Synthesis Procedure:

Synthesis Procedure 1. Modification of HEMA to form the alkyne derivative (2-(prop-1-en-2-carbonyloxy)ethyl hex-5-ynate, AlHEMA)

Synthesis Procedure 2. Synthesis of bifunctional initiator (4-butyl-1,3-phenylene bis(2-bromo-2-methylpropanoate), 4nBREBr₂)

Content:

Figure S1. UV-vis absorption spectra of FA.

Figure S2. UV-vis absorption spectra of LA.

Figure S3. FT-IR spectra of copolymers of AlHEMA/MPEGMA.

Figure S4. ¹H NMR spectra of LA, LA-Br and LA-N₃.

Figure S5. ¹H NMR spectra of FA, FA-Br and FA-N₃.

Figure S6. ¹³C NMR spectra of LA and LA-N₃.

Figure S7. ¹³C NMR spectra of FA and FA-N₃.

Synthesis Procedure 1. Modification of HEMA to form the alkyne derivative (2-(prop-1-en-2-carbonyloxy)ethyl hex-5-ynate, AlHEMA)

The AlHEMA monomer was obtained with a yield of 61% by esterification reaction with HexA, DCC and DMAP as we reported earlier [44]. ¹H-NMR (300 MHz, CDCl₃, ppm): 6.14 and 5.61 (2H, =CH₂), 4.35 (4H, $-\text{OCH}_2\text{CH}_2\text{O}$ -), 2.52 (2H, $-\text{OC}(=0)\text{CH}_2$ -), 2.28 (2H, $-\text{CH}_2\text{-C}=\text{CH}$), 1.99 (1H, -C=CH), 1.95 (3H, $-\text{CH}_3$), 1.81 (2H, $-\text{OC}(=0)\text{CH}_2\text{CH}_2$ -). ¹³C-NMR (75 MHz, DMSO, ppm): 172 (C7, $-\text{OC}(=0)\text{CH}_2$ -), 166 (C4, -CC(=0)O), 136 (C2, CH₂=C-), 126 (C1, CH₂=C-), 83 (C11, -C=CH), 72 (C12, -C=CH), 63 (C5, $-\text{OCH}_2\text{CH}_2\text{O}$ -), 62 (C6, $-\text{OCH}_2\text{CH}_2\text{O}$ -), 32 (C8, $-\text{OC}(=0)\text{CH}_2$ -), 27 (C9, $-\text{OC}(=0)\text{CH}_2\text{CH}_2$ -), 18 (C10, $-\text{CH}_2\text{-C}=\text{CH}$), 17 (C3, $-\text{CH}_3$). Electrospray ionization (ESI) MS (m/z): calculated for C₁₂H₁₆O₄, 224.0; found for [M + Na]⁺, 247.1.

Synthesis procedure **2.** *Synthesis of bifunctional initiator* (4-*butyl-1,3-phenylene bis*(2-*bromo-2-methylpropanoate*), 4nBREBr₂)

The 4nBREBr² "bio" initiator was synthesized with a yield of 97% by esterification reaction with BriBuBr and TEA according to a previously reported procedure [45]. ¹H NMR (300 MHz, DMSO, ppm): 7.18 (1H, –CH=, aromat.), 7.04 (1H, –CH=, aromat.), 7.02 (1H, –CH=, aromat.), 2.60 (2H, –CH₂–, aliphat.), 2.16 (12H, 2* –C(CH₃)₂Br), 1.59 (2H, -CH₂-, aliphat.), 1.38 (2H, -CH₂-, aliphat.), 0.98 (3H, –CH₃, aliphat.). ¹³C NMR (75 MHz, DMSO, ppm) δ : 174 (C11, –OC(=O)–), 153 (C1, –CH=, aromat.), 149 (C3, –CH=, aromat.), 129 (C5, –CH=, aromat.), 128 (C4, –CH=, aromat.), 117 (C6, –CH=, aromat.), 114 (C2, –CH=, aromat.), 65 (C13, –OC(=O)C–), 42 (C7, C8, –CH₂–), 36 (C12, –CH₃), 29 (C9, –CH₂–), 18 (C10, –CH₃). ESI-MS (m/z): calculated for C1₈H₂₄Br₂O₄ 462.0; found for [M+Na]⁺ 486.0.

Figure S2. The absorption spectra of LA.

Figure S3. FT-IR spectra of copolymers of AlHEMA/MPEGMA: (a) 25/75 (III), (b) 75/25 (II).

Figure S4. 1H NMR spectra of (a) LA, (b) LA-Br and (c) LA-N3.

Figure S5. 1H NMR spectra of (**a**) FA, (**b**) FA-Br and (**c**) FA-N3.

Figure S6. 13C NMR spectra of (a) LA, and (b) LA-N3.

Figure S7. 13C NMR spectra of (**a**) FA, and (**b**) FA-N3.