

Supporting Information

Luminescence Quenching Behavior of Hydrothermally Grown YVO₄:Eu³⁺ Nanophosphor Excited Under Low Temperature and Vacuum Ultra Violet Discharge

Mihye Wu ^{1,2}, Hyemin Park ¹, Eun Gyu Lee ^{1,3}, Sanghun Lee ¹, Yu Jin Hong ¹ and Sungho Choi ^{1,*}

- ¹ Energy Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Korea; wumihye@krict.re.kr (M.W.); ekrmek95@krict.re.kr (H.P.); emmett28@krict.re.kr (E.G.L.); sanghun@krict.re.kr (S.L.); letv97@krict.re.kr (Y.J.H.)
- ² Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- ³ Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea
- * Correspondence: shochoi@krict.re.kr; Tel.: +82-42-860-7372

Received: 14 May 2020; Accepted: 22 July 2020; Published: 23 July 2020

Figure S1. XRD patterns for the hydrothermally grown YVO4:Eu₃₊ compound with different precursor solution pH levels.

Figure S2. YVO4:Eu₃₊ photoluminescence emission intensity change with hydrothermal reaction parameters; precursor pH and reaction time.

Figure S3. TEM images of the hydrothermally grown YVO4:Eu₃₊ compound using the precursor solution with acidic conditions (pH = 7).