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Abstract: Microelectromechanical systems (MEMS) are increasingly playing a significant role in the
aviation industry and space exploration. Moreover, there is a need to study the neutron radiation effect
on the MEMS structural members and the MEMS devices reliability in general. Experiments with
MEMS structural members showed changes in their operation after exposure to neutron radiation.
In this study, the neutron irradiation effect on the flexible MEMS resonators’ stability in the form of
shallow rectangular shells is investigated. The theory of flexible rectangular shallow shells under
the influence of both neutron irradiation and temperature field is developed. It consists of three
components. First, the theory of flexible rectangular shallow shells under neutron radiation in
temperature field was considered based on the Kirchhoff hypothesis and energetic Hamilton principle.
Second, the theory of plasticity relaxation and cyclic loading were taken into account. Third, the Birger
method of variable parameters was employed. The derived mathematical model was solved using
both the finite difference method and the Bubnov–Galerkin method of higher approximations. It was
established based on a few numeric examples that the irradiation direction of the MEMS structural
members significantly affects the magnitude and shape of the plastic deformations’ distribution,
as well as the forces magnitude in the shell middle surface, although qualitatively with the same
deflection the diagrams of the main investigated functions were similar.
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1. Introduction

Since thin-walled shells are highly efficient structural members, they have wide practical
application. For example, they are used in instrument making, aerospace, petrochemical and
nuclear industries. In general, shell structural elements can be made of various materials: concrete,
reinforced concrete (supporting structures of nuclear reactors), various alloys and composites, etc.
The mentioned materials can be used for fabrication of microelectromechanical systems (MEMS)
including electromechanical relays, force and pressure sensors, accelerometers, digital logic switches,
as well as biosensors and micromirrors. The latter composite devices are typically exposed to
temperature and neutron irradiation as well as external force action during their working regimes.
Hence, the use of novel and challenging MEMS designs and structural elements in space exploration
to maintain the integrity of sensors and ensure operation in harsh conditions may play an important
role for future space explorations.

In particular, flexible rectangular shallow shells are more useful for serving as MEMS resonators.
The introduction of MEMS for operation in adverse environmental conditions, such as exposure to
neutron irradiation and temperature risks, requires the use of new MEMS designs and structural
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elements in order to maintain the integrity of sensors as well as to ensure operation under
various conditions.

It should be emphasized that, if the requirement for strength and durability of materials is
presented for structural elements in the macroscale, then for the microscale the change in the sensitivity
and stable operation of the device under various input signal modes comes to the fore.

Already in 1953, Dienes [1] pointed out the importance of nuclear radiation with perspectives on
changing the mechanical properties of solids. Not only did he show how the mechanical properties of
crystalline substances—and in particular metals—can be produced by fast particle irradiation, but he
also discussed how in high polymers nuclear radiation influenced the subsequent chemical reaction
theory by altering their properties.

Further research on the analysis of stresses in metals caused by volumetric changes during neutron
irradiation was carried out by Remnev [2,3]. Lensky [4] noted that a significant change in mechanical
properties, considering the uneven volume distribution, requires clarification of existing and new
theories as well as development of methods for calculating structural elements, especially if they are
exposed to radiation fluxes during an operation. Ilyushin and Ogibalov [5] discussed the method
of calculating the strength of thick-walled cylindrical shells in the presence of radiation. Norris [6]
employed electron irradiation with the beam of a high voltage electron microscope to produce void
growth in metals. Moreover, investigations of void growth effects were discussed for stainless steel
and for nickel with emphasis on the moving dislocations and the surfaces. In the monograph by
Likhachev and Pupko [7], the general theory relations of flow for irradiated materials were presented,
based on the models proposed in the works of Birger for nonirradiated materials. Moreover, key
generalizations for the governing equations of the plasticity and creep theory were made by taking
into account irradiation with a neutron flux.

Singh et al. [8] studied the influence of irradiation with fission neutrons on specimens of pure
copper and copper alloys. The change in volume due to irradiation as well as radiation damage of
microstructures was reported.

Singh et al. [9] studied the features of neutron irradiation on microstructure and mechanical
properties of pure iron by transmission electron microscopy. It was illustrated how interaction of
cleared channels influenced the deformation and fracture behavior of the irradiated pure iron.

Garner et al. [10] studied swelling and creep phenomena irradiated in EBR-II. They illustrated
how the swelling reached high levels rather quickly by reducing both fuel pin cladding interaction and
the contribution of the irradiation to the total deformation.

Shea [11] reviewed the sensitivity of MEMS devices to radiation. The latter was linked primarily
to the impact on device operation of radiation-induced trapped charge in dielectrics, with emphasis to
electrostatic principles. It was illustrated how to increase radiation tolerance by design using either the
actuation principle or electrical shielding of dielectrics.

Ghorbanpour Arani et al. [12] investigated the buckling of a cylindrical shell in the neutron
radiation environment under combined static and periodic axial forces. They illustrated how the
radiation induced porosity in elastic materials changed their thermal, electrical and mechanical
properties. The carried out analysis was based on the classical shell theory. It was shown that both
neutron induced swelling and temperature actions exhibited important effects on the stability and
buckling of the cylindrical shell.

Sercombe et al. [13] used 3D simulation with an account of burnup-dependent pellet-clad
friction while studied the power ramped cladding stresses during bare irradiation and ramp tests.
They explained how the sole evolution of the friction coefficient with burnup captured the radial crack
pattern of the rodlets after power ramping. Moreover, they derived a simple relation between the
friction coefficient and the burnup variations.

Ben De Pauw [14] employed the optical fiber sensors to measure the fuel assembly vibration in
a lead–bismuth eutectic cooled nuclear installation as input to assess vibration-related safety hazards.
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Sitepu et al. [15] used palm fiber and palm shell as a thermal neutron radiation shielding material
based on the neutron activation analysis and studied thermal neutron flux on gold pieces.

In studies [11–17], a generalized virtual modeling method using modern computer technologies
to solve one-dimensional and two-dimensional nonlinear problems was proposed.

Srour et al. [18] carried out historical review of the literature regarding the radiation-induced
displacement damage effects in semiconductor materials and devices. In particular, the effects of
uniform radiation-induced displacement damage in bulk material and Si devices were outlined.

The increasing popularity of MEMS devices has led the researchers and engineers to study
radiation-resistant resonators. Structural members of MEMS devices are microsized and very sensitive
to external influences. They also depend on their respective operating principles. For example,
for the oscillators used in GPS systems, one millionth of a percent is required for their operation
stability, while the transistors used in integrated circuits can withstand parametric changes of several
percent [18].

Babich [19] proposed mathematical models of radiation-induced physical processes in materials.
Thermal and radiation strains dependent on the energy spectrum and components of radiation were
estimated based on an appropriate analytical method. Moreover, the influence of the effects of
radiations on the stress–strain state of thin plates was studied.

Marchal et al. [20] employed the finite element method to analyze the phenomenon of
Pellet-Cladding interaction in nuclear fuel rods. The latter interaction produced high large stresses
and led to failure. The fuel rods belong to the main members of nuclear water reactors and they
consist of zirconium alloy tubes containing uranium dioxide pallets. The authors reported that the
irradiation-induced phenomena yielded a densification of the fuel material in the irradiation early
stages followed by solid swelling effects.

Semenov and Woo [21] modeled and analyzed dislocation structure development in metals
and alloys with an account of anisotropic nucleation and dislocation loops subjected to actions of
fast neutrons and external stresses. The stress-induced dislocation anisotropy was detected which
exhibited a strong correlation with swelling. The nucleation kinematic was studied based on the
derived Fokker-Planck equation.

Karahan and Buongiorno [22] formulated an engineering oriented code to predict the irradiation
behavior of U–Zr and U–Pu–Zr metallic alloy and UO2–PuO2 mixed fuel pins in sodium-cooled fast
reactors. Based on the introduced fuel pin geometry, composition and irradiation history, the authors
studied numerically the fuel and clad thermomechanical behavior as both steady-state and design-basis
transient scenarios.

Hall Jr. [23] derived the continuum plasticity model and studied the irradiation induced swelling
of reactor core materials. It was shown that in the presence of significant swelling the deviatory and
volumetric strain rate components are functions of both deviatory and hydrostatic components of
stress for both linear and nonlinear creep.

Williamson [24] developed a powerful multidimensional fuels performance analysis having
capability to simulate multi pellet steady and transient rod behavior based on the ABAQUS thermo
mechanics code. Numerous input parameters were taken into account, including temperature,
fuel densification, fission gas release during irradiation and gap heat transfer, etc.

The published experimental data presented in [18–24] show that, under the radioactive irradiation
influence, a significant change is observed both in the thermo physical and elastic properties, as well as
in the short-term and long-term mechanical characteristics of materials.

Karthik et al. [25] carried out the systematic microstructural studies of the austenitic stainless
steel irradiation performance. The following salient features were analyzed: (a) behavior of SS316 at
different fluence levels and (b) irradiation experiments of classical and modified D9 versions.

Fisher and Longo [26] carried out the creep analysis of slightly oval cylindrical shells under
time-dependent loading, temperature and neutron flux. The influence of variations in neutron flux,
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external pressure, mesh size and solution time step on collapse time was investigated based on the
derived equilibrium equations.

NASA’s Jet Propulsion Laboratory in Pasadena (JPL) developed micro and nano technologies for
space exploration [27], while Sandia National Laboratory efforts to create radiation-strengthened inertial
sensors [28]. The Defense Threat Reduction Agency (DTRA) of the United States has initiated several
programs at several universities and government laboratories to study the radiation effects on a number
of materials and structural elements of various MEMS and NEMS types. Investigations include silicon,
silicon carbide, piezoelectric and ferroelectric, electro–optical and 2D materials, as well as studying
the effect of radiation and thermal effects on the electrical, mechanical and optical properties and
manifestations in various MEMS and NEMS operating modes.

In the last decade, exotic properties of pantographic metamaterials have been investigated and
various mathematical models (both discrete and continuous) have been introduced.

It should be mentioned that the lack of studies devoted to stability of flexible rectangular shallow
shells irradiated with neutrons may be partly due to the problem complexity, which is associated with
the lack of an adequate mathematical model. At the same time, an experimental study of prototype
structures both on a macro scale and on a micro scale is expensive and is associated with the destruction
of test radioactive components. Therefore, there is a growing interest in using mathematical modeling
methods to study various structural elements and our study aims at filling the existing gap in the so
far described research.

The investigation of problem for the stability and stress–strain state of flexible shallow rectangular
shells in terms of neutron irradiation is currently necessary both from a theoretical as well as practical
point of view. This observation follows from a critical review of the works [29–31].

This work is devoted to the modeling and prediction problem of the flexible rectangular shallow
shell stability subjected to neutron irradiation, used as MEMS resonators. The validity of our research
can be also justified based on the observation that to the best of our knowledge, a study of the
geometrically and physically nonlinear shells stability under the neutron irradiation action has not
been done.

The study is organized in the following way. The shell mathematical model is introduced in
Section 2, whereas the employed computational methods are presented in Section 3. The reliability
and validity of the obtained results are discussed in Section 4. Section 5 deals with the account of
the residual shell plastic deformations and the numeric examples are reported in Section 6. Section 7
presents the concluding remarks.

2. Problem Statement

We consider a shell of length a, with thickness 2h and width b. It occupies the volume
Ω =

{
0 ≤ x ≤ a; 0 ≤ y ≤ b; − h ≤ z ≤ h

}
, where x, y, z are spatial coordinates (Figure 1).
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The following hypotheses hold:

(i) the Kirchhoff–Love kinematic shell model is taken where strain tensor components for the

middle shell surface are εxx = −z∂
2w
∂x2 , εyy = −z∂

2w
∂y2 and w(x, y, t) denotes shell deflection at its

middle surface;
(ii) the shell material is isotropic, but nonhomogenous and its properties depend on temperature,

T(x, y, z), i.e., we have elastic modulus E and Poisson’s ratio ν are constants at the initial time
moment and then the functions E = E(x, y, z, er, T(x, y, z), α(T)), ν= ν(x, y, z, er, T(x, y, z), α(T)) and
the shell deformed state depends on temperature at a point (x, y, z);

(iii) Duhamel–Neumann law is adopted, i.e., we have εz
xx = εxx + ε

1p
xx + αT(x, y, z),

εz
yy = εyy + ε

1p
yy + αT(x, y, z), εz

xy = εxy + ε
1p
xy, where α stands for coefficient of linear

thermal extension and ε1p
xx, ε1p

yy, ε1p
xy are plastic components of the strain tensor components at the

unloading time;
(iv) theory of plasticity and Mises criterion are used;
(v) deformation diagrams σr (er, T, α) depend both on shell temperature and its stress–strain state,

where σr stands for intensity of tensions and er is deformation intensity;
(vi) the temperature field is defined by a 3D heat-transfer equation without any restrictions put on

temperature distribution.

The mathematical model is yielded by the Hamilton’s variational principle. The shell accumulated
potential energy is: ∏

=
1
2

h∫
−h

dz

a∫
0

b∫
0

(
σxxεxx + σyyεyy + 2σxyεxy

)
dxdy, (1)

where σxx, σyy, σxy—stress tensor components for the shell middle surface.
Moreover, the works of external forces.

δ′W =

a∫
0

b∫
0

qδwdxdy. (2)

where q—external transverse uniformly distributed load.
Stress–strain state of nonhomogenous plates and shallow rectangular shells is governed by the

following nonlinear PDEs:(
L11 L12

L21 L22

)
·

(
w
F

)
+

(
L 0
0 −

1
2 L

)
·

(
w, F
w, w

)
= −

(
Q1

Q2

)
, (3)
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where F is the load function and the linear operators with variable coefficients are defined in the
following way:

L11(•) =
∂2

∂x2

(
λ−1B0

11
∂2(·)

∂x2 + B∗10
∂2(·)

∂y2

)
+

+2 ∂2

∂x∂y

[(
B∗11 − B∗10

)
∂2(·)
∂x∂y

]
+ ∂2

∂y2

(
B∗10

∂2(·)

∂x2 + λ2B11
∂2(·)

∂y2

)
,

L12(•) = ∇
2
k(·) +

∂2

∂x2

(
B10

∂2(·)

∂y2 + λ2B11
∂2(·)

∂x2

)
−

−2 ∂2

∂x∂y

[(
B10 − B11

)
∂2(·)
∂x∂y

]
+ ∂2

∂y2

(
B11λ

2 ∂2(·)

∂y2 + B10
∂2(·)

∂x2

)
,

L21(•) = ∇
2
k(·) +

∂2

∂x2

(
B11λ−2 ∂2(·)

∂x2 + B10
∂2(·)

∂y2

)
−

−2 ∂2

∂x∂y

[(
B10 − B11

)
∂2(·)
∂x∂y

]
+ ∂2

∂y2

(
B10λ

−2 ∂2(·)

∂x2 + B11
∂2(·)

∂y2

)
,

L22(•) =
∂2

∂x2

(
A2

∂2(·)

∂y2 − λ
−2A1

∂2(·)

∂x2

)
+

+ ∂2

∂y2

(
λ2A1

∂2(·)

∂y2 + A2
∂2(·)

∂x2

)
+ 2 ∂2

∂x∂y

[(
A1 −A2

)
∂2(·)
∂x∂y

]
.

(4)

and:

L((•), (•)) =
∂2(·)

∂x2

∂2(·)

∂y2 − 2
∂2(·)

∂x∂y
∂2(·)

∂x∂y
+
∂2(·)

∂y2

∂2(·)

∂x2 (5)

where λ stands for the length to width ratio.
The right hand sides of the governing equations with an account of transversal load and residual

elastic–plastic deformations (with account of loading history) have the following form:

Q1 = λ−1 ∂2

∂x2

(
B10T0

xx + B11T0
yy

)
+ 2 ∂2

∂x∂y

[
(B10 − B11)T0

xy

]
+ λ ∂2

∂y2

(
B11T0

xx + B10T0
yy

)
−

−λ−1 ∂
2T1

xx
∂x2 − 2

∂2T1
xy

∂x∂x − λ
∂2T1

yy

∂y2 + q,

Q2 = λ−2 ∂2

∂x2

(
A2T0

xx + A1T0
yy

)
+ λ ∂2

∂y2

(
A1T0

xx + A2T0
yy

)
− 2 ∂2

∂x∂y

[
(A1 −A2)T0

xy

]
,

(6)

stands for nonlinear operators, where, T0
xx, T0

yy, T1
xx, T1

xy, T1
yy—contain temperature components and

residual plastic deformations.
The relations between dimensional and nondimensional (bars) parameters are as follows:

E = G0E, G = G0G, K = G0K, q = G0
(2h0)

4

a2b2 q, T0
xx = G0

(2h0)
3

ab T
0
xx, F = G0(2h0)

3F,

T0
yy = G0

(2h0)
3

ab T
0
yy, F = G0(2h0)

3F, T1
xx = G0

(2h0)
3

ab T
1
xx,

T1
yy = G0

(2h0)
3

ab T
1
yy, Kx = (2h0)a−2Kx, Ky = (2h0)b−2Ky, Bik = G0(2h0)

3Bik,

Ei j = G0(2h0)
i+1Ei j, (i = 0, . . . , 4, j = 0, 1), er =

( 2h0
a

)2
er, es =

( 2h0
a

)2
es, h = hh0,

A j =
1

G0(2h0)
A j, (k = 1, 2), λ = a

b , w = (2h0)w, x = ax, y = by.

(7)

where: G0—the shear modulus characteristic value in the undeformed state; G—shear modulus;
K—volumetric compression ratio; h0—shell thickness in its center; Kx, Ky—shell curvatures in x and y
directions, respectively and es—fluidity deformation.
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Integrals with regard to shell thickness follow:

Ei j =
h∫
−h

Ezi

1+(−1) jν
dz,

T j
xx =

h∫
−h

Ez j

1−ν2

(
εT

xx + νεT
yy

)
dz, T j

yy =
h∫
−h

Ez j

1−ν2

(
εT

yy + νεT
xx

)
dz,

T j
xy =

h∫
−h

Ezi

2(1+ν)ε
T
xydz (i = 0, . . . , 4, j = 0, 1),

(8)

where εT
xx = αT + e1p

xx, εT
yy = αT + e1p

yy, εT
xy = e1p

xy stand for deformation depending on temperature
and plastic deformation components of the deformation tensor in either relaxation ‘1P’ or at the time
instant of the secondary loading (“2P”); as it was already mentioned that α is the coefficient of linear
thermal expansion and T stands for the temperature function, whereas:

A j =
1
2

(
1

E01
+ (−1) j+1 1

E00

)
,

Bik =
1

2ihi−1

( Ei0
E01

+ (−1)k Ei0
E00

)
, (i = 1, 3; j = 1, 2; k = 0, 1).

(9)

The matrix
(

L11 L12

L21 L22

)
is symmetric, as in the case of an elastic problem (this observation is

yielded by Betti’s theorem).
The governing Equations (3) are nondimensional (bars are omitted). It should be mentioned

that PDEs (3) are obtained based on the kinematic Kirchhoff–Love model and the method of variable
elasticity parameters [32]. The derivation of the governing equations is based on the theory of plasticity
where E and ν are coupled with the shear modulus G and the bulk modulus K via the following
relations:

E =
9KG

3K + G
, ν =

1
2

3K − 2G
3K + G

(10)

The following simplifications are introduced. We take K=K0 = const and owing to the hypothesized
small elastic–plastic deformations, we have:

G =
1
3
σr(er)

er
, (11)

where σr stands for the stress intensity, er, describes the deformation intensity:

er =

√
2

3

[(
exx − eyy

)2
+

(
eyy − ezz

)2
+ (exx − ezz)

2 + 1.5e2
xy

]1/2
, (12)

and the following plane stress state formula holds:

ezz = −
ν

1− ν

(
exx + eyy

)
, (13)

where exx, eyy, ezz, exy are the strain tensor components for an arbitrary shell point.
It should be emphasized that ν is not constant.

3. Computational Method

In order to carry out the numeric computations, the dependence σr(er) can be defined in an
arbitrary way. The system of nonlinear PDEs (3) is solved by the variational Bubnov–Galerkin method
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in higher approximations in the form proposed by Vlasov [33]. Namely, the system of approximating
functions is assumed in the following form

w =
N∑

c,b=1

Pc,bwc,b(x, y), F =
N∑

c,b=1

Rc,bFc,b(x, y). (14)

where wc,b and Fc,b stands for the system of approximating functions; c, b are the series terms number;
Pc,b, Rc,b are constants to be determined from the Bubnov–Galerkin procedure.

In order to find the approximate value of the element w and F, we choose the coordinate systems
of functions {wc,b (x,y), Fc,b (x,y)} (c, b = 0, 1, 2, . . . ) in (14), satisfying the following five requirements:

1. wc,b (x,y) ∈ HA, Fc,b (x,y) ∈ HA, where HA is the Hilbert space, which we will call the energy space.
2. ∀ c, b functions wc,b(x,y) and Fc,b(x,y) are linearly independent, continuous together with their

partial derivatives up to the fourth order inclusive in the region Ω.
3. wc,b (x,y) and Fc,b (x,y) satisfy the main boundary conditions (and the initial conditions,

if any) exactly.
4. wc,b (x,y) and Fc,b (x,y) have the completeness property in HA.
5. wc,b (x,y) and Fc,b (x,y) must represent the N first elements of a function’s complete system.

We substitute (14) into (3) and after employment of the Bubnov–Galerkin procedure, the following
system of nonlinear algebraic equations is obtained(

a11 a12

a21 a22

)
·

(
P
R

)
+

(
a13 0
0 −a23

)
·

(
M
N

)
+

(
Q1

Q2

)
= 0, (15)

where:

P =



P11

P12
...

P1N
...

PNN


, R =



R11

R12
...

R1N
...

RNN


, M =



M1111

M1112
...

M111N
...

MNNNN


, N =



N1111

N1112
...

N111N
...

NNNNN


. (16)

We substitute
(

N∑
c,b=1

Pc,b

)
×

(
N∑

k,l=1
Rk,l

)
and

(
N∑

c,b=1
Pc,b

)
×

(
N∑

k,l=1
Pk,l

)
by Mc,b,k,l and Nc,b,k,l

respectively, where:

a11 =

 1∫
0

1∫
0

(
L11

(
wc,b

))
w f ,vdxdy

 f ,v=N

f ,v=1

, a12 =

 1∫
0

1∫
0

(
L12

(
Fc,b

))
w f ,vdxdy

 f ,v=N

f ,v=1

,

a21 =

 1∫
0

1∫
0

(
L21

(
Fc,b

))
w f ,vdxdy

 f ,v=N

f ,v=1

, a22 =

 1∫
0

1∫
0

(
L22

(
Fc,b

))
w f ,vdxdy

 f ,v=N

f ,v=1

,

a13 =

 1∫
0

1∫
0

(
L
(
wc,b, Fc,b

))
w f ,vdxdy

 f ,v=N

f ,v=1

, a23 =

 1
2

1∫
0

1∫
0

(
L
(
wc,b, wc,b

))
F f ,vdxdy

 f ,v=N

f ,v=1

,

Q1 =

 1∫
0

1∫
0

Q1w f ,vdxdy

 f ,v=N

f ,v=1

, Q2 =

 1∫
0

1∫
0

Q2F f ,vdxdy

 f ,v=N

f ,v=1

.

(17)

In order to solve the elastic–plastic problems through the Bubnov–Galerkin method (BGM),
the program written in C++ is realized in the following way.
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The following quantities are first introduced: geometric (λ, Kx, Ky) and physical (K, E, ν, es)
parameters, the analytical dependence σr (er) computational steps with regard to load ∆q or shell center
deflection ∆w. Then the form of the approximating functions is defined depending on the introduced
boundary conditions. In addition, we introduce the load type q (x, y).

While employing the method of variable elasticity parameters, the computational process is
realized in the following way. Having in hand the initial values of E, ν, K, formulas (8) and (9) yield the
values of Eij, Aj, Bik defined at the shell point (xn, ym). Then the system of Equation (15) is constructed.
The Newton’s method yields the coefficients Pij and Rij with regard to Equation (14). The formulas:

exx = ε11 + zχ11, eyy = ε22 + zχ22, exy = ε12 + zχ12,
ε11 = A1T1 + A2T2 − B10χ11 − B11χ22 + A1T0

xx + A2T0
yy,

ε22 = A2T1 + A1T2 − B10χ22 − B11χ11 + A2T0
xx + A1T0

yy,
ε12 = 2(A1 −A2)S + (B10 − B11)χ12,
χ11 = −∂

2w
∂x2 , χ22 = −∂

2w
∂y2 , χ12 = −2 ∂2w

∂x∂y

(18)

allow to estimate deformations of the shell volume as well as the deformations intensity (relation (12)),
and then Equations (10) and (11) yielded the shear modulus. In addition, the E and ν are numerically
estimated at each point of the shell volume. However, as to be expected, the obtained values differ
from the initial state. In order to avoid the problems of divergence, a new value of ν was substituted
to Equation (12). Next, the improved value of er is obtained, and new values of E and ν are defined.
The mentioned internal process of iterations is repeated until the required accuracy is achieved and the
obtained values of E (xn,ym,zp), ν (xn,ym,zp) are stored in the computer’s memory, where xn, ym, zp are
the coordinates of the points set into which the shell volume is divided. Repeating the so far described
computations for all zp the integration is carried out with regard to z and finally, the values of Eij, Aj,
Bik as functions of x, y are defined.

However, the obtained values (usually) differ from the initial ones. They are taken again to carry
out the computational process unless the given computational accuracy is achieved.

In order to solve the elastic–plastic problems of a considered shell we take the values of Eij, Aj, Bik
for linear elastic material as the first approximation. Then, the successive approximation of Eij, Aj,
Bik is achieved based on the values from the previous shell loading step. The latter choice of initial
approximations allows for determination of E and ν by two to three iterations keeping the assumed
accuracy of ε = 10−5.

4. Reliability of the Obtained Results

A solution of the system of nonlinear algebraic Equations (15) which are obtained by the
Bubnov–Galerkin procedure are found with the help of the Newton’s iterative method. Integrations are
carried out using the Newton–Cotes quadrature rules, where the shell volume is partitioned into
13 × 13 × 6 parts with regard to x, y, z, respectively.

Numeric differentiations are carried out with the help of finite-difference formulas. Owing to
the worked out case studies, the shell volume partitions of 26 × 26 × 12 satisfy the required accuracy,
and hence the obtained solution is reliable. In the case when the shell is supported by flexible
non-stretched (nonelongated) ribs on its contour, and is subjected to uniformly distributed constant
load, the following boundary conditions hold

w = T1
xx = T0

yy = εyy = 0, w = T1
yy = T0

xx = εxx = 0, (19)

where T1
xx, T1

yy stand for the moments and T0
xx, T0

yy for the forces defined at the shell center with regard
to x and y.
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The system of approximating functions satisfying the boundary conditions (19) take the
following form

wc,b = Fc,b = sin(cπx) sin(bπy). (20)

In order to check reliability of the used approach, we have compared the results obtained by the
Bubnov–Galerkin method in higher approximations (N = 5) and by the finite differences method (FDM)
of second order accuracy (n × n = 32 × 32). Figure 2a shows the load–deflection graph depending on
the grid nodes number in the finite differences method of the second accuracy order for an elastic
plate (8 × 8; 13 × 13; 26 × 26; 32 × 32). These results show that a 13 × 13 grid partition is sufficient to
solve static problems. For an elastoplastic problem, a spatial grid of 13 × 13 × 6 is sufficient. Further
studies were carried out with a partition of 13 × 13 × 6. We have fixed the shell curvatures Kx = Ky = 0,
Kx = Ky = 24, and then the set up method was employed (see [34,35]). Table 1 presents the surfaces of
deflection and stresses for the plate (Kx = Ky = 0) and the shell (Kx = Ky = 24) for the cases of pre-critical
(q = 120) and postcritical (q = 300) loads. In the case of plate, the stress/deflection distribution character
does not change qualitatively with regard to the load increase. In the case of the shell, the stress (Airy’s)
function is positive (negative) for the pre-critical (postcritical) state, i.e., it changes its sign that serves
as its stability criterion.

Table 1. Surfaces of deflection and stress of the plate and the shell.

Kx = Ky = 0 (plate)

q = 150 (Point A (2, 150)) q = 280 (Point B (2.8, 280))

Deflection w (x, y) Moment
Mx+My

2
Deflection w (x, y) Moment

Mx+My
2

1 
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Kx = Ky = 24 (shell)

q = 150 (Point C (0.5, 150)) q = 280 (Point D (8.4, 280))

Deflection w (x, y) Average moment
Mx+My

2
Deflection w (x, y) Moment

Mx+My
2
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2
x yM M+
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2
x yM M+

 

    
  

Figure 2. Dependence “load–deflection” (a) graphs comparison with different nodes number in the
grid; (b) in the shell center obtained via the Bubnov–Galerkin method (BGM) in higher accuracy
approximation (blue) and finite differences method (FDM) (red).

5. Algorithms for Account of the Residual Plastic Deformations

We take the dependence σr (er) shown in Figure 3 and we trace a loading relaxation history of the
shell element

σr = 3G0er for er < es,
σr = 3G0er + 3G1(er − es) for er ≥ es,

(21)

and:
G = G0 for er < es,

G = G0es
er

+ G1
(
1− es

er

)
for er ≥ es,

(22)
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In Figure 3 area (0; 0); (es; σs) describes elastic shell deformation, (es; σs); (e1; σ1) stand for the
shell plastic deformation, unloading in the plastic deformation zone occurs in a straight line (e1; σ1);
(e0

s ; σ0
s ) and secondary plastic deformations are denoted by (e0

s ; σ0
s ); (e3; σ3), whereas the repeated

active loading is associated with notation (e3; σ3); (e4; σ4). The shell deformation process can be
followed beginning from its counterpart nondeformed state and hence various variants of composition
a computations of the quantities e1p

xx, e1p
yy, e1p

xy, G can be numerically realized. We present and illustrate
this possibility for an arbitrary chosen shell element.
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Assume the considered shell element be under the active loading process where der > 0. The shear
modulus G, owing to the Mises criterion of plasticity, is equal to G0 and the quantities e1p

xx, e1p
yy, e1p

xy are
equal to zero. If er ≥ es, the shear modulus is defined by the formula:

G = G0
es

er
+ G1

( er − es

er

)
. (23)

The quantities e1p
xx, e1p

yy, e1p
xy, ep

1 get the following new values (on each stage of the loading process
until der > 0)

e1p
xx = e/

xx −
1
E

(
σ/

xx − νσ
/
yy

)
,

e1p
yy = e/

yy −
1
E

(
σ/

yy − νσ
/
xx

)
,

e1p
xy = e/

xy −
2(1+ν)

E σ/
xy,

σr = 3G0(er − ep
1).

(24)

The quantities with primes are defined in the beginning of the loading, whereas E and ν are
computed using formulas (10) and they do not influence further computations (18). We need to
recompute the quantities e1p

xx, e1p
yy, e1p

xy, ep
1 at each stage of the active loading process, since the loading

process may change its sign on at arbitrary loading stage. The latter requires knowledge of the last
deformations e1p

xx, e1p
yy, e1p

xy, and their intensity ep
1on the previous loading stage, which in this case is

known as the beginning of relaxation (it should be mentioned that an account of the loading and
relaxation history is realized with accuracy up to the loading step).

In this relaxation case under the condition of lack of the plastic deformation, we have:

der ≤ 0, er < e1, G = G0
er − ep

1

er
(25)

and the quantities e1p
xx, e1p

yy, e1p
xy are introduced into (18). If, after that the loading process is activated

then unless ek < e1, the G modulus is defined by (25) and e1p
xx, e1p

yy, e1p
xy take part in the computations.

However, if er > e1, the modulus G is defined through (23) and the quantities e1p
xx, e1p

yy, e1p
xy and ep

1 are
compared to zero, i.e., they do not appear in (18) but they get new values.

In the case of relaxation associated with the secondary plastic deformations, which corresponds to
the fourth part of dependence σr (er) (see Figure 3), we have:

σr = −3G0 + 3G1(er + es). (26)

Here, we consider the material which obeys ideal Bauschinger’s effect with:

G = −G0
es

er
+ G1

er + es

er
, der < 0, er < e0

s . (27)

Here the quantities e1p
xx, e1p

yy, e1p
xy and ep

1 obtained in the time instant of the relaxation beginning are
taken into account in the further computations process. If, after that, we have der > 0 (fifth part of the
dependence σr (er)), then

G = G0
er − ep

2

er
, (28)

and instead of the quantities e1p
xx, e1p

yy, e1p
xy, ep

1, the quantities e2p
xx, e2p

yy, e2p
xy, ep

2 are introduced. The latter
are obtained on the last relaxation stage of the interval e3 < er < e0

s with regard to formulas (24)
(here instead of values with one touch we use values with two touches found in a repeated load
moment). However, the relaxation process can again change its sign (der < 0) and if er > e3 the modulus
G is defined by formula (28) with inclusion of the quantities e2p

xx, e2p
yy, e2p

xy, ep
2.
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If er < e3, then G is defined by (27) and we take e2p
xx, e2p

yy, e2p
xy, ep

2 instead of e2p
xx, e2p

yy, e2p
xy, ep

1. Finally, if the
secondary loading stage (fifth part) for der > 0 is accompanied by the change of the plastic deformations,
then for er > e4 shear modulus G is governed by formula (23), whereas the quantities e1p

xx, e1p
yy, e1p

xy, ep
1 are

taken as equal to zero. Then, at each computational stage the quantities e3p
xx, e3p

yy, e3p
xy, ep

3 are computed
based on formulas (24), which opens the new cycle origin of the “load-relaxation” process.

In what follows we consider the neutron radiations of flexible rectangular shells stability.
Lenskiy [4] pointed out that metal radiation through the fast neutrons flux implies change of their
physical and metallic properties. It was observed that the largest radiation influence was exhibited by
the magnitude of the carbon silicate material flow limit σs. Radiation increase implies increase of σs.
In the steel F-212 V case, the functional and nonlinear dependence of σs versus the total radiation flux
is reported by Iliushin and Ogibalov [5].

If the radiation flux is perpendicular to material surface, then the dependence of the total versus
amplitude can be approximated through the following formula [36]:

N = N0e2h(1±z), −1 ≤ z ≤ 1. (29)

Assuming the following fixed parameters: 2h = 2, N0 = 4 × 1019nνt,
(

a
2h0

)2
= 1000,

G0 = 0.8 × 106 bar, ν = 0.3, G1 = 0 the plasticity flow limit is governed by the following formula:

σs(z) = (5000± 1800z) (30)

whereas the reported deformation intensity at the instant of the plasticity beginning is governed by the
following formula:

es = 2.08± 0.75z. (31)

Here the signs minus (−) and plus (+) refer to the shell radiation direction from its convexity and
concavity, respectively. In the case of nonradiated material, we have σs = 3375 bar, a es = 1.405.

Observe that in the latter case of the study, the radiation influence by the fast neutrons flux,
the computational problem is reduced to computation of the plastic nonhomogenous (with regard
to thickness) flexible shell made from an ideal elastic–plastic material. It should be mentioned that
the worked out algorithm accepts arbitrary form of the dependence σs (z), i.e., its either analytical or
digital form.

6. Numeric Experiments and the Results Discussion.

In what follows we consider examples of the radiation direction influence on the shell behavior.
The following geometric shell parameters are fixed: Kx = Ky = 16, Kx = Ky = 24.

The system of approximating functions to the computational solution is taken in the form of (20)
and it satisfies the boundary conditions (19).

The computations are carried out in the way described earlier. We have taken N = 3 in (14),
since further increase of the series terms quantity in (14) did not influence neither fundamental functions
nor their second derivatives. The employed dependences q (w) are shown in Figure 4. They show
the forms w//

yy , F//
yy (second order derivatives) with regard to axial and diagonal lines for the values

w = 0.2 and w = 0.4 in the shell center (upper and lower group of curves, respectively) for Kx = Ky = 16
Red (green) curves correspond to the case then the shell radiation is employed from its convexity
(concavity) side. In addition, blue color corresponds to the elastic–plastic solution, whereas yellow
refers to the elastic solution.
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Figure 4. Load–deflection function in the shell center and shell cross-section I–I with regard to
w′′ yy = ∂2w

∂y2 and F′′ yy = ∂2F
∂y2 .

In the case of simply supported shells along their contour versus the geometric parameters
Kx and Ky the radiation direction may influence the values of the upper critical loads (for instance,
for Kx = Ky = 24 the radiation employed from the convex shell side yields increase the upper critical
load in amount of 47.5%, where from its concave side it achieves 35.2% or has the negligible influence).
The similar consideration hold in the case for fixed Kx = Ky = 16 the radiation employed from the convex
shell side and from concave shell side yields increase of the upper critical load on amount of 34.6%.
Distribution of the plastic zones for the plate with the fixed parameters Kx = Ky = 16, Kx = Ky = 24
along plane layers and along shell thickness for w = 0.2 and for w = 0.4 are reported in Figures 5 and 6,
respectively (blue curves correspond to plastic zones for the case of the radiation lack).
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7. Concluding Remarks 
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Figure 6. Views of the elastic–plastic deformation with regard to cross-section I–I and cross-section
II–II along the shell thickness h = +1; +0.6; +0.2; −0.2; −0.6; −1 for Kx = Ky = 24.

7. Concluding Remarks

This work has been devoted to the mathematical modeling problem of flexible rectangular
shallow shells stability under temperature field and subjected to nuclear radiations in order to improve
technological and mechanical properties of the studied shells.

The developed theory and mathematical/numeric analyses allow estimating material strength
and stability of structural members in two scale intervals, i.e., macro and micro scale. In the first case
(macro) the engineering expected requirements refer to construction stability against the employed
load as well as the mathematical exploitation longevity, whereas in the second case (micro) the critical
role play sensitivity and stability of the construction working regimes under complexity of the input
loading and thermal environment perturbations.

The carried out analysis based on the introduced theory and reliable computational algorithms
allows formulating the following general conclusions of our research.

1. Theoretical background for analysis of the flexible nonhomogeneous shells under the radiation
and temperature fields is given;

2. The method of solution to the derived nonlinear PDEs is based on the combination of the BGM in
higher approximations, FDM and the Birger’s method with variable parameters;

3. We have found that radiation direction essentially influences both magnitude and the localization
form of the plastic deformations—as well as the stresses magnitude in the shell middle surface;

4. The reported modeling and computational results allow to employ the radiation as a technological
process improving the shell properties;

5. As a further study the following points are recommended for consideration:

(a) construction of the mathematical nonlinear models with regard to vibrations of flexible
elastic–plastic MEMS elements in a temperature field under external radiation exposure;
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(b) chaotic vibrations and transition scenarios from periodic to chaotic dynamics in the
conditions of temperature and radiation fields;

(c) development of mathematical models with an account of the relationship between the
deformation and temperature fields subjected to radiation and temperature fields.

6. Experiments indicate that the mechanical properties of structural materials at certain dose of
radiation (neutron fluence) are changed. These changes can be predicted by a proper and
sophisticated mathematical modeling of structural members of constructions. Not accounting for
the mentioned changes can lead either to excessive strength or to the appearance of additional
radiation stresses and deformations, which can be economically inefficient and dangerous
for structures.
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