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Abstract: Laminated composites materials are mostly used in dynamically loaded structures.
The design of these structures with finite element packages is focused on vibrations, elastic deformations
and failure control. Damping is often neglected because of its assumed secondary importance
and also because of dearth of information on relevant material properties. This trend is prone to
change as it is now realised that damping plays an increasingly important role in vibration comfort,
noise radiation and crash simulations. This paper shows in a first step how to identify the orthotropic
elastic and damping properties of single layer fibre-reinforced composite material sheets using a new
extended version of the Resonalyser procedure. The procedure is based on the elastic-viscoelastic
correspondence principle and uses a mixed numerical experimental method. In a subsequent
step, the complex laminate stiffness values are computed using the identified single layer material
properties. To validate this approach, the modal damping ratios of arbitrary laminated plates of
different materials at several resonance frequencies are predicted and experimentally verified.

Keywords: composite materials; laminated plates; Resonalyser procedure; elastic-viscoelastic
correspondence principle; complex stiffness

1. Introduction

Composite materials are increasingly replacing more traditional materials like steel, wood and
aluminium in a wide range of applications. From the eighties till the end of the previous century,
composite materials were introduced successfully in dynamically loaded structures like satellites,
military aircrafts, expensive cars, boats, sporting and many consumer goods. As a result of marked
developments and improvements in manufacturing methods, robot assistance and quality control
systems, composites are now employed in major structural parts of civil aircrafts and vehicles [1,2].
The success of composites is due to their excellent mechanical properties like high stiffness to weight
ratio and high strength to weight ratio, combined with good fatigue resistance. Furthermore, composites
offer significant design freedom which allows tailoring of mechanical properties and creation of entirely
new shapes. Unfortunately, the mechanics of composites are much more complex than mechanics
of traditional isotropic materials. A good introduction to mechanics of composites is given in the
book written by Jones [3]. The advancement of composite materials occurred hand in hand with the
advancement in computer power and software. In particular, modern finite element software packages
are vital in current design of composite structures. Fibre-reinforced composites are mainly used as
laminates in dynamically loaded structures. The fundamental building block of laminates is the lamina.
A layer in a laminate can be built up with several laminas with the same orientation. Each layer in
the laminate can possibly be composed of other materials and may have different orientations and
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thicknesses. The layers in general exhibit orthotropic material behaviour. In a finite element (FE)
model, all layers can be modelled separately. This however requires a huge number of degrees of
freedom in the numerical model, which translates to significant increase in memory requirements and
computation time. A more economical solution is to represent the laminates by their global laminate
stiffness. The computation of the laminate stiffness can be executed at a pre-processing stage using
laminate analysis programs.

Finite element analysis of a structure often requires knowledge and input of both the damping
behaviour and other relevant material properties into the FE program. Material damping can be
defined as ‘the phenomenon of energy dissipation due to inelastic behaviour of a macroscopically
uniform material’ Lazan [4]. This definition does not include structural energy dissipation due to,
among others, friction between contacting surfaces within a structure, friction in mechanical joints
and aerodynamic damping, which are phenomena that are classified under the more general header
of ‘structural damping’. An early discussion of modelling and measuring damping was given by
Bert [5]. For engineering applications, composite materials like fibre-reinforced plastics are considered
as homogeneous from a macroscopic point of view, so that the energy dissipation within the material
satisfies the definition of material damping. An early overview of modelling and measuring damping
in composite materials was given by Adams [6]. A more recent overview of available literature on
damping in composite materials can be found in an article by Treviso et al. [7].

Material damping in fibre-reinforced polymers is a very complex phenomenon. It is due to a
variety of contributions which can be distinguished into contributions from the following sources:

• The viscoelastic behaviour of the polymer matrix materials;
• The inelastic behaviour of the fibres;
• The inelastic behaviour of the interphase between fibre and matrix;
• The slip at the fibre/matrix interface in case of non-perfect adhesion;
• Thermo-elastic behaviour of fibres and matrix;
• The volume fractions of matrix and fibre.

Because of the complexity of these different mechanisms, theoretical models to predict
quantitatively the material damping of composites are usually cumbersome. If good experimental
equipment is available, it is more reliable to measure the damping properties on test specimens.
For laminates the damping mechanism becomes even more complex because of the possible
delaminations and other interlaminar effects between layers. All methods for predicting the damping of
laminates require the damping properties of single layer materials. The quality of the prediction of the
entire laminate damping hence relies strongly on the quality of the used single layer material properties.

Many papers to predict laminate damping are based on the elastic-viscoelastic correspondence
principle first introduced by Hashin [8–10]. According to this elastic-viscoelastic correspondence
principle, the formulae for calculation of the complex moduli and stiffness’s of composites are similar
as those for the calculation of their elastic counterparts.

In an early paper, Ni and Adams [11] developed a model to predict damping of composite
laminates. The experimental values for the layer properties included the elastic and damping values of
the longitudinal and transverse Young’s moduli and the shear modulus. These values were measured
on clamped beams in flexural and torsional mode shapes. Only the elastic part of Poisson ratio could
be measured. The damping part of Poisson ratio was assumed to be zero. All experimental values
were measured on composites test beams with a known volume fraction for the matrix and fibre.
Micromechanical models were used to predict the elastic and damping values of the same composite
materials as the volume fraction varies. Experimental verification was executed on laminated beams in
flexural mode shapes. The zero damping of Poisson’s value for the damping was assumed by most
authors, since this value cannot be revealed by beam testing. In an effort to overcome this problem,
Jong [12] developed a closed form of the solution for the basic damping for Poisson’s ratio. This enabled
him to show the influence of the damping part of Poisson ratio on computed laminate damping.



Materials 2020, 13, 3370 3 of 24

Plates in composite materials are more natural test specimens than beams since they require
less preparation and machining and show less influence of stress concentrations and delaminations
at the free boundaries. Since analytical solutions for the vibration of orthotropic plates are not
available, mixed numerical experimental methods must be used for material identification. In a
mixed numerical experimental method, measured vibration quantities like resonance frequencies and
damping ratios are compared with similar values computed with a numerical model. The material
properties in the numerical model are tuned in such a way that the computed values match the
experimental observations. The availability of powerful personal computers has promoted this new
approach. The earliest article describing the use of rectangular test plates for the identification of
elastic orthotropic moduli of composite material using a mixed numerical experimental method was
published by De Wilde and Sol in 1985 [13] and later refined by Sol [14] in 1986. Rayleigh Ritz trial
functions were used in the numerical model of rectangular test plates. McIntyre and Woodhouse
applied a test procedure on plates to identify not only the elastic but also the damping material
properties of composite sheets in 1988 [15]. Other similar early studies were published by Deobald and
Gibson [16]. Talbot and Woodhouse [17] proposed a solution for laminate damping by adopting the
elastic-viscoelastic correspondence principle, first introduced by Hashin [8]. The laminate damping
was computed using classical laminate theory with the same formulas as for the laminate stiffness
properties. El Mahi et al. [18] used a finite element model for the identification of elastic and damping
values of laminates. They discussed the influence of boundary conditions and concluded that free-free
boundary conditions of plates are to be preferred. More recently, Wesolowski and Barkanov [19]
also used the elastic-viscoelastic correspondence principle in combination with a mixed numerical
experimental method. The paper focused on improving the experiment by eliminating the contribution
of air friction to the damping value of the tested laminate. The test was executed in vacuum and the
dynamic response was measured contactless with a laser vibrometer. The authors did not take the
phase angle of Poisson ratio into account. Marchetti et al. [20] used a laminate model considering
linear shear, membrane and bending effects in each layer. The developments used in the paper are
based on the analytical multilayer model of Guyader and Lesueur (JSV, 1978). The authors observed
good correspondence with experiments in a large frequency band (up to 20 kHz).

A major problem with most of the mixed numerical experimental methods is the necessity to
know the correct sequence of mode shapes. To compare measured frequencies and damping ratios with
numerical simulations (sometimes with poor starting values), the sequence of computed mode shapes
must be the same as in the experiment. This requires the identification of the mode shapes by modal
analysis or at least by detecting the position of the nodal lines of the mode shapes. Basic knowledge of
modal analysis is described among others in the book by He and Fu [21]. Mode shape measurements
and detection of nodal lines are labour intensive and often based on trial and error. Another weak point
of mixed numerical methods is that many mode shapes are not sensitive to Poisson’s ratio. Taking more
mode shapes of the test plate into account does not solve this problem, since higher mode shapes have
increased complex patterns and therefore are more influenced by transverse shear and inertia rotations.
This requires numerical thick plate models and additional elastic and damping values associated
with transverse shear, which are difficult to identify. The above mentioned problems were solved
with the introduction of the Resonalyser method by Sol et al. [22,23]. The Resonalyser method allows
fixing the mode shape sequence and assures enough sensitivity to Poisson’s ratio. The Resonalyser
method uses simultaneously multiple models including two test beams and a rectangular test plate.
The results of the Resonalyser method were intensively compared with values from standard testing
by Lauwagie et al. [24] and found to be very accurate. The first applications of the Resonalyser method
identified only the elastic orthotropic material properties. De Visscher [25] presented an extension
of the Resonalyser method including the identification of the damping properties of orthotropic
material properties.

This paper describes as a first step the identification of the complex engineering constants of a
single laminate layer. The capabilities of a new and improved version of the Resonalyser method to
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identify the orthotropic elastic and damping properties of single layer composite material sheets with
minimal experimental equipment is demonstrated. Measured resonance frequencies and associated
damping ratios of two test beams and a test plate are compared with similar values computed with the
finite element method. The orthotropic elastic and damping material properties in the finite element
models of the beams and the plate are simultaneously updated in such a way that the computed
resonances and damping ratios match all the measured values. This paper introduces for the first time
an improvement for the existing Resonalyser method by generating good starting values based on the
virtual field method. The virtual field method is described in detail in the book by Pierron and Grediac
in [26].

In a next step, the paper shows how to compute the stiffness and damping properties of laminates
with the elastic-viscoelastic correspondence principle using previously identified single layer properties.
The complex laminate stiffness values are used to predict the modal damping ratio of rectangular plates
by finite element simulation. Many experimental values of damping measurements on laminated test
beams can be found in literature [6,11,12,20]. Unfortunately, no fully documented experimental values
could be found by the authors for damping measurements on test plates.

The described approach to predict laminate damping values is validated experimentally on a
test set of laminated plates. The test set includes laminated plates with arbitrary sizes and different
composite materials (autoclaved carbon/epoxy, glass/polyester made with hand layup and glass epoxy
processed with Resin Transfer Moulding (RTM).

2. Identification of the Complex Engineering Constants of Single Layers

2.1. Linear Viscoelasticty

Materials like fibre-reinforced polymer composites exhibit viscoelastic behaviour. Viscoelastic
behaviour is situated somewhere between pure elastic and pure viscous behaviour. Elastic solids have
the capacity to store mechanical energy with no dissipation. Viscous fluids in a non-hydrostatic stress
state have the capacity to dissipate energy but cannot store it. Viscoelastic materials can both store and
dissipate energy. Most polymers do not show strictly linear viscoelastic behaviour but modelling by
the linear viscoelastic theory is a ‘useful starting point’. If the strain history εkl(t) is assumed to be
continuous and the material is assumed to behave statistically homogeneously, the stress constitutive
relation as a function of time σi j(t) can be written as a convolution with a Stieltjes integral in which the
integrating function Ci jkl is a fourth order material stiffness tensor.

σi j(t) =
∫
∞

0
εkl(t− s)dCi jkl(s) (1)

(Repeated subscripts denote summation over their dimensions). s is an arbitrary convolution
variable with a dimension of time. Another form of the stress constitutive relation can be found
through a change of variable τ = t− s, followed by integration by parts:

σi j(t) =
∫ t

−∞

Ci jkl(t− τ)
dεkl(τ)

dτ
dτ (2)

Suppose that the material is subjected to a sinusoidal strain with time-independent amplitude ε0
kl:

εkl(t) = ε0
kle

iωt (3)

ω is the angular frequency and i is the imaginary variable i =
√
−1. The amplitude ε0

kl can be
dependent on ω and can be complex. The stress tensor becomes:

σi j(t) = iωε0
kl

∫ t

−∞

Ci jkl(t− τ)eiωτdτ (4)
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Again, using the change of variable t− τ = s:

σi j(t) = iωε0
kle

iωt
∫
∞

0
Ci jkl(s)e−iωsds (5)

If it is assumed that the sinusoidal strain function is acting on the material for an indefinitely
long time so that all initial transient disturbances have died out and assuming that Ci jkl(t) = 0 for
t < 0, the lower boundary for the integral can be set to −∞ and the integral part can be written as a
conventional Fourier integral.

Ci jkl(ω) =

∫
∞

−∞

Ci jkl(s)e−iωsds (6)

Expression (5) can be written as:
σi j(t) = σ0

i je
iωt (7)

In which:
σ0

i j(ω) = iωε0
kl(ω)Ci jkl(ω) = C∗i jklε

0
kl(ω) (8)

C∗i jkl = iωCi jkl is a complex tensor called the ‘viscoelastic stiffness tensor’.
The stress σi j(t) is hence also a periodic sinusoidal signal with the same angular frequency ω

as the strain εkl(t). The amplitudes ε0
kl and σ0

i j are generally complex values and generally not in

phase with each other. Because of the symmetry of the stress tensor σ0
i j, the stiffness tensor C∗i jkl is ij

symmetric. Because of the symmetry of the strain tensor ε0
kl, the complex stiffness tensor C∗i jkl is kl

symmetric. These symmetries allow contracting the stress tensor σ0
i j to a column σ∗i , the strain tensor

ε0
kl to a column ε∗j and the fourth order stiffness tensor C∗i jkl to a second order matrix C∗i j by using a

contracted notation:
11->1 22->2 33->3
12->6 13->5 23->4

σ∗i (ω) = C∗i j(ω)ε
∗

j (i, j = 1 to 6) (9)

C∗i j is called the visco-elastic stiffness matrix. Expression (9) is similar to the linear elastic relation
between stresses σi and strains ε j by the elastic stiffness matrix Ci j. Based on this similarity, Hashin [8]
has introduced the so-called ‘elastic-viscoelastic correspondence principle’ of material behaviour of
statistically homogeneous fibre-reinforced composite materials. Since the elastic stiffness matrix is ij
symmetric, the viscoelastic stiffness matrix C∗i j is also assumed to be ij symmetric. The stress–strain
relation (9) and its inverse expression can be written explicitly for a two-dimensional state of plane
stress, like it occurs in thin orthotropic composite sheets in a Cartesian axis system (1,2) with the 1- and
2- axis along the orthotropic material axes:

σ∗i = C∗i jε
∗

j or inversed ε∗i = S∗i jσ
∗

j (i, j = 1, 2, 3)
σ∗1
σ∗2
τ∗12

 =


E∗1

1−υ∗12υ
∗

21

−υ∗21E∗1
1−υ∗12υ

∗

21
0

−υ∗12E∗2
1−υ∗12υ

∗

21

E∗2
1−υ∗12υ

∗

21
0

0 0 G∗12



ε∗1
ε∗2
γ∗12

 or


ε∗1
ε∗2
γ∗12

 =


1

E∗1
−
υ∗21
E∗2

0

−
υ∗12
E∗1

1
E∗2

0

0 0 1
G∗12



σ∗1
σ∗2
τ∗12

 (10)

C * is the complex in-plane stiffness matrix, S* is the complex in-plane flexibility matrix, ε∗1, ε∗2 are
normal strains and σ∗1, σ∗2 are normal stresses, respectively in the 1- and 2-direction. γ∗12, τ∗12 are the
in-plane shear strains and stresses. E∗1, E∗2 are the complex dynamic Young’s moduli, υ∗12, υ∗21 are the
major and minor Poisson’s ratios and G∗12 is the complex in-plane shear modulus. For a given angular
frequency ω and the assumed linear behaviour, the values E∗1 E∗1 υ

∗

12 υ
∗

21 G∗12 are constant and called

the complex dynamic engineering constants. Because of the symmetry of the relations (10)
υ∗12
E∗1

=
υ∗21
E∗2
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and thus there are only four independent complex engineering constants in the stress–strain relations.
The complex engineering constants have a real and an imaginary part as shown in Equation (11):

E∗1 = E′1 + i.E′′1 = E′1(1 + i. tan δ(E1))

E∗2 = E′2 + i.E′′2 = E′2(1 + i. tan δ(E2))

v∗12 = v′12 + i.v′′12 = v′12(1 + i. tan δ(υ12))

G∗12 = G′12 + i.G′′12 = G′12(1 + i. tan δ(G12))

(11)

The real parts in (11) govern the elastic behaviour and the imaginary ‘tangents delta’ parts govern
the damping behaviour of the complex engineering constants. Because of the symmetry relation, if the
tangents delta of E∗1 and E∗2 are different (which they usually are, since E1 is often fibre dominated
while E2 is matrix dominated), Poisson’s ratios υ∗12 and υ∗21 cannot simultaneously have a zero tangents
delta value.

2.2. Identification of the Complex Engineering Constants

A powerful and yet simple method for the experimental identification of both the real and
imaginary part of the orthotropic engineering constants is the impulse excitation technique (IET) as
described in Heritage et al. [27]. The impulse excitation technique is a non-destructive method to
measure resonance frequencies and damping ratios. The procedure consists of tapping the sample
with a hammer and recording the induced vibration with an accelerometer, a microphone or a laser
Doppler velocity meter. If the test coupon is a beam with a constant cross section, the elastic part of
Young’s modulus and shear modulus can be computed from the measured resonance frequency using
analytical or empirical formulas. For predefined shapes like rectangular bars, the American Society for
Testing Materials (ASTM) E1876 [28] describes how to measure the frequencies and how to compute
the complex Young’s and shear modulus.

Figure 1 shows how to excite flexural and torsion modal shapes. Specimen support is on the
nodal lines (collection of all points with zero vibration amplitude) and the excitation and measurement
positions are situated at the anti-nodes (positions with maximal vibration amplitude).

Figure 1. Support, excitation position and measurement positions for impulse excitation technique
(IET) tests on beams.

The IET generates (assumed) uni-axial stress fields in the beamlike specimens of Figure 1.
This allows computing the Young’s and shear moduli using simple formulas as outlined in the ASTM
procedure [28]. If IET is applied on more complex test specimens like plates, more complex states of
stress are generated in the test specimen. No ASTM procedures are available, and the simple formulas
must be replaced by numerical models of the test specimen. A powerful numerical model is typically a
finite element model. An impact in an arbitrary position of a plate causes a vibration pattern that is a
superposition of all excited mode shapes. Mode shapes are standing waves vibrating at resonance
frequencies. The state of stress generated by an impact is hence complex and varies in time and with
the position on the test plate. By measuring the induced vibration at some location and transforming
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the acquired time domain signal with a mathematical fast Fourier transformation into the frequency
domain, a limited number of resonance frequencies of the test plate can be easily detected.

2.2.1. Elastic Part of the Complex Engineering Constants

Resonance frequencies measured with IET on a test plate allow the identification of the real (thus
elastic) part of the complex engineering constants. Resonance frequencies can be computed with the
finite element model of the test plate by the solution of an eigenvalue problem as described in He and
Fu [21]. The measured resonance frequencies by IET hence can be compared with computed frequencies
in a mixed numerical experimental method. Starting with an initial guess of the engineering constants
(parameters) in the finite element model, the parameters are iteratively updated till the computed
frequencies match the measured frequencies as close as possible (see Figure 2).

Figure 2. Mixed numerical experimental method: iteratively updating the engineering constants in the
numerical finite element (FE) model of a test plate.

Many researchers have used the principle of mixed numerical experimental methods in
combination with vibration measurements on test plates in the past [12–19]. All mentioned researchers
agreed that free-free boundary conditions were the best configuration for bringing experiment and
simulation in agreement. Free-free boundary conditions can be reached by freely suspending the test
plate. However, the simple principle shown in Figure 2 suffers from some practical problems. The first
problem is that the method requires good starting values for the engineering constants. The computed
frequencies with poor initial values can have another mode shape sequence than in the experiment
and hence non similar frequencies are compared with each other. This raises the challenge of deciding
which computed frequency must be compared with which measured frequency. This problem can be
solved by measuring also the mode shapes associated with the resonance frequencies. This however
requires much more effort and equipment than just measuring a set of resonance frequencies with IET.
A second problem is that an orthotropic plate with an arbitrary aspect ratio of length to width and
free-free boundary conditions has mainly mode shapes which are combinations of torsion and bending.
The frequencies of such modal shapes are sensitive for Young’s moduli and the shear modulus but
not sensitive for Poisson’s ratio. The simultaneous estimation of all the engineering constants during
the iterations hence mathematically goes wrong (no convergence to the correct values). Increasing
the number of measured resonance frequencies does not solve the problem because the mode shapes
associated with higher frequencies have an increasing influence of transverse shear deformations.
This compels the replacement of the thin plate model with a thick plate model that requires additional
transverse engineering constants, as shown by Frederiksen [29]. Additionally, higher order resonance
frequencies are more difficult to measure with IET, especially if the associated damping ratios are high.

The earlier mentioned two challenges can be resolved by extending the number of test specimens
in the mixed numerical experimental method. An example of such a multi-specimen method is the
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‘Resonalyser’ procedure [22]. The Resonalyser procedure works with three test specimens: two test
beams and one test plate. One test beam is cut along the orthotropic material 1-axis, the other beam is
cut along the orthotropic material 2-axis (see Figure 3).

Figure 3. Two test beams cut along the two orthotropic directions, and a test plate with edges parallel
to the orthotropic material directions.

A fair value of the Young’s moduli E1 and E2 can be found with the ASTM IET test on the two test
beams. With these values of the Young’s moduli, a special aspect ratio of the test plate can be computed:

L
W

=
4

√
E1

E2
(12)

If Poisson’s ratio would be zero, this plate ratio would cause a double bending resonance in the 1-
and 2-direction of the plate. A plate with such an aspect ratio is called a ‘Poisson plate’ because the
frequencies of the second and third mode shapes are very sensitive for Poisson’s ratio as shown by
Sol [14]. The mode shape sequence for a Poisson plate is fixed: first a torsion, next a saddle and third a
breathing mode shape (Figure 4).

Figure 4. Torsion (left), saddle (middle) and breathing (right) mode shapes of a Poisson plate.

Hence, without the necessity to do an investigation towards the nature of the mode shapes, an IET
on a Poisson plate automatically reveals the three first frequencies and their vibration behaviour.
The iterative updating scheme in the mixed numerical/experimental method (Figure 2) can now be
applied simultaneously using three finite element models: two beam models and 1 Poisson plate
model. The involvement of the finite element models of the two beams and Poisson plate allows
conveniently taking the mass of an accelerometer into account as a concentrated nodal mass (if an
accelerometer is used for the IET) in the finite element models. However, an experimentalist needs to
verify that the Poisson test plate mass is sufficiently large to allow for accurate mass compensation
of the combined mass sensor-wires (ratio mass plate / mass sensor at least 200). The final result of
the Resonalyser procedure will be an averaged value of all the engineering constants over the two
beams and plate area, making the results very suitable as INPUT values for finite element models of
composite structures and laminate analysis programs.
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The a priori knowledge of the three mode shapes of a Poisson plate together with the knowledge of
the basic flexural modal shapes of the two beams allows an additional improvement of the Resonalyser
method by adopting the virtual field method. The application of the virtual field method can be used
for generating good starting values for all the engineering constants. The principle of the virtual field
method starts from the dynamic equilibrium equation of a statistical homogeneous orthotropic thin
plate with constant thickness d for a free vibration (no external forces) in a Cartesian axis system (x, y).

D11
∂4W(x, y, t)

∂x4
+ D22

∂4W(x, y, t)
∂y4

+ 2(D12 + 2D66)
∂4W(x, y, t)
∂x2∂y2 + ρd

∂2W(x, y, t)
∂t2 = 0 (13)

W(x, y, t) is the out of plane transverse displacement, t is the time and ρ is the specific mass of the
plate material. At this stage, the damping is neglected. In (13),Di j are the orthotropic plate rigidities
relating moments M to plate curvatures X (14):


M1

M2

M12

 =


D11 D12 0
D21 D22 0

0 0 D66




X1

X2

X12


D11 = E1d3

12(1−ν12ν21)

D22 = E2d3

12(1−ν12ν21)

D12 = ν12E2d3

12(1−ν12ν21)
= D21

D66 = G12d3

12

X1 = ∂2W
∂x2

X2 = ∂2W
∂y2

X12 = ∂2W
∂x∂y

(14)

A general solution of (13) is a sinusoidal vibration with amplitude w(x, y) and angular frequencyω.
The spatial (time independent) partial differential equation hence becomes:

D11
∂4w(x, y)
∂x4

+ D22
∂4w(x, y)
∂y4

+ 2(D12 + 2D66)
∂4w(x, y)
∂x2∂y2 = ρdω2w(x, y) (15)

A finite element solution of (15) involves discretisation of the plate into a mesh of nodal points.
The transverse displacement w(x, y) is expressed as a summation of shape functions defined in the
nodal points of the FE mesh. This leads to the formulation of set of homogeneous equations:

[K]{U} −ω2[M]{U} = {0} (16)

[K] is the assembled plate stiffness matrix, [M] is the mass matrix and {U} is the column with the
displacements in the nodal points of the finite element mesh.

Ki j = Ai j
4bD11

a3 + Bi j
4aD22

b3 + Ci j
4D12

ab
+ Ei j

16D66

ab
(17)

Mi j = Hi j
ρabd

4
= Hi j

Mass Plate
4

(18)

a is the length and b is the width of the plate. The matrices A, B, C, E and H are finite element
connectivity matrices depending on the choice of the shape functions. They are independent of material
properties and sizes of the plate. Solutions of (16) can be found by the solution of an eigenvalue problem:

([K] − λ[M]){U} = {0} (19)

The solution of the eigenvalue problem yields eigenvalues λi and corresponding eigenvectors
{U}i =

{
φ
}
i
. The three first eigenvectors of the Poisson plate are the mode shapes shown in Figure 4

and fi is the resonance frequency associated to the mode shapes.

λi = ω2
i

ωi = 2π fi
(20)
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Since the nature of the mode shapes of a Poisson plate is known (Figure 4), they can be used as
virtual fields. Pre-multiplying with the modal shape of the (i)-th eigenvalue and scaling with the mass
matrix yield the Rayleigh quotient:

{Φ}(i)τ([K] − λ(i)[M]){Φ}(i) = {0} (21)

Yields : λ(i) =
{Φ}(i)τ[K]{Φ}(i)

{Φ}(i)τ[M]{Φ}(i)
(22)

With (i) referring to the (i)-th eigenvalue and mode shape, following scalar functions a(i), b(i), c(i)

and e(i) can be defined:

a(i) =
{Φ}(i)k Akl{Φ}

(i)
l

{Φ}(i)k Hkl{Φ}
(i)
l

, b(i) =
{Φ}(i)k Bkl{Φ}

(i)
l

{Φ}(i)k Hkl{Φ}
(i)
l

, c(i) =
{Φ}(i)k Ckl{Φ}

(i)
l

{Φ}(i)k Hkl{Φ}
(i)
l

, e(i) =
{Φ}(i)k Ekl∂{Φ}

(i)
l

{Φ}(i)k Hkl{Φ}
(i)
l

(23)

(23) can now be written as:

λ(i) =
16b

a3.Mass
D11a(i) +

16a
b3Mass

D22b(i) +
16

ab.Mass
D12c(i) +

64
ab.Mass

D66e(i) (24)

This equation can be written for the first three mode shapes and eigenvalues of the Poisson plate:

λ(Torsion) = 16b
a3.Mass D11a(torsion) + 16a

b3.Mass D22b(torsion) + 16
ab.Mass D12c(torsion) + 64

ab.Mass D66e(torsion)

λ(Saddle) = 16b
a3.Mass D11a(Saddle) + 16a

b3.Mass D22b(Saddle) + 16
ab.Mass D12c(Saddle) + 64

ab.Mass D66e(Saddle)

λ(Breathing) = 16b
a3.Mass D11a(Breathing) + 16a

b3.Mass D22b(Breathing) + 16
ab.Mass D12c(Breathing) + 64

ab.Mass D66e(Breathing)

(25)

With the associated resonance frequencies of the torsion, saddle and breathing mode shapes
measured by IET on the Poisson plate, good values for E1 and E2 can be found with IET on the beams.
By replacing the plate rigidity values Dij in (25), using the relationship (14) between the plate rigidities
and the engineering constants, (25) can be solved for v12 and G12. Hence the virtual field method
provides starting values for all the engineering constants, without the necessity to actually measure
the mode shapes. After obtaining the starting values, further identification with the mixed numerical
experimental method shown in Figure 2 can be performed using a sensitivity based gradient method
as shown by Sol et al. [23].

All the conditions for obtaining good results with the mixed numerical experimental method
(Figure 2) are now fulfilled: good starting values, the sequence of mode shapes known, a limited
number of frequencies which can easily be measured with IET and the knowledge that the considered
resonance frequencies are sensitive for all the engineering constants. The final results will be accurate
because it is easy to use very accurate FE models for the beams and the Poisson plate and an IET delivers
very accurate values for the measured resonance frequencies, even with non-expensive equipment as
shown by Heritage [27].

2.2.2. Identification of the Imaginary Part of the Complex Engineering Constants

The same three test specimens (two beams and 1 Poisson plate), as used for the identification of
the elastic part of the engineering constants, are used for identifying the imaginary part. The IET is
used again to measure the modal damping ratio associated with the fundamental bending mode shape
of the test beams and the modal damping ratios of the three first mode shapes of the Poisson plate.
The decaying signal after impact (see Figure 5) is curve fitted in the time domain with the formula:

x(t) = X.e−ξωt sin(ωt−ϕ) (26)

with vibration amplitude X.e−ξωt, angular frequency $, phase ϕ and ξ the modal damping ratio.
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Figure 5. Decaying sinusoidal time domain signal after impact.

Curve fitting (26) for obtaining the modal damping values is only possible if the resonance
frequencies can be separated from each other. This is no problem for the fundamental bending
resonance frequency of the test beams but requires a special procedure for the measurements of the
modal damping ratios of the mode shapes of the Poisson plate. The procedure takes again profit from
the special nature of the mode shapes of the Poisson plate (Figure 4). The nodal lines of these three
mode shapes are shown in Figure 6. Nodal lines are the collection of points with a zero vibration.

Figure 6. Nodal lines of three mode shapes. (a) The nodal lines of the torsion mode shape, (b) the
nodal lines of the saddle mode shape, (c) the nodal line of the breathing mode shape.

The suspension wires for the Poisson plate must be fixed on positions on nodal lines of the mode
shapes for minimising the influence on the damping ratio measurement with the IET (see Figure 7).

Figure 7. (a) Suspension wires fixed in the intersection of the nodal lines of torsion and breathing mode
shapes, (b) suspension wires fixed in the corners of the Poisson plate.

For measuring the decaying signals of the torsion and breathing mode shape after impact,
the suspension wires are fixed in the intersection of both their nodal lines (see Figure 7a). The isolated
decaying signal of the torsion mode shape is measured by impacting on the intersection of the nodal
lines of the saddle and breathing mode shapes (see Figure 7a). The isolated decaying signal of the
breathing mode shape is measured by impacting in the centre of the Poisson plate, see Figure 7a.
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For measuring the decaying signal of the saddle mode shape after impact, the suspension wires are
fixed in the corners of the Poisson plate (see Figure 7b). The isolated decaying signal of the saddle
mode shape is measured by impacting on the intersection of the nodal lines of the torsion and breathing
mode shape (see Figure 7b). In this way the disturbance by the suspension wires is minimised and a
decaying signal of only one single mode shape is excited and measured.

The modal damping ratio of a mode shape ξ is proportional to the damping energy DE dissipated
during one cycle divided by the modal strain energy PE.

ξ =
DE

4πPE
(27)

The strain energy PE stored in an elastic body is found by taking half of the volume integral of the
contracted product of strain and stress columns:

PE =
1
2

∫
V
σ∗iε
∗

i dV (28)

The modal strain energy can be approximated for sufficiently small damping ratios using only the
real part of the in-plane complex stiffness matrix C∗i j.

C∗11 C∗12 0
C∗21 C∗22 0
0 0 C∗66

 =


C11 C12 0
C21 C22 0
0 0 C66

+ i


C11 tan δ(C11) C12 tan δ(C12) 0
C21 tan δ(C21) C22 tan δ(C22) 0

0 0 C66 tan δ(C66)

 (29)

PE �
1
2

∫
V

Ci jεiε jdV (30)

This is acceptable for polymer composite materials where the damping ratio is rarely higher than
1%. For an orthotropic thin plate, taking the symmetry into account, the strain energy PE can be
expressed as a summation of four different stress–strain combinations:

PE = 1
2

∫
V (C11ε1ε1 + C22ε2ε2 + 2C12ε1ε2 + C66γ12γ12)dV

PE = PE11 + PE22 + PE12 + PE66
(31)

The dissipated energy DE during one oscillation cycle is:

DE =

∫
V

(∮
σ∗i dε

∗

i

)
dV =

∫
V

(∮
C∗i jε

∗

i dε
∗

j

)
dV (32)

In a similar way as for the strain energy, the dissipated energy DE can be expressed as a summation
of four different stress–strain combinations:

DE =
∫
V

(∮
C∗11ε

∗

1dε∗1 + C∗22ε
∗

2dε∗2 + C∗12ε
∗

1dε∗2 + C∗21ε
∗

2dε∗1 + C∗66γ
∗

12dγ∗12

)
dV

DE =
∫
V

(∮
C∗11ε

∗

1dε∗1 + C∗22ε
∗

2dε∗2 + 2C∗12ε
∗

1dε∗2 + C∗66γ
∗

12dγ∗12

)
dV

DE = DE11 + DE22 + DE12 + DE66

(33)

By entering (31) and (33) in (27), De Visscher [25] showed that the modal damping ξ of a mode
shape can be written as a summation of contributions from the tangents δ of the stiffness matrix

components C∗i j weighted with the associated relative modal strain energy portions
PEi j
PE :

ξ =
1
2

(PE11

PE
tan δ(C11) +

PE22

PE
tan δ(C22) +

PE12

PE
tan δ(C12) +

PE66

PE
tan δ(C66)

)
(34)
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The strain energy portions of (31) can be computed with the finite element model of the Poisson
plate. The IET on the test beams and the Poisson plate yields two sets of equations. In the first set
(35), the tangents δ of the Young’s moduli are found from the measured damping ratios of the freely
suspended beam bending modes.{

2ξBeam1

2ξBeam2

}
=

[
1 0
0 1

]{
tan δ(E1)

tan δ(E2)

}
(35)

The second set (36) yields the tangents δ of the orthotropic stiffness matrix C∗i j using the weighting
coefficients of expression (34) for the three first plate mode shapes.


2ξTorsion
2ξSaddle

2ξBreathing

 =


GW11 GW12 GW13 GW14

GX21 GW22 GW23 GW24

GW31 GW32 GW33 GW34




tan δ(C11)

tan δ(C22)

tan δ(C12)

tan δ(C66)

 (36)

The value of GWij in (36) can be found using (34). The simultaneous solution of these two sets of
Equations (35) and (36) requires the relation between the tangents δ of the engineering constants and
the tangents δ of the stiffness matrix C∗i j. The relations can be evaluated based on the expression in the
complex stiffness matrix (10) and observing that for relatively small damping values tan δ � δ. For the
complex Poisson’s ratios, it can be seen that:

υ∗12 =
C∗21
C∗22

=
C∗12
C∗22

thus tan δ(υ12) = tan δ(C12) − tan δ(C22)

υ∗21 =
C∗12
C∗11

thus tan δ(υ21) = tan δ(C12) − tan δ(C11)
(37)

The relation for the in-plane shear modulus gives directly:

tan δ(G12) = tan δ(C66) (38)

With the introduction of a complex number A∗ = 1− υ∗12υ
∗

21 it can be seen in (10) that:

tan δ(E1) = tan δ(C11) + tan δ(A)

tan δ(E2) = tan δ(C22) + tan δ(A)
(39)

The combined set of five Equations (35) and (36) can be solved, taking the relations (37)–(39) into
account, resulting in the tangents δ for all the engineering constants.

The combination of the modified Resonalyser method with IET measurements hence provide in
a simple way values for the complex engineering constants averaged over the test beams and test
plate areas. This makes the results especially suitable for finite element models and laminate analysis
programs (as compared with locally identified properties on only beam specimens).

3. Identification of Complex Stiffness Values of Laminates

The stress–strain relation (10) in an orthotropic material axis system (1, 2) can be transformed into
a stress–strain relation (40) in a rotated axis system (x, y), see Jones [3]

(40)
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in which:
C
∗

11 = C∗11 cos4 α+ 2(C∗12 + C∗66) sin2 α cos2 α+ C∗22 sin4 α

C
∗

12 = (C∗11 + C∗22 − 4C∗66) sin2 α cos2 α+ C∗12(sin4 α+ cos4 α)

C
∗

22 = C∗11 sin4 α+ 2(C∗12 + C∗66) sin2 α cos2 α+ C∗22 cos4 α

C
∗

16 = (C∗11 −C∗12 − 2C∗66) sinα cos3 α+ (C∗12 −C∗22 + 2C∗66) sin3 α cosα
C
∗

26 = (C∗11 −C∗12 − 2C∗66) sin3 α cosα+ (C∗12 −C∗22 + 2C∗66) sinα cos3 α

C
∗

66 = (C∗11 + C∗22 − 2C∗12 − 2C∗66) sin2 α cos2 α+ C∗66(sin4 α+ cos4 α)

(41)

in which:
C
∗

11 = C11(1 + i. tan δ(C11))

C
∗

22 = C22(1 + i. tan δ(C22))

C
∗

12 = C12(1 + i. tan δ(C12))

C
∗

66 = C66(1 + i. tan δ(C66))

(42)

in which:
C11 = E1

1−υ12υ21

C22 = E2
1−υ12υ21

C12 = υ12E2
1−υ12υ21

C66 = G12

tan δ(C11) = tan δ(E1) − tan δ(A∗)
tan δ(C22) = tan δ(E2) − tan δ(A∗)
tan δ(C12) = tan δ(υ12) + tan δ(E2) − tan δ(A∗)
tan δ(C66) = tan δ(G12)

(43)

in which the complex number A∗ = 1− υ∗12υ
∗

21.
The classical laminate theory for sufficient thin plates can now be applied to find the complex

laminate stiffness values. The laminate is composed of N layers. The z-axis is taken perpendicular to
the layer stacking (Figure 8).

Figure 8. Layer configuration in a laminate.

The symmetric extensional stiffness matrix A, the symmetric coupling stiffness matrix B and the
symmetric bending stiffness matrix D are given by the following expressions:

A∗i j =
N∑

k=1

(
C
∗

i j

)
k
(zk − zk−1)

B∗i j =
1
2

N∑
k=1

(
C
∗

i j

)
k
(z2

k − z2
k−1)

D∗i j =
1
3

N∑
k=1

(
C
∗

i j

)
k
(z3

k − z3
k−1)

(44)
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4. Computation of the Modal Damping Ratio of Laminated Plates

Plates with a symmetric laminate configuration have no coupling between the in-plane rigidities
A and the plate rigidities D. The transverse vibration mode shapes of a symmetric plate are hence
dominated only by the plate rigidities. Making use of the definitions of the bending and torsion
moments, it is possible to express the moments as a function of the global plate curvatures:

M∗x
M∗y
M∗xy

 =


D∗11 D∗22 D∗16
D∗21 D∗22 D∗26
D∗61 D∗62 D∗66



χ∗x
χ∗y
χ∗xy

 (45)

M∗x, M∗y and χ∗x,χ∗y are complex bending moments and curvatures, M∗xy and χ∗xy are the complex
torsion moment and the complex torsion curvature and D∗i j = Di j(1 + i. tan δ(Di j)). The total strain
energy PE of an anisotropic vibrating thin plate can be expressed as:

PE = 1
2

∫
S

[
D11X2

x + D22X2
y + D66X2

xy + 2D12XxXy + 2D16XxXxy + 2D26XyXxy
]
dS

PE = PE11 + PE22 + PE66 + PE12 + PE16 + PE26

(46)

PEij is partial portions related to the anisotropic plate rigidities Dij. The modal damping ratio of a
mode shape of a laminated plate can be computed similar as (34):

ξ =
1
2

(PE11

PE
tan δ(D11) +

PE22

PE
tan δ(D22) +

PE66

PE
tan δ(D66) +

PE12

PE
tan δ(D12) +

PE16

PE
tan δ(D16) +

PE26

PE
tan δ(D26)

)
(47)

The total strain energy PE and the partial strain energy portions PEij related to the plate rigidities
can be calculated by the FE model of the plate.

5. Experiments and Validations

5.1. Experiment 1: Laminated Carbon/Epoxy Plates

An UD 40 cm × 30 cm carbon/epoxy plate with all ten layers oriented in the 0◦ direction was
prepared in an autoclave, according to the suppliers instructions (2-h de-bulking under vacuum at
room temperature, 2 h in autoclave at 20 mbar vacuum and 4 bar pressure, curing temperature 125 ◦C).
The layers were cut out of a 30 cm width bobbin CMP 200/300 CP0031 carbon/epoxy prepreg material.
This UD test plate was used in a first step to identify the single layer orthotropic properties of the
material using the extended Resonalyser procedure.

Two test beams were cut respectively along the fibre direction and perpendicular to the fibre
direction of the UD plate. Table 1 shows the sizes and masses of the two beams. The test beams were
freely suspended on thin nylon wires and the resonance frequencies were measured using IET with
a small wooden hammer and a micro 0.00025 accelerometer DJB Instruments type A/128/V1 with a
sensitivity of 5.26 mV/g. The sizes, mass and IET test results of the beams are shown in Tables 1 and 2.

Table 1. Sizes and mass of the two carbon/epoxy test beams.

Test Specimen Length [m] Width [m] Thickness [m] Mass [kg]

Beam 1 (0◦) 3.550E-01 1.840E-02 2.080E-03 1.995E-02
Beam 2 (90◦) 2.320E-01 2.400E-02 2.060E-03 1.701E-02

Table 2. IET test results of the two carbon/epoxy test beams.

IET Test Specimen Frequency [Hz] Damping Ratio [%]

Beam 1 (0◦) 146.5 0.037
Beam 2 (90◦) 87.5 0.372
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The IET vibration results of the two carbon/epoxy beams are given in Table 2.
A Poisson plate with aspect ratio according to formula (12) was cut out of the UD carbon/epoxy

plate. The sizes and mass of the Poisson plate are given in Table 3.

Table 3. Size and mass of the carbon/epoxy Poisson plate.

Test Specimen Length [m] Width [m] Thickness [m] Mass [kg]

Poisson plate 2.710E-01 1.390E-01 2.120E-03 1.174E-01

The resonance frequencies of the Poisson plate, measured with the IET are given in Table 4.

Table 4. IET frequency test results of the Poisson plate.

Mode Shape Type Frequency [Hz]

Torsion 94.4
Saddle 241.2

Breathing 264.4

The virtual field method uses the resonance frequencies of the beams and Poisson plate to
generate good starting values (using typical torsion, saddle and breathing mode shapes, preliminarily
stored on computer disk) for the elastic part of the engineering constants. Next, the mixed numerical
experimental method as described in 2.2.1 computes iteratively the final elastic part of the engineering
constants:

• E1_Start = 1.125E + 11 [Pa] E1_Final = 1.092E + 11 [Pa]
• E2_Start = 7.540E + 09 [Pa] E2_Final = 7.303E + 09 [Pa]
• v12_Start = 4.907E - 01 [-] v12_Final = 0.476 [-]
• G12_Start = 3.188E + 09 [Pa] G12_Final = 3.660E + 09 [Pa]

With these elastic values of the engineering constants, the FE model of the Poisson plate can plot
the nodal lines of the three first mode shapes (see Figure 9).

Figure 9. Nodal lines of the mode shapes of the Poisson plate, computed with the FE model. (a) Torsion
mode shape, (b) saddle mode shape and (c) breathing mode shape.

The knowledge of these nodal lines allows finding the correct position of the intersection points to
measure the damping ratios of the beams and Poisson plate using IET. Figure 10a shows the test setup
for the measurement of the damping ratios of the torsion and breathing mode shapes and Figure 10b
shows the suspended Poisson plate ready for the measurement of the saddle mode shape.
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Figure 10. Test setup for measuring the damping ratios with IET: An aluminium suspension frame
and the DJB micro accelerometer connected through a signal conditioning box with a PC; in (a) the
accelerometer is fixed with beeswax on the intersection of the nodal lines of the saddle and breathing
mode shapes; in (b) the accelerometer is fixed on the intersection of torsion and breathing mode shape.

The measured decaying sinusoidal signal can be curve fitted with the formula (26). A curve fitting
example is shown in Figure 11.

Figure 11. Curve fitted decaying sinusoidal signal. The white zone is the (compressed) recorded
sinusoidal signal; the red envelope line is the curve fitted damped exponential function of the signal.
The example shows a signal with resonance frequency = 241.2 Hz and a damping ratio value of 0.00237.

It can be seen that this apparently very low value for the damping ratio is able to damp out the
signal completely in about 1 s. The obtained modal damping ratios by curve fitting of the measured
signals with IET for the Poisson plate and the test beams are given in Table 5 together with their
resonance frequencies.

Table 5. IET frequency and damping test results of the Poisson plate.

Mode Shape Type Frequency [Hz] Damping Ratio [%]

Torsion 94.4 0.500
Saddle 241.2 0.237

Breathing 264.4 0.174
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All experimental information is now available to compute the complex engineering constants
with the procedure described in 2.2.2. The result is shown in Table 6.

Table 6. Identified single layer orthotropic complex moduli of carbon/epoxy.

Engineering Constant Real Part [GPa] Imaginary Part [GPa] Tangents Delta [-]

Young’s Modulus E1 109.2 8.1E-02 0.00074
Young’s Modulus E2 7.303 5.4E-02 0.00744

Major Poisson’s ratio v12 0.476 −1.4E-03 −0.00294
Minor Poisson’s ratio v21 0.032 1.2E-04 0.00376

In-plane Shear Modulus G12 3.660 3.7E-02 0.01021

With these single layer properties, the damping ratio of arbitrary laminated plates with
arbitrary aspect ratios can be predicted using the classical laminate theory and the elastic-viscoelastic
correspondence principle.

A 40 cm × 30 cm ten-layer symmetric laminate (0◦ −45◦ 45◦ −45◦ 0◦)S was prepared in an autoclave.
The layers were cut out of the 30 cm width bobbin CMP 200/300 CP0031 carbon/epoxy prepreg material,
the same as used for the single layer test. The measured average thickness of this laminate was 2.1 mm
and the computed complex anisotropic plate rigidities of this laminated plate are shown in Table 7:

Table 7. Computed complex anisotropic plate rigidities.

Plate Rigidity Real Part [Nm] Imaginary Part [Nm]

DXX 56.06 0.0631
DYY 16.45 0.0523
DXY 12.12 0.0081
DZZ 12.22 0.0247
DXZ −3.99 −0.001
DYZ −3.99 −0.001

The computed resonance frequencies, mode shapes and damping ratios for a (0.2365 m × 0.1385 m
× 0.0021 m) and a mass of 0.1011 kg laminated test plate using a thin plate finite element model are
shown in Figure 12.

Figure 12. Computed resonance frequencies, mode shapes and damping ratios of a carbon/epoxy
(0.2365 m × 0.1385 m × 0.0021 m) laminated plate with stacking sequence (0◦ −45◦ 45◦ −45◦ 0◦)S.

These predicted values were compared with experimental measurements. The test plate was
freely suspended, and the resonance frequencies were measured with IET and the DJB A/128/V1 micro
accelerometer. Because the exact positions of all the nodal lines of the mode shapes of this laminated
plate are not precisely known, the test plate could not be suspended with the nylon strings for each
mode shape positioned on a nodal line. Also, the position of the hammer impact and the measurement
position of the accelerometer required some trial and error. The measurement of the damping ratio
was not possible with IET for the same reasons and additionally because the mode shapes could not be
excited separately by a hammer impact. Therefore, to measure the damping ratios, acoustic excitation
by a small Bluetooth loudspeaker (Philips model BT55B/00) was used. With a frequency generator,
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an acoustic sinusoidal signal with the targeted resonance frequency was sent as excitation signal and
after cutting the excitation, the freely decaying signal was captured by the DJB A/128/V1 accelerometer.
The experimental values are compared with the numerical predictions in Table 8.

Table 8. Test results of the (0◦ −45◦ 45◦ −45◦ 0◦)S carbon/epoxy laminate plate.

Mode
Predicted
Frequency

[Hz]

Measured
Frequency

[Hz]

Predicted
Damping
Ratio [%]

Measured
Damping
Ratio [%]

Difference
Predict-Measured [%]

1 208.2 205.9 0.123 0.147 0.024
2 246.8 244.3 0.094 0.103 0.009
3 431.1 431.0 0.148 0.177 0.029
4 488.7 481.0 0.114 0.142 0.028

It can be observed in Table 8 that the measured damping ratios are consistently higher than the
predicted values. This can be explained by the influence of the suspension wires and the (although
very tiny) cable of the accelerometer on a 0.1011 kg light test plate. The measured damping can
possibly also have additional contributions from interlaminar effects and transverse shear deformations,
but these assumptions could not be investigated at this stage. Because the position of the nodal line is
well-known for a beam in a first bending mode, it is easier to measure the damping correctly on beam
specimens. Therefore a (0.188m × 0.02565m × 0.0021m) beam was cut out of the laminated plate in the
X- direction. The predicted and measured results are shown in Table 9.

Table 9. Test results of the (0◦ −45◦ 45◦ −45◦ 0◦)S carbon/epoxy laminate beam.

Mode Predicted
Frequency [Hz]

Measured
Frequency [Hz]

Predicted Damping
Ratio [%]

Measured Damping
Ratio [%]

Beam-X 394 394.5 0.082 0.082

5.2. Experiment 2: Polyester Reinforced with UD Glass Fabric

A 40 cm × 40 cm glass/polyester plate with eight UD glass textile layers of 600g/m2 oriented in
the 0◦ direction was prepared with hand layup, cured and compressed between two thick aluminium
plates. The cured plate had a final thickness of 4.54 mm. The same measurement procedure for
obtaining the single layer properties described in Experiment 1 is applied. The size and mass of the
two test beams and the resulting Poisson plate are given in Table 10.

Table 10. Size and mass of the glass/polyester test specimens.

Test Specimen Length [m] Width [m] Thickness [m] Mass [kg]

Beam 1 (0◦) 2.91E-01 2.44E-02 4.5E-03 5.874E-02
Beam 2 (90◦) 2.11E-01 2.33E-02 4.5E-03 4.059E-02
Poisson plate 2.4E-01 1.95E-01 4.54E-03 3.9057E-01

Table 11 gives the results of the same measurement procedure for the elastic and damping part as
described in Experiment 1. The difference between the stiffness values of E1 and E2 are not as extreme
as for the UD carbon epoxy. The tangents delta values are higher.

Table 11. Identified single layer orthotropic complex moduli of glass/polyester.

Engineering Constant Real Part [GPa] Imaginary Part [GPa] Tangents Delta [-]

Young’s Modulus E1 32.7 8.5E-02 0.0026
Young’s Modulus E2 13.7 1.36E-01 0.0099

Major Poisson’s ratio v12 0.27 −1.4E-03 −0.00506
Minor Poisson’s ratio v21 0.11 2.46E-04 0.00224

In-plane Shear Modulus G12 4.27 5.91E-02 0.01384
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With these single layer properties, the damping ratio of a test plate cut under an angle of 20◦ of
the Poisson plate, is predicted and measured. The dimensions of the test plate are (0.177 m × 0.1337 m
× 0.00454 m) and the mass is 0.19658 kg. The computed complex anisotropic plate rigidities of this
glass/polyester plate are shown in Table 12:

Table 12. Computed complex anisotropic plate rigidities of the glass polyester plate.

Plate Rigidity Real Part [Nm] Imaginary Part [Nm]

DXX 226.5 0.75
DYY 109.6 1.07
DXY 48.48 0.10
DZZ 51.96 0.42
DXZ 46.76 −0.12
DYZ 2.28 −0.021

The computed resonance frequencies, mode shapes and damping ratios for the 20◦ glass/polyester
test plate using a thin plate finite element model are shown in Figure 13.

Figure 13. Computed resonance frequencies, mode shapes and damping ratios of a carbon/epoxy.

Only three frequencies could be measured by the available IET and the DJB accelerometer.
The associated damping ratios were identified using acoustic excitation with the Bluetooth loudspeaker.
Table 13 shows the results.

Table 13. Test results of the 20◦ glass/polyester plate.

Mode
Predicted
Frequency

[Hz]

Measured
Frequency

[Hz]

Predicted
Damping
Ratio [%]

Measured
Damping
Ratio [%]

Difference
Predict-Measured [%]

1 327.3 327 0.638 0.680 0.042
2 573.2 574 0.256 0.288 0.032
3 738.6 736 0.418 0.502 0.086

The glass/polyester plate was not laminated (excluding interlaminar effects) and was heavier than
the previously tested carbon/epoxy plate (reducing the influence of wires). The measured values are
however again higher than the predicted values. To further investigate this problem, a (0.129 m ×
0.0217 m × 0.00454 m) beam in the x-direction was cut out of the plate.

The predicted value for the beam in Table 14 is again lower than the measured value. The probable
explanation is that the test plate as well as the beam has a large thickness to length ratio and hence
the transverse shear can possibly increase the measured damping ratio value. The length to thickness
ratio of the test plate was 39 and the length to thickness ratio of the beam was 28. To investigate
the possibility of transverse shear influence, in the third example a thinner and heavier test plate
is investigated.
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Table 14. Test results of the glass/polyester 20◦ beam.

Mode
Predicted
Frequency

[Hz]

Measured
Frequency

[Hz]

Predicted
Damping
Ratio [%]

Measured
Damping
Ratio [%]

Difference
Predict-Measured [%]

Beam 944.8 946 0.424 0.527 0.103

5.3. Experiment 3: Epoxy Reinforced with UD Glass Fabric

A 40 cm × 40 cm glass/polyester plate with three UD glass textile layers of 600 g/m2 oriented in the
0◦ direction was fabricated with an RTM manufacturing technique. The textile layers were separated
by chopped strand mats of E glass of 225 g/m2. The same measurement procedure for obtaining the
single layer properties as described in Experiments 1 and 2 is applied. The ‘single layer’ properties
must now be regarded as the average over the thickness of the RTM layers. The obtained engineering
constants are hence the apparent values in bending over the thickness of the test plate. The size and
mass of the two test beams and the resulting Poisson plate are given in Table 15.

Table 15. Size and mass of the glass/epoxy RTM test specimens.

Test Specimen Length [m] Width [m] Thickness [m] Mass [kg]

Beam 1 (0◦) 1.62E-01 1.885E-02 3.83E-03 1.615E-02
Beam 2 (90◦) 1.26E-01 2.84E-02 4.22E-03 2.073E-02
Poisson plate 0.15E-01 1.2E-01 3.81E-03 9.436E-02

Table 16 gives the results of the same measurement procedure for the elastic and damping part as
described in Experiment 1 and 2. The difference between the stiffness values of E1 and E2 are not as
large as for the UD carbon epoxy. The tangents delta values are higher than for the UD carbon epoxy
and the glass polyester plates in Experiments 1 and 2.

Table 16. Identified orthotropic complex moduli of the glass/epoxy Poisson plate.

Engineering Constant Real Part [GPa] Imaginary Part [GPa] Tangents Delta [-]

Young’s Modulus E1 15.1 1.30E-01 0.00864
Young’s Modulus E2 5.7 1.76E-01 0.03094

Major Poisson’s ratio v12 0.33 −1.1E-03 −0.00335
Minor Poisson’s ratio v21 0.13 5.5E-03 0.0429

In-plane Shear Modulus G12 1.9 6.93E-02 0.03648

With these single layer properties, the damping ratio of a test plate cut at an angle of 20◦ is
predicted and measured. The dimensions of the test plate are (0.275 m × 0.235 m × 0.0042 m) and the
mass is 0.3731 kg. The length to thickness ratio of the test plate is 65, which is closer to the thin plate
assumptions of the test plate than in experiment 2. The computed complex anisotropic plate rigidities
of this glass/polyester plate are shown in Table 17:

Table 17. Computed complex anisotropic plate rigidities of the glass/epoxy plate.

Plate Rigidity Real Part [Nm] Imaginary Part [Nm]

DXX 79.94 0.92
DYY 34.17 1.07
DXY 16.60 0.26
DZZ 17.71 0.39
DXZ 16.73 −0.08
DYZ 2.47 0.02
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The computed resonance frequencies, mode shapes and damping ratios for the 20◦ glass/epoxy
test plate using a thin plate finite element model are shown in Figure 14. It can be observed that the
damping values of the test plate are higher than in the previous two examples.

Figure 14. Computed resonance frequencies, mode shapes and damping ratios of a carbon/epoxy.

Five resonance frequencies were measured using IET and the DJB accelerometer. The associated
damping ratios were identified using acoustic excitation with the Bluetooth loudspeaker. Table 18
shows the comparison between the predicted and measured results.

Table 18. Test results of the 20◦ glass/polyester plate.

Mode
Predicted
Frequency

[Hz]

Measured
Frequency

[Hz]

Predicted
Damping
Ratio [%]

Measured
Damping
Ratio [%]

Difference
Predict-Measured

1 85.4 83 1.695 1.741 0.046
2 143.1 143 1.396 1.418 0.022
3 185.2 182 0.757 0.801 0.044
4 219.5 221 1.581 1.641 0.060
5 264.6 257 1.077 1.144 0.063

The measured damping values are now closer to the predicted values than in the previous two
examples. This can be explained because the mass of the test plate was now higher than in the previous
cases (reducing the influence of wires) and the length to thickness ratio was higher (reducing the
influence of transverse shear deformations). It is hence recommended that the ratio width/thickness of
the Poisson plate is higher than 40.

Measuring the decaying signal with a non-contacting laser Doppler velocity meter could
partially solve the problem of additional structural damping contributions of accelerometer cables,
but unfortunately a laser Doppler velocity meter is 20 times more expensive than a micro accelerometer
and much more difficult to handle on freely suspended test plates (rigid body oscillations after impact).

6. Conclusions

Measuring damping is much more difficult than measuring resonance frequencies. The physical
reason for this fact is that in one vibration cycle the absorbed damping energy is very small (order of
magnitude 1%) as compared with the strain energy. This paper showed in the first step, how to identify
the orthotropic elastic and damping properties of the single layer fibre-reinforced composite material
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sheets using a new mixed numerical experimental method, which is an extension of the Resonalyser
procedure. The extended procedure allows generating good starting values based on the virtual
fields method. The procedure also takes the influence of the mass and wires of used accelerometers
into account through corrections in the finite element model. However, the experimentalist needs to
verify that the Poisson test plate mass is sufficiently large to allow for accurate mass compensation of
the combined mass sensor-wires (ratio mass plate/mass sensor at least 200). Additionally, the value
of the ratio width/thickness of the used Poisson test plates must be sufficiently high to limit the
influence of transverse shear and rotation inertia in the used thin plate model (ratio width/thickness at
least 40). With these precautions, the new extended Resonalyser procedure can identify accurately
all the orthotropic elastic and damping properties of single layer fibre-reinforced composite material
sheets. The single layer properties of three different composite materials are identified as examples.
Table 6 shows the identified single layer orthotropic complex moduli of carbon/epoxy. Tables 11
and 16 show similar values of glass/epoxy and glass/polyester material. It can be observed that the
phase angle of Poisson ratio in all the examples is found to be different from zero. In a subsequent
step, the paper shows how complex laminate stiffness values can be computed with finite element
software using the identified single layer material properties. To validate this approach, the modal
damping ratios at several resonance frequencies of laminated plates of different materials and with
arbitrary sizes and arbitrary laminate configurations are first predicted with FE simulations and
next experimentally verified. The paper showed that the proposed extended Resonalyser procedure
allows successful identification of averaged values of all the in-plane complex engineering constants of
composite material sheets and the prediction of laminate damping of plates with only using relatively
simple equipment.
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