Core-shell Nanoparticles

Reactive PMMA/PEI polymer nanoparticles were synthesized by graft copolymerization through
one-pot method and were lyophilized after purification. Figure 2a shows the FT-IR spectra of MMA
monomer and PMMA/PEI nanoparticle. The MMA monomer has a carbon–carbon double bond
(C=C) peak at 1650 cm−1, which almost disappeared in the PMMA/PEI nanoparticles. The decrease
in intensity of the carbon–carbon double bond peak for the PMMA/PEI nanoparticles is ascribed
to the graft copolymerization of PMMA onto branched PEI chains [19]. In contrast, the stretching
vibration corresponding to amine functional groups (-NH2) at 3400 cm−1, which is a characteristic
peak for pure PEI [20], is not observed in MMA but can be detected in the PMMA/PEI nanoparticles,
owing to the presence of PEI shells containing numerous amine groups that copolymerized with the
PMMA core. The overall spectral features are in accord with the literature [20]. After synthesizing the
multifunctional PMMA/PEI nanoparticles, their particle size and morphology were confirmed using a
FE-SEM instrument. The PMMA/PEI nanoparticles exhibited the spherical shape with the average
particle size of about 150 nm, as shown in Figure 2b.
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Figure 2. (a) FT-IR spectra of MMA monomer (black) and PMMA/PEI nanoparticle (red). (b) FE-SEM 
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Figure 2. (a) FT-IR spectra of MMA monomer (black) and PMMA/PEI nanoparticle (red). (b) FE-SEM
image of PMMA/PEI nanoparticle.

3.2. Curing and Narrow Drawing Characteristics of New UV/Heat Dual-Curable Adhesives

The curing behavior of the UV/heat dual-curable adhesives was analyzed using FT-IR spectroscopy
in the attenuated total reflection mode. Compared to conventional adhesive with ADH hardener,
the proposed UV/heat dual-curable adhesive is embedded with reactive PMMA/PEI nanoparticles,
containing a large number of amine functional groups that can react with the oxirane rings of the epoxy
resin. In case of UV curing of acrylate groups, the peak area of C–C double bond at 1630 cm−1 was
measured, and UV conversion ratio was calculated by obtaining the peak areas of acrylate group before
and after UV treatment. High UV conversion of about 98% was obtained for the adhesive with 1.0 wt%
PMMA/PEI nanoparticles irrespective of heat-curing temperature, as shown in Figure 3a. To examine
the effect of heat-curing temperature on curing conversion of the adhesive, the peak area of C-O-C
epoxide group at 951 cm−1 was analyzed, and the heat conversion ratio was calculated by Equation (1).

Heat conversion ratio (%) =
Apure −Acured

Apure
× 100 (1)

where Apure and Acured are the peak area of epoxide group before and after heat treatment, respectively.
A comparison of the results for the curing temperatures of 120 ◦C and 130 ◦C shows that a higher curing
temperature has a higher heat conversion ratio, as shown in Figure 3b. The adhesive containing 1.0 wt%
of PMMA/PEI nanoparticles cured at 120 ◦C has a curing ratio of 87.0%, but the one cured at 130 ◦C
exhibits relatively high curing ratio of 95.5%. For confirming the difference in the heat-curing ratios,
glass transition temperature of the adhesive was analyzed. Figure 4a shows the DSC thermogram of the
proposed adhesive embedded with reactive PMMA/PEI nanoparticles, which confirms glass–rubber
transition with a midpoint at 132.2 ◦C and an onset at 128.4 ◦C. Generally, heating a polymer above its
Tg increases its mobility by loosening the links between the molecular chains. For this reason, heat
treatment at 130 ◦C shows a better heat-curing ratio than at 120 ◦C because the curing temperature is
close to the Tg of the proposed adhesive. Moreover, as the concentration of multifunctional PMMA/PEI
nanoparticle increases, the heat-curing ratio increases, as shown in Figure 3b. Under the same curing
temperature of 120 ◦C, a 0.5 wt% concentration of PMMA/PEI particles shows 83.1% heat-curing ratio,
but 1.0 wt% and 1.5 wt% concentrations of PMMA/PEI particles exhibit 87.0% and 95.4% heat-curing
ratios, respectively. In addition, when curing at 130 ◦C, the heat-curing ratio is 89.7%, 95.5%, and 99.5%
for PMMA/PEI concentrations of 0.5, 1.0, and 1.5 wt%, respectively. Notably, new adhesive embedded
with PMMA/PEI nanoparticles exhibits high heat-curing ratio at the same concentration of 1.5 wt%
compared to that of conventional adhesive with ADH hardener, suggesting that multifunctional
PMMA/PEI polymer nanoparticle can serve as efficient multi-curing agent for epoxy resin within the
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adhesive for display application. Since the synthesized PMMA/PEI nanoparticles have a large number
of amine functional groups on the particle surface of branched PEI shell, these amine groups can act
as hardeners to assist the curing reaction of the epoxy resin. Therefore, as the content of PMMA/PEI
nanoparticles and the curing temperature increase, the adhesive exhibits a high degree of thermal
curing ratio.
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Figure 4. (a) DSC thermogram of the adhesive containing 1.5 wt% of PMMA/PEI nanoparticles.
(b) Optical images of adhesive lines after drawing and sandwiching the adhesive between two glass
substrates using a commercial seal dispenser.

Figure 4b shows the optical images of adhesive lines after drawing and sandwiching the adhesive
containing 1.5 wt% of PMMA/PEI nanoparticles between two glass substrates using a commercial
seal dispenser. The uniform and straight seal lines with the narrow line width of about 1.2 mm are
exhibited, indicating that the proposed adhesive embedded with polymer nanoparticles can afford
excellent narrow drawing performance, which is essential for super-narrow bezel display due to the
nano-sized characteristic of embedded PMMA/PEI nanoparticle.

3.3. Adhesive Strength and Elongation Property of New UV/Heat Dual-Curable Adhesives

In order to investigate the effect of curing temperature and nanoparticle content on the mechanical
properties of the adhesives embedded with PMMA/PEI nanoparticles, the adhesion strength of the
proposed adhesive was compared with that of a conventional adhesive containing dihydrazide-type
hardener. The pull-off test result of each adhesive is shown in Figure 5. In these results, it can be seen
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that the adhesive strength increases as the heat-curing temperature and concentration of PMMA/PEI
nanoparticles increase. An adhesive containing 0.5 wt% PMMA/PEI cured at 120 ◦C shows a relatively
low adhesive strength of 23.6 kgf cm−2. Since the curing temperature is below the Tg of adhesive resin
and the PMMA/PEI concentration is low, the adhesive sample with 0.5 wt% nanoparticles has a weak
crosslinked network compared to the other new adhesives. For the same curing temperature, when
the PMMA/PEI nanoparticle concentration increases to 1.0 and 1.5 wt%, the adhesive strength also
increases to 30.5 and 32.5 kgf cm−2, respectively. The increased PMMA/PEI concentration enhances the
crosslinking sites between the epoxy resin and amine groups of the PMMA/PEI nanoparticles when
it is cured under the same heat-curing temperature. Moreover, the adhesive strength obtained by
heat-curing the adhesive at 130 ◦C is higher than that achieved by curing at 120 ◦C. The adhesion
strength of the adhesive containing 0.5 wt% of PMMA/PEI cured at 130 ◦C is 27.5 kgf cm−2, which
is higher than that of an adhesive with the same concentration cured at 120 ◦C. Moreover, when
the concentration of PMMA/PEI nanoparticles increases to 1.0 and 1.5 wt%, the adhesive strength
increases to 34.7 and 40.2 kgf cm−2, respectively. This result is attributed to the dual effect of high
curing temperature, which is close to the Tg of the resin and the presence of numerous crosslinking
sites between the epoxy resin and amine groups of nanoparticles [21–23]. Notably, the maximum
adhesion strength of the new adhesive using the proposed PMMA/PEI nanoparticles was 352% higher
than that of conventional adhesive.
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Figure 6 shows the results of the elongation at break for the conventional and new adhesives.
The elongations of the adhesives containing the proposed core-shell nanoparticles were higher than
that of conventional adhesive with ADH hardener, indicating that the new adhesives possess high
toughness [24]. The adhesive cured at 130 ◦C has an average 20% higher elongation than the adhesive
cured at 120 ◦C. With an increase in the heat-curing temperature and concentration of the PMMA/PEI
nanoparticles, the density of the crosslinking network of nanoparticles increases due to high reaction
mobility of adhesive resin and the increase in reaction site of the amine group, resulting in high
toughness of the proposed adhesives.
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3.4. Contact Contamination Characteristics of New UV/Heat Dual-Curable Adhesives

During LC device fabrication, the adhesive and LCs are contacted directly in the LC injection
process. When curing reaction of the adhesive is not complete, unreacted components of the adhesive
can leak into the LC domain, which is the main reason for alignment defects in LC devices. When the
alignment of the LC is disturbed by external stimuli, its orientation attains extinction, and Schlieren
texture is formed due to random orientation of LCs. To judge the contact contamination level of LCs,
the width of the Schlieren texture between adhesive and LC domains was measured using POM, and
this width was named as the mean pollution length. Figure 7 shows the mean pollution lengths of
the proposed adhesives and the conventional adhesive. The mean pollution length decreases with
higher curing temperature and higher PMMA/PEI concentration. When cured at 120 ◦C, the mean
pollution lengths for 0.5, 1.0, and 1.5 wt% were 223, 158, and 97 µm, respectively. Since the curing
temperature of 120 ◦C exhibits relatively low curing conversion, the unreacted components can leak
into the LC domain, leading to the increased pollution length. In contrast, the adhesive cured at
130 ◦C showed a lower mean pollution length than the adhesive cured at 120 ◦C. At 130 ◦C, when the
concentration of PMMA/PEI nanoparticle increases from 0.5 to 1.5 wt%, the mean pollution length
decreases from 185 to 61 µm. High curing temperature and high nanoparticle concentration induce
an increase in the crosslinking sites, leading to a decrease in the amounts of unreacted components.
Notably, the LC pollution length of the conventional adhesive was remarkably reduced by using
the proposed PMMA/PEI nanoparticles, indicating the enhancement in reliability of the adhesive for
display applications.
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4. Conclusions

In this study, multifunctional PMMA/PEI core-shell nanoparticles were synthesized and employed
as efficient multi-curing and toughening agents for highly adhesive and sustainable UV/heat
dual-curable adhesives for super-narrow bezel display application. The characteristics of the proposed
adhesives containing the PMMA/PEI nanoparticles were analyzed through measurements of curing
conversion, narrow drawing ability, adhesive strength, elongation property, and contact contamination
level of LCs. The results of curing conversion analysis confirmed that the PMMA/PEI nanoparticles
could be used as an effective multi-curing agent for epoxy resins during the heat-curing process.
In addition, it is found that the heat-curing ratio increases when the curing temperature and the
content of PMMA/PEI nanoparticles increase due to high reaction mobility of epoxy resin near the
glass transition temperature and the increase in the reaction site of the amine groups in nanoparticles.
The drawing experiment using a commercial seal dispenser revealed that narrow and uniform seal
lines can be achieved for the proposed adhesive due to the nano-sized characteristic of embedded
PMMA/PEI core-shell nanoparticle. Based on the results for adhesive strength and elongation at break,
it can be concluded that the heat-curing temperature and concentration of PMMA/PEI nanoparticles
affect the mechanical properties of the proposed adhesives. With increases in the heat-curing ratio and
nanoparticle concentration, the density of the crosslinking network of nanoparticles increases within the
adhesive composite, leading to the improvement in adhesion strength and toughness of the proposed
adhesive. Finally, the contact contamination of the LCs with the adhesives was measured for confirming
its effect on the LC alignment, and it is found that as the curing conversion ratio increases, the amounts
of unreacted components decrease, and thus the mean pollution length of LCs also decreases. A high
heat-curing temperature along with high concentration of the PMMA/PEI nanoparticles can lead
to the reduced pollution level between the LCs and adhesive material. Given that the proposed
adhesive afforded excellent mechanical properties and outstanding reliability, the adhesive should find
broad use in the fabrication of super-narrow bezel displays by offering a seamless characteristic and
immersive environment.
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