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Abstract: The mechanical behavior of the sandstone at the dam site is important to the stability of
the hydropower station to be built in Southwest China. A series of triaxial compression tests under
different confining pressures were conducted in the laboratory. The critical stresses were determined
and the relationship between the critical stress and confining pressure were analyzed. The Young’s
modulus increases non-linearly with the confining pressure while the plastic strain increment Nφ and
the dilation angle φ showed a negative response. Scanning electron microscope (SEM) tests showed
that the failure of the sandstone under compression is a coupled process of crack growth and frictional
sliding. Based on the experimental results, a coupled elastoplastic damage model was proposed
within the irreversible thermodynamic framework. The plastic deformation and damage evolution
were described by using the micromechanical homogenization method. The plastic flow is inherently
driven by the damage evolution. Furthermore, a numerical integration algorithm was developed to
simulate the coupled elastoplastic damage behavior of sandstone. The main inelastic properties of
the sandstone were well captured. The model will be implemented into the finite element method
(FEM) to estimate the excavation damaged zones (EDZs) which can provide a reference for the design
and construction of such a huge hydropower project.

Keywords: sandstone; elastoplastic; damage mechanics; micromechanics; return mapping algorithm

1. Introduction

Thanks to their good geological and mechanical properties, sandstones serve as the privileged
candidate materials for many rock engineering applications, such as hydropower engineering,
petroleum engineering, road engineering, and other engineering applications [1]. Some examples of
projects involving excavation in sandstones include the Xiang Jiaba hydropower station in Southwest
China and railway tunnels in Northwest China. In this context, attaining a deeper understanding of
the mechanical properties of sandstone is of crucial importance to the design and construction of rock
engineering projects in such host rock.
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The uniaxial and triaxial tests with cylindrical specimens are the most useful approach to study
the mechanical properties of sandstone. Wong et al. [2] conducted triaxial compression tests on six
sandstones with porosities ranging from 15% to 35% to investigate the deformation behavior of porous
sandstones. The results showed that the sandstones experience from brittle faulting to cataclastic
flow with the increase of effective pressure. Additionally, the tests indicated that a more porous and
coarse-grained sandstone tends to be less brittle. Wasantha et al. [3] performed uniaxial compression
tests on three sandstones with different grain sizes to study the strain rate on the mechanical behavior
of sandstone. The observation suggested that the fine-grained sandstone is more responsive to strain
rate compared to coarse-grained sandstone. Heap et al. [4] reported the influence of temperature on the
short-term and time-dependent strengths of three sandstones under triaxial compression. A systematic
reduction in strength during short term tests and an increase by several orders of magnitude during
creep tests were observed in all three kinds of sandstone. The inherently anisotropic properties of
sandstones were investigated [5,6]. The results showed that the permeability, Young’s modulus,
compression strength, and tensility are all affected by the structural anisotropy. The influences
of water-weakening, chemical corrosion, and heat treatment effects on the mechanical behavior of
sandstone were investigated [7–9]. From the above studies, we conclude that the mechanical behavior
of sandstone is significantly influenced by the grain size, porosity, and inherent structure which
means different types of sandstone have a different response to stress and geological environments.
Although the mechanical behavior of sandstone under uniaxial and triaxial conditions has been studied
systematically in the literature, the mechanical properties of the sandstone from the specific dam site
still should be investigated to provide useful data for the design and construction of the hydropower
station [10].

Based on a large number of experimental results, the sandstones are assumed to belong to brittle
geomaterials [11]. The mechanical behavior of such geomaterials exhibits elastic degradation, material
hardening/softening, irreversible deformation, volumetric dilatancy, stress-induced anisotropy, etc.
All these features of sandstones make it difficult to develop a constitutive model to capture the behavior
of the brittle material. The purely plastic models cannot reveal the real dissipation mechanism of failure
because the damage induced by the nucleation and propagation of microcracks is not considered [12,13].
A large number of elastic damage models following the continuum damage mechanics (CDM) are
proposed. However, they cannot simulate the accumulation of irreversible plastic strain [14]. It is
widely accepted that the damage caused by the microcracking, as well as the frictional sliding along the
crack surfaces, are two mainly dissipative mechanisms governing stiffness deterioration, irreversible
deformation, and progressive failure of brittle rock [15,16]. Besides, these two dissipation processes
are inherently coupled with each other during the failure process. Therefore, the coupled elastoplastic
damage models are the most appropriate approach to brittle rock such as sandstone.

In the past few decades, substantial progress has been made in modeling coupled elastoplastic
deformation and induced damage of brittle rocks using continuum damage mechanics (CDM) [17–19].
These phenomenological models are formulated within the framework of irreversible thermodynamics,
and they are easily implemented and applied to real engineering situations [20]. During these
models, the total free energy, acting as the thermodynamic potential, can be expressed as a function of
internal variables (plastic strain, damage variable, plastic hardening variable, etc.). In this context,
the thermodynamic potential is decomposed into elastic free energy and locked plastic energy [21,22].
Both damage evolution and plastic flow depend on the formation of the locked plastic energy. However,
the assumption of locked plastic energy has never been theoretically and experimentally justified.
In order to describe the complex mechanical behaviors of rock materials, many model parameters are
introduced but have no physical significance. In addition, such parameters are rarely determined from
laboratory tests.

On the other hand, the micromechanical approaches provide an alternative way to deal with
coupled plastic damage problems. These models consider the growth and frictional sliding of
microcracks at relevant scales and determine the mechanical properties of cracked materials by
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an up-scaling method [23–27]. These models contain generally far fewer parameters compared to
phenomenological ones. However, most of the micromechanical models were not formulated within
the framework of irreversible thermodynamics. For practical rock mechanics problems such as the
dam site sandstone, the predictive capability of these micromechanical based models is still under
discussion [28].

In this study, the mechanical properties of sandstone collected from a dam foundation were
systematically investigated. The basic inelastic mechanical behavior of the sandstone will be
outlined. Based on the experimental results, a comprehensive analysis was performed on building
a coupled elastoplastic damage model within the framework of irreversible thermodynamics.
The damage evolution and plastic flow rules were developed according to the micromechanical based
homogenization method. A new computational integration algorithm was proposed to deal with the
coupled elastoplastic damage model. After the identification of the model’s parameters, the proposed
model was applied to simulate the experimental results of the sandstone under uniaxial/triaxial
compression conditions. The proposed model would help with the design and construction of a huge
hydropower project using sandstone.

2. Experimental Investigations

2.1. Description of Sandstone

The sandstone used throughout this study was collected from the dam site of a hydropower
project in Southwest China. The X-ray diffraction (XRD) and optical microscopy (OM) tests suggested
that the mineralogical composition of this sandstone is about quartz (55%), feldspar (25%), sandy and
clay detritus (20%). The quartz is of monocrystals of about 0.1–1.0 mm in size while the feldspar has
granular structural and large phenocryst crystals. The mean density and initial porosity are 2.23 g/cm3

and 8.43%, respectively. A thin section of sandstone was prepared for the SEM test and the result is
given in Figure 1. From the 2000× enlarged image, we can see that the sandstone is a blocky structure.
The grains of sandstone are tightly cemented together. Many pores and microcracks are uniformly
distributed. Besides, most of the sizes of the initial defects are less than 5 µm.
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Because of its significant impact on the safety of the dam foundation, the permeability evolution
of this sandstone in the triaxial and hydrostatic compression has been studied sufficiently [29,30].
The change of permeability with crack growth under different pore pressures was studied. The inert
gas test technique was developed to measure the permeability of this sandstone. This study is devoted
to the experimental and numerical investigations on the mechanical properties of this sandstone.
All the cylindrical specimens were drilled and polished from the same block of material to a diameter
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of 50 mm and approximately 100 mm in length. The tolerance of straightness and flatness of the
samples meets the requirement of the International Society for Rock Mechanics and Rock Engineering
(ISRM) suggested method [31].

2.2. Experimental Method

A servo-controlled rock mechanics experimental system was used to complete all the experiments
(Figure 2). This apparatus comprises a triaxial cell, three high-pressure servo-controlled pumps, and a
data monitoring system. The confining pressure and pore pressure up to 60 MPa are loaded through
separated pumps. The maximum deviatoric stress is 375 MPa. The axial strain ε1 is measured by
two linear variable displacement transducers (LVDT) with a resolution of ±1 µm, while the radial
deformation ε3 is monitored continuously using a ring radial displacement transducer chain wrapped
tightly around the middle height of the specimen. All the stress and strain data are monitored and
recorded continuously by an integrated acquisition system.
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Following the ISRM suggested method, the conventional triaxial compression tests are performed
in two steps. The confining pressure is loaded to the desired value. Then, the deviatoric stress (σ1 − σ3)

is increased in the displacement control method until specimen failure while the confining pressure is
kept constant during the whole process.

2.3. Experimental Results and Discussions

The conventional uniaxial/triaxial compression test results are presented in Figure 3. Consistently,
the stress–strain curves of sandstone under different confining pressures can be divided into four
symptomatic stages. (1) The curves are concave upward, a consequence of the closure of pre-existing
defects. With the increase of confining pressure, the initial hardening is usually not marked because
the pre-existing defects have already closed before the additional stress is applied. (2) The curves are
approximately linear, as the elastic deformation of the grains is in the dominant role. (3) The curves
depart from perfectly elastic behavior as a large number of microcracks proliferate and propagate
throughout the specimens. (4) The failure of the specimens marks the significant drop of the curves due
to the macroscopic fractures developed by the lining-up of microcracks. Furthermore, the frictional
sliding capacity of fractures finally sustains the relative flattening of the curves.
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Figure 3. Stress–strain curves of sandstone under different confining pressures.

Based on the recorded axial strain ε1 and radial strain ε3, the volumetric strain can be calculated
according to the relation: εv = ε1 + 2ε3. The evolution of the volumetric strain during a typical
experimental is presented in Figure 4. Additionally, a virtual elastic reference line is added based on the
extrapolation of the linear part of the volumetric strain. According to the figure, the volumetric strain
switches from the compaction-dominated phase to the dilatancy-dominated phase. Three typical points
map the evolution process of the volumetric strain. The first is the onset of dilatancy C′, which can be
determined at the point where the volumetric strain departs from the approximately linear part [32].
This implies that at stress beyond the C′ the deviatoric stress induces the pore structure to dilate.
The point CD is a reversal point where the volumetric strain changes from compaction to dilatancy.
Point D represents the volume of the specimen returning to the initial value.
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Figure 4. Volumetric strain versus deviatoric stress curve under uniaxial compression.

The critical stresses at the three points and the corresponding peak stresses under different
confining pressures are listed in Table 1. The results show a strong positive influence of confining
pressure on the stresses. The influence of σ3 on the corresponding stresses is given in Figure 5.
The linear Mohr–Coulomb criterion and the nonlinear Hoek–Brown criterion are adapted to fit the
experimental results:

σ1 −
1 + sinϕ
1− sinϕ

σ3 −
2c cosϕ
1− sinϕ

= 0 (1)

σ1 − σ3 −UCS
(
m

σ3

UCS
+ s

)a
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where c is the cohesion and ϕ is the frictional angle, UCS is the uniaxial compressive stress, m, s and a
are all material constants. For the intact rock, the parameters s and a are fixed to 1.0 and 0.5, respectively.
The fitting results are plotted in Figure 5 and the obtained strength parameters are presented in Table 2.

Table 1. Critical stresses during the dilation and the peak stress of sandstone.

σ3/MPa σC
′ /MPa σCD/MPa σD/MPa σp/MPa

0 6.558 17.658 38.259 49.933
5 14.093 55.263 78.135 78.797

10 22.967 73.777 112.724 120.904
15 33.081 100.74 140.601 141.510
20 45.604 109.955 165.122 171.250
40 - - - 262.597

Table 2. Stress parameters of the sandstone using the linear Mohr–Coulomb and non-linear
Hoek–Brown.

Points UCS/MPa m s a ϕ c/MPa R2(HB) R2(MC)

C′ 0.096 746.694 1.0 0.5 29.511 1.471 0.966 0.996
CD 11.102 51.033 1.0 0.5 44.190 5.380 0.974 0.974
D 26.738 44.963 1.0 0.5 49.440 8.079 0.977 0.992

peak 25.295 58.911 1.0 0.5 46.491 11.633 0.973 0.992
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Figure 5. Stresses data and Mohr–Coulomb (MC) and Hoek–Brown (HB) fits for the sandstone.

In general, the Mohr–Coulomb provides a better representation of the experimental data.
The determined cohesion c and frictional angle ϕ all increase during the hardening process. Even
though the fitting R2s are all high than 0.97, the determined USC at the peak point (25.295 MPa) is
much less than the experimental data.

The Es is identified using the local gradient of a third-order polynomial fitted to the axial
stress–strain curve and is given by Es = ∂(σ1 − σ3)/∂ε1 Similarly, the Poisson’s ratio is calculated by
υ = −∂ε3/∂ε1 [33]. Figure 6 illustrates the influence of the confining pressure on the deformation
parameters (Es and υ) of the sandstone. The Young’s modulus increases non-linearly with the confining
pressure. When the confining pressure is lower, the Es increases relatively fast. The evolution of the
Poisson’s ratio within the test confining pressure is not clear. The mean value of the Poisson’s ratio
is 0.198.
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As determined above, dilatancy, which is characterized by the dilation angle φ, is a significant
property of the sandstone. To assess the dilation angle from uniaxial or triaxial tests, Vermeer and De
Borst [34] proposed the equation

φ = arcsin
dεp

v

−2dεp
1 + dεp

v
(3)
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In Equation (3), dεp
1 and dεp

v are axial and volumetric plastic strain increments, respectively.
For φ > 0, the irreversible radial strain increment is larger than that of the axial strain, which indicates
that the plastic volumetric strain increases. While φ < 0, the plastic contraction occurs [35]. The dilation
angle is approved to relate to the plastic strain and the plastic strain increment Nφ is always introduced

Nφ =
1 + sinφ
1− sinφ

= tan2(45 + φ/2) (4)

The relationship between dilation parameters (Nφ, φ) and confining pressure is presented in
Figure 7. Both the plastic strain increment Nφ and the dilation angle φ show a negative response to
the confining pressure. Also, the drop of Nφ is more significant under the lower σ3. An exponential
function is introduced to approach the correlation between Nφ and σ3. The correlation coefficient R2

is 0.999.
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Figure 7. The evolution of (a) plastic strain increment Nφ and (b) dilation angle φ with the
confining pressure.

The stress–strain curves during the cyclic loading tests under the confining pressure of 10 MPa is
shown in Figure 8 together with the data from the monotonic compression test. Three key observations
arising from the similarity of the envelope curves of the tests during different loading histories.
Firstly, the peak stress and residual stress of the sandstone are independent of how the specimen is
loaded. Secondly, the axial and radial envelope curves during the cyclic loading coincide well with
the monotonic loading before peak stress. Thirdly, the radial strain response in the post-peak region
is quite larger than that of the monotonic loading due to the strain localization and the location and
orientation of stress-induced fractures [36].

The SEM tests were investigated on the thin sections prepared from the fractured surfaces of the
failed cylindrical specimen. With the test results shown in Figure 9, the micromechanics of damage
is investigated. Microcracks with a width of approximately 1–2.5 µm are observed. Enlarging the
microcracks to 5000×, we can see that the surfaces of the microcracks are relatively smooth while
apparent dislocation can reach 5 µm. This irreversible deformation is originated from the growth of
the cracks.
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Figure 9. Failed sandstone specimens (a) and SEM images of microcracks in the specimen under
uniaxial compression (b,c).

3. Thermodynamic Framework

Based on the mechanical tests and microscopic observation, it has been well confirmed that the
failure of brittle sandstone can be attributed to the coupling between the irreversible deformation and
damage induced by microcracks. The basic physical process of damage is the initiation, propagation,
and coalescence of microcracks. In the compression stress state, the frictional sliding along the
rough surfaces of the microcracks produces the irreversible deformation. In this context, a coupled
elastoplastic damage model is more adequate to reproduce the inherent coupling between the plastic
and damage dissipation processes. For the brittle rock materials, the assumption of small strains is
appropriate. In the isothermal conditions, the total strain tensor ε can be decomposed into an elastic
strain εe and a plastic strain εp according to the plastic theory

ε = εe + εp, and dε = dεe + dεp (5)

The propagation of microcracks in rock materials is generally with faces parallel to the applied
stress which results in stress-induced anisotropic damage of materials [37]. In this paper, we emphasize
the formulation of a coupled elastoplastic damage model. For the sake of simplicity, an isotropic
damage variable is adopted in this work. Therefore, an internal scalar variable ω is introduced to
describe the growth of microcracks. Assuming an isothermal process and small strains, the free
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energy Ψ, taken as the thermodynamic potential, can be expressed in terms of a set of state variables:
elastic strain εe, internal plastic variable κ, and damage variable ω

ψ = ψ(εe,κ,ω) (6)

For any dissipative process, the Clausius–Duhem inequality must be satisfied [38]

σ : dε− dψ ≥ 0 (7)

where σ is the stress tensor. Substituting the differential of ε and Ψ into inequality (7), one gets(
σ−

∂ψ

∂εe

)
: dε+

∂ψ

∂εe : dεp
−
∂ψ

∂κ
dκ−

∂ψ

∂ω
dω ≥ 0 (8)

This relation should be satisfied for any values of state variables (εe, κ, and ω), and hence we have
the state equation

σ =
∂ψ

∂εe (9)

By defining the thermodynamic forces associated with the plasticity (K) and damage (Y), we have

K = −
∂ψ

∂κ
(10)

Y = −
∂ψ

∂ω
(11)

To describe the plastic flow, a plastic potential gp = gp(σ, K,ω) should be employed. Besides,
a damage potential gω = gω(Y,ω) is introduced to describe the damage evolution. Finally, the rate of
change of the internal variables can be characterized as

dεp = dλp ∂gp

∂σ
(12)

dκ = dλp ∂gp

∂K
(13)

dω = dλω
∂gω

∂Y
(14)

where dλp and dλω are the plastic and damage multipliers, respectively. In the general case, a plastic
criterion f p = f p(σ, K,ω) is necessary to account for the pressure dependence of the brittle rock.
Also, a damage criterion fω = fω(Y,ω) is introduced to describe the damage initiation. Therefore,
the loading–unloading conditions can be represented by the Kuhn–Tucker conditions with the
formulations

f p(σ, K,ω) ≤ 0, dλp
≥ 0, and f p(σ, K,ω)dλp = 0 (15)

fω(Y,ω) ≤ 0, dλω ≥ 0, and fω(Y,ω)dλω = 0 (16)

The first inequality in both Equations (15) and (16) suggests that the thermodynamic forces are
within or on the yield surface and the second one indicates that the multipliers are nonnegative.
The third equation ensures that the stress states lie on the yield surface during the complete loading or
unloading process [13]. The two consistency conditions can be expressed as

d f p =
∂ f p

∂σ
: dσ+

∂ f p

∂K
dK +

∂ f p

∂ω
dω = 0 (17)

d fω =
∂ fω

∂Y
dY +

∂ fω

∂ω
dω = 0 (18)
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In the general case ( f p > 0 and fω > 0), plastic flow and damage evolution take place in a coupled
process. If f p > 0 and fω ≤ 0, only plastic flow occurs. If f p

≤ 0 and fω > 0, the material is in the elastic
damage loading condition.

4. Microscopic Prediction

Under the general loading conditions (plastic flow is coupled with damage evolution), if the yield
criteria ( f p, fω) and potential functions (gp, gω) are given, the plastic and damage multipliers can be
determined by solving the two consistency conditions Equations (15) and (16). Under a thermodynamic
framework, the description of the damage conjugate force Y and plastic hard function K are related to
the formation of thermodynamic potential (6). However, the assumption of thermodynamic potential
when considering the coupled relationship between plasticity and damage has never been theoretically
and experimentally justified in the phenomenological constitutive model. Moreover, many parameters
are introduced, but have no physical significance. The micromechanical approaches provide an
alternative way to deal with the coupled elastoplastic damage problems.

4.1. Effective Elastic Properties of Cracked Materials

The essential of micromechanical damage is to determine the macroscopic properties of materials
from its microstructure (geometry, number, size, and spatial distribution of defects as well as their
evolution laws) via homogenization schemes [39]. In this study, we consider a representative element
volume (REV) Ω (with boundary ∂Ω) of a brittle material composed of an isotropic linear solid matrix
and sets of defects in different orientations. According to the shapes, the defects in the solid matrix
are assumed to be classified into two categories: penny-shaped microcracks and quasi-spherical
pores. Then the ensemble of the solid matrix and pore therein is considered as a homogenized
porous matrix with stiffness tensor Dm. Microcracks are classified into N families with the stiffness
tensor Dc,r, r = 1, 2 . . .N according to the direction. According to the micromechanical method,
both pore-weakened matrix and microcracks are considered as local elastic medium. The effective
(homogenized) elasticity tensor of the microcrack–matrix rock system Dhom is obtained by taking the
average of the local strain over Ω [28,40]

Dhom = Dm +
N∑

r=1

ϕr(Dc,r
−Dm) : Ac,r (19)

where ϕr and Ac,r are the volume fraction and average strain concentration tensor, respectively.
The local strain ε is linear with the macroscopic one ε on ∂Ω, i.e., ε = Ac : ε. is The stiffness tensor Dm

of rock matrix can be expressed as
Dm = 2µmK + 3kmJ (20)

where km is the bulk modulus and µm denotes shear modulus of rock materials. J and K are fourth
order symmetric tensors

J =
1
3
δ⊗ δ, K = I− J (21)

where δ is a second order unit tensor, and Ii jkl =
1
2

(
δikδ jl + δilδ jk

)
is a fourth order unit symmetric tensor.

The sets of microcracks are considered as flat ellipsoids with radius ar and aspect ratio ϑr = cr/ar

(Figure 10) where the subscript "r" stands for the rth family. The parameter c is the half-length of the
small axis. The volume fraction ϕr of the rth family can be expressed mathematically in the form

ϕr =
4
3
πa2

r cr
N
Ω

=
4
3
πϑrdr (22)

where dr =
N
Ω a3

r is the well-known crack density parameter of the rth family and can be treated as
an internal damage variable [41]. If the macroscopic damage ω is defined as the degradation of the
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elastic modulus, the microscopic damage variable d is certainly related to ω as ω = ω(d). In this
context, the goal to determinate the homogenized elasticity tensor Dhom is to evaluate the fourth-order
concentration tensor Ac,r for each phase. Several homogenization schemes can be found in the literature
to deal with the concentration tensor. Considering that the Mori-Tanaka is especially suitable for a
microcrack-matrix rock system [42], the homogenization procedure is based on this scheme and the
determined homogenized elasticity tensor can be expressed in the form [43]

Dhom =
1

1 + η1d
3kmJ +

1
1 + η2d

2µmK (23)

where η1 and η2 are parameters only related to the Poisson’s ratio νm of a matrix, namely η1 = 16
9

1−(vm)2

1−2vm

and η2 = 32
45

(1−vm)(5−vm)
2−vm . Finally, the free energy of the matrix-cracks system can be expressed as

ψ =
1
2
(ε− εp) : Dhom : (ε− εp) (24)Materials 2020, 13, x FOR PEER REVIEW 13 of 24 
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Besides, the free energy (24) can also be expressed in the general form [27]

ψ =
1
2
(ε− εp) : Dm : (ε− εp) +

1
2
εp : Db : εp (25)

where the tensor Db can be expressed in the form

Db =
1
η1d

3kmJ +
1
η2d

2µmK (26)

Compared with the phenomenological model [44], a specific form of the locked plastic energy
ψp = 1

2ε
p : Db : εp can be determined with the micromechanical homogenization procedure. Besides,

each parameter has clear physical meaning and can be determined from laboratory experiments.

4.2. Plastic Characterization

Based on the thermodynamic framework, the state Equation (9) can be expressed as

σ =
∂ψ

∂εe = Dm : (ε− εp) (27)

In the microcrack-matrix rock system, the plastic strain εp induced by the friction sliding along
the crack surfaces is directly selected as the internal plastic variable κ. The thermodynamic force
associated with the plastic strain εp is divided according to Equation (10)
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σp = −
∂ψ

∂εp = σ−Db : εp (28)

It shows that the thermodynamic forceσp is part of the macroscopic stressσ. The part Db : εp in the right
hand of Equation (28) is the self-equilibrated stress in the solid matrix according to the homogenization
scheme. Therefore, the thermodynamic force σp is the local stress act on the closed microcracks.

Before formulating the plastic criterion, the plastic strain induced by the microcracks is decomposed
into spherical strain tensor and deviatoric strain tensor. If the scalar variable β and vector Γ denote the
shear dilation and friction sliding, the plastic strain is expressed as

εp = Γ +
1
3
βδ, β = trεp (29)

The local stress σp is also convenient to be decomposed into a deviatoric part and a spherical part

σp = K : σp + J : σp = sp + σ
p
mδ (30)

where sp = σp : K and σp
m = trσp/3 are deviatoric part and spherical part of the local stress.

According to the Equation (28), the local stress σp can also be expressed with the form of
macroscopic stress σ

sp = s− 2
1
η2d

µmΓ, σp
m = σm −

1
η1d

kmβ (31)

where s = σ − 1
3 trσδ and σm = 1

3 trσ are the deviatoric part and spherical part of the macroscopic
stress, respectively.

To describe the local frictional sliding along the surfaces of microcracks, a generalized Coulomb
criterion [45] is adopted in terms of local stress σp

f p = ‖sp
‖+ ηϕσ

p
m ≤ 0 (32)

where ηϕ is the generalized friction coefficient due to the roughness of the crack surfaces. Equation (32)
can also be rewritten in the form of macroscopic global stress σ in Equation (31)

f p = ‖s− 2
1
η2d

µmΓ‖+ ηϕ

(
σm −

1
η1d

kmβ

)
(33)

Under triaxial compression condition, the damage d at the peak point reaches dc. The relationship
between maximum principal stress σ1 and minimum principal stress can be determined from (33)
(under the sign convention in geomechanics)

f p = σ1 −
2ηϕ +

√
6

√
6− ηϕ

σ3 −
6

√
6− ηϕ

√
χR(dc) = 0 (34)

where χ is a constant which can be written with the parameters related to the Yong’s modulus and
Poisson’s modulus [43]

χ =
kmη2

ϕ

2η1
+
µm

η2
(35)

In geomaterials, the micromechanical approach always introduces the non-associated plastic
potential to describe the volumetric dilatancy during the failure process. However, the micromechanical
analysis which uses the back stress term Db : εp to realize the hardening/softening behavior gives an
alternative method [46]. Therefore, an associated flow rule gp = f p is utilized to describe the evolution
of plastic strain. According to the plastic theory (12), the rate of the plastic strain can be expressed as
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dεp = dλp ∂gp

∂σ
= dλp

(
V +

1
3
ηϕδ

)
(36)

where V = sp

||sp || is the flow direction. Compare Equation (36) with the rating form of plastic strain in
Equation (29), one gets

dΓ = dλpV, dβ = dλpηϕ (37)

The current value of plastic strain can be expressed in terms of the cumulated values of the
plastic multiplier

εp = Λp
(
V +

1
3
ηϕδ

)
, Λp =

∫
dλp (38)

4.3. Damage Characterization

The damage criterion is a function of the damage conjugate force Y within the framework of
irreversible thermodynamics. According to the Equation (11), the damage conjugate force Y can be
determined with the function of free energy ψ.

Y = −
∂ψ

∂d
= −

1
2
εp :

∂Db

∂d
: εp (39)

Inspired by the work of Pensee et al. [47], a liner damage criterion is considered

f d(Y, d) = Y −R(d) ≤ 0 (40)

where R(d) is the damage energy release threshold at a given value of the damage. Based on the
previous work by Zhu and Shao [45], the rock strength is attained when R(d) takes its maximum value
at d = dc. dc is the microscopic damage variable at the peak stress. Also, the model should reflect the
strain hardening behavior when d ≤ dc while the model should predict the damage softening behavior
when d > dc. The following power form is adopted for R(d)

R(d) = R(dc)
2ξ

1 + ξ2 (41)

where R(dc) is the maximum value of R(d) at d = dc. The ratio ξ is defined by ξ = d/dc. In this study,
the associated damage potential is adopted which means that the damage potential is equal to the
damage criterion, namely gd = f d.

5. Elastoplastic Damage Coupling Correction Algorithm

5.1. Integration by Return Mapping Algorithm

Numerical implementations of the inelastic constitutive model require the stress state to be
corrected and returned onto the yield surface. Generally, there are two types of numerical integration
techniques: explicit algorithms and implicit algorithms. The explicit algorithms parameter updates
at the beginning of a given time step. The disadvantage is that when the time step is decreased,
a non-convergent and infinite loop may happen during iterations [48]. The return mapping algorithm,
first proposed by Simo and Ortiz [49], is a typical implicit algorithm and is widely used for the
numerical implementation of elastoplastic models in the programming of FEM. This method can
reach an asymptotic global quadratic convergence rate when using the full Newton–Raphson iteration
method [50].

In this study, this algorithm is extended to solve the coupled elastoplastic damage problem. If the
implementations are based on the strain-controlled strategy, a trial calculation is tested with a new
strain increment. If the yield condition is reached, the return mapping algorithm is utilized to drive the
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stress status back to the yield surface. If the yield condition is not reached, the stress status is updated
using elastic prediction.

For the coupled condition, one assumes that the macroscopic stress σk and strain εk, as well as the
internal variables (dk Γk and βk) at the end of the kth loading step, are known. If the yield condition
is reached, one has f p,(k+1)(σ, εp, d) > 0 and f d,(k+1)(Y, d) > 0. To drive the stress status back to the
yield surfaces, the inner iteration process is taken over at the (k + 1)th loading step. During each inner
iteration process, the plastic and damage loading conditions can be approximately expressed by using
first-order Taylor expansion

f p,(k+1)
m+1 = f p,(k+1)

m +
∂ f p,(k+1)

m
∂d δd + ∂ f p,(k+1)

m
∂β δβ+

∂ f p,(k+1)
m
∂Γ

: δΓ +
∂ f p,(k+1)

m
∂σ : δσ ≈ 0

f d,(k+1)
m+1 = f d,(k+1)

m +
∂ f d,(k+1)

m
∂d δd + ∂ f d,(k+1)

m
∂β δβ+

∂ f d,(k+1)
m
∂Γ

: δΓ ≈ 0
(42)

where subscript m is the number of inner iterations in the recycling of (k + 1)th loading step. δσ,
δΓ, δβ, and δd are used to represent the increments of σ, Γ, β, and d determined at the mth iteration.
The symbol ‘δ’ is used to represent the small increment of variables between two inner iterations.

δd = δλd (43)

δβ = ηφδλ
p (44)

δΓ = Vδλp (45)

δσ = −Dm :
(
V +

1
3
ηϕδ

)
δλP (46)

where δλd and δλp are the modification of λd and λp during the iteration from mth to (m + 1) th.
Substitution of Equation (43) to Equation (46) into Equation (42) gives

f p,(k+1)
m +

∂ f p,(k+1)
m
∂d δλd +

[
∂ f p,(k+1)

m
∂β ηϕ +

∂ f p,(k+1)
m
∂Γ

: V− ∂ f p,(k+1)
m
∂σ : Dm :

(
V + 1

3ηϕδ
)]
δλp
≈ 0

f d,(k+1)
m +

∂ f d,(k+1)
m
∂d δλd +

(
∂ f d,(k+1)

m
∂β ηϕ +

∂ f d,(k+1)
m
∂Γ

: V
)
δλp
≈ 0

(47)

Finally, the plastic multiplier and damage multiplier can be obtained by solving the set of linear
equations composed of plastic and damage multipliers (δλp, δλd){

δλd

δλp

}
=

1
A11A22 −A12A21

[
A22 −A21

−A12 A11

]{
B1

B2

}
(48)

In Equation (48), A11, A12, A21, A22, B1, and B2 are defined by

A11 = −
∂ f p,(k+1)

m

∂d
, A12 =

∂ f p,(k+1)
m

∂σ
: Dm :

(
V +

1
3
ηϕδ

)
−
∂ f p,(k+1)

m

∂β
ηϕ −

∂ f p,(k+1)
m

∂Γ
: V (49)

A21 = −
∂ f d,(k+1)

m

∂d
, A22 = −

∂ f d,(k+1)
m

∂β
ηϕ +

∂ f d,(k+1)
m

∂Γ
: V

 (50)

B1 = f p,(k+1)
m , B2 = f d,(k+1)

m (51)

The plastic strain and the damage are updated

ε
p,(k+1)
m+1 = ε

p,(k+1)
m +

(
V +

1
3
ηϕδ

)
δλP (52)
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dk+1
m+1 = dk+1

m + δλd (53)

Finally, the stress, elastic strain, plastic strain, and damage can be exactly updated by the returning
mapping algorithm.

5.2. Implementation Procedure

The previous numerical integration scheme applied to phenomenological model [44] is also
implemented to the micromechanical based model in this work. The flowchart of the numerical
algorithm is summarized in Table 3.

Table 3. Flowchart of return mapping algorithm of the micromechanical based model.

Load to next step
εk+1 = εk + ∆εk+1, σk+1 = σk + Dm : ∆εk+1;
dk+1 = dk, Γk+1 = Γk, βk+1 = βk;
Plastic correction
Determine the plastic multiplier δλp with Equation (47) while δλd = 0.
Update the variables: Γk+1 = Γk+1 + δλpV, βk+1 = βk+1 + δλpηϕ, dk+1 = dk;

Update the macroscopic stress and strain:
 εk+1 = Γk+1 + 1

3β
k+1δ

σk+1 = σk+1
−Dm :

(
V + 1

3ηϕδ
)
δλp

Elastoplastic damage coupling correction
Calculate the multipliers {δλp, δλp} using the Equation (48)
Update the variables: Γk+1 = Γk+1 + δλpV, βk+1 = βk+1 + δλpηϕ, dk+1 = dk + δλd;

Update the macroscopic stress and strain:
 εk+1 = Γk+1 + 1

3β
k+1δ

σk+1 = σk+1
−Dm :

(
V + 1

3ηϕδ
)
δλp

6. Numerical Simulations

In this section, the comparison between the experimental results of the sandstone and the numerical
simulations data are presented. The proposed micromechanical based elastoplastic damage model
has been implemented as a user-defined in a home-made c language code. At present, only a Gauss
integration point inside a finite element is studied which indicates that the simulation results are
independent of the element type. In the future work, the subroutine can be easily embedded into finite
element software or finite difference software to analyze the safety and stability of hydropower station
in excavation and operation conditions.

6.1. Identification of Model Parameters

As mentioned above, the phenomenological models always introduce so many parameters to
account for the coupled relationship between plasticity and damage. However, the proposed coupled
elastoplastic damage model in this work only contains five parameters and all the parameters can be
determined from experiments in the laboratory. The feature of the developed model makes it more
suitable for the engineering application. The calibration of the parameters is discussed below.

Equation (38) shows that the major principal stress σ1 increases linearly with the increase of minor
principal stress σ3 which indicates that the friction criterion is similar to the Mohr–Coulomb criterion in
the formulation. Therefore, the generalized friction coefficient ηϕ and parameter R(dc) can be expressed
with the cohesion c and internal friction angle ϕ in Equation (1)

ηϕ =
2
√

6 sinϕ
(3− sinϕ)

R(dc) =
[ √

6c cosϕ
(3−sinϕ)

√
χ

]2 (54)

With the parameters (c and ϕ) listed in Table 1, the determined ηϕ and R(dc) are 1.56 and
0.009, respectively.
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The relationship between bulk modulus km and the shear modulus and µm with the elastic
constants Es and υ can be expressed as:  km = Es

3(1−2υ)

µm = Es
2(1+υ)

(55)

The Young’s modulus Es and Poisson’s ratio υ of the sandstone is shown in Figure 6. For the sack
of simplicity, the average values of the Young’s modulus Es = 15.86 GPa and Poisson’s ratio υ = 0.198
are selected.

According to Lockner [51], the maximum damage variable dc (refers to the crack density at peak
point) can be determined from the acoustic emission tests. Unfortunately, we do not have such a device
in our laboratory. To calibrate the parameter dc, parametric studies on the influence of dc upon material
responses are carried out and the results are given in Figure 11. The parameter dc influences the shape
of the stress–strain curve in the post-peak region. With the increases in dc, the ductile characteristic is
more significant. Even the confining pressure increases to 40 MPa, the sandstone is with brittle failure.
According to the sensitivity analysis results of dc and the shapes of the stress–strain curve of the test
sandstone, we take approximately dc = 1.0 for the test sandstone.
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Finally, the parameters of the model are listed in Table 4.

Table 4. Model’s parameters for sandstone.

Parameters Es (GPa) υ ηϕ R (dc) dc

Values 15.86 0.198 1.56 0.009 1.0

6.2. Simulation of Experimental Results of Test Sandstone

The results of each modeled test are compared to the experimental results of the sandstone
(Figure 12). There is a good concordance between the modeled results and experimental data
under different confining pressures. However, some systematic differences for the tests are also
observed. The difference between the numerical curve and the experimental data under uniaxial
compression stems from the compelling concave upward stage of sandstone under low confinements.
The experimental data show a marked decrease of the stress in the post-peak region while a smooth
fall of stress is received from the numerical model. This could be attributed to the shear localization
and stress-induced fractures resulting from the coalescence near the peak stress of clusters of oriented
microcracks. This behavior of sandstone is behind the topic of this study and will be developed in our
ongoing works.
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Figure 12. Model results (black) compared to experimental responses (grey). The cyclic experimental
results are shown in red, the left is stress–radial strain curves and the right is stress–axial strain curves.

6.3. Simulation of Experimental Results of Shandong Red Sandstone

To illustrate the utility and consistency of the proposed coupled elastoplastic damage model,
the mechanical properties of Shandong sandstone are here investigated. Figure 13 shows the
experimental results and numerical simulations of triaxial compression tests performed on Shandong
sandstone. Following the procedure presented in Section 5.1, the model’s parameters of Shandong
sandstone are determined and listed in Table 5.

The comparisons show a good agreement between numerical predictions and experimental results
for five levels of confining pressures, namely 5, 20, 35, 50, 65 MPa. The strain hardening in the pre-peak
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region and strain softening in the post-peak region are clearly produced. The dependence of mechanical
properties of sandstone on confining pressure is well simulated. In conclusion, the developed model
can simulate the coupled elastoplastic damage properties of sandstone at the scale of the rock sample.
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Figure 13. Model results compared to experimental responses of Shandong sandstone (Test data
collected from [52]).

Table 5. Model’s parameters for Shandong sandstone.

Parameters Es (GPa) υ ηϕ R (dc) dc

Values 46.0 0.33 1.16 0.034 2.57

7. Conclusions

The mechanical properties of studied sandstone in this work is significantly important to the
stability and safety of the hydropower station in Southwest China. A series of uniaxial and triaxial
compression tests were carried out in our laboratory. The strength and deformation characteristics
were investigated. The microstructure of the failure specimen was examined through SEM. The results
showed that the complete stress–strain curves of the sandstone can be divided into four stages.
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The volume of the sandstone changes from compaction to dilatancy during the failure process.
The critical stresses all depend on the confining pressure. The Young’s modulus increases nonlinearly
with the confining stress while the relationship between the Poisson’s ratio and the confining stress is
not clear. The plastic strain increment Nφ and the dilation angle φ show a negative response to the
confining pressure. The SEM images present the growth and frictional sliding of the cracks induced by
the stress.

According to the experimental results, a coupled elastoplastic damage model was developed
based on the irreversible thermodynamic framework. Specific plastic and damage criteria based on the
micromechanics are proposed to describe the physical process of propagation and frictional sliding of
microcracks. Compared with the phenomenological model, the model developed in this paper can
reflect the physical mechanism of the failure of the sandstone that observed from the tests. Besides,
the model only has five parameters and each one can be determined from laboratory tests. The general
constitutive integrated formulations of the coupled elastoplastic damage model were deduced based
on the return mapping algorithm. The model was validated through a comparison of the numerical
simulation results to the experimental data. A good concordance between the modeled results and
experimental data suggests that this model can provide a good representation of the nonlinear behavior
of the sandstone.

In this study, we mainly present the experimental results of the sandstone, and a micromechanical
based elastoplastic damage model was developed. In the near future, the proposed constitutive
model will be implemented into the finite element method (FEM). Combining the laboratory tests
with the in-situ tests, the mechanical parameters can be determined. Using the developed model,
the excavation damaged zones (EDZs) can be estimated, and it could provide a reference for the design
and construction of a huge hydropower project.
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