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Abstract: In this paper, a weight function method based on the first four terms of a Taylor’s series
expansion is proposed to determine the stress intensity factors of functionally graded plates with
semi-elliptical surface cracks. Cracked surfaces that are subjected to constant, linear, parabolic and
cubic stress fields are considered. The weight functions for the surface, deepest and general points on
the crack faces of long and deep cracked functionally graded plates are derived, which has never been
done before in the literature. The accuracy of the method in this study is then validated by comparing
the results with those of finite element modeling. The numerical results indicate that the derived
weight functions are highly accurate and robust enough to predict the stress intensity factors for
cracked functionally graded plates subjected to non-uniform stress distributions. The weight function
method is therefore a time-saving technique and suitable for handling non-uniform stress fields.

Keywords: functionally graded plates; weight function method; stress intensity factors; non-uniform
stress distributions; semi-elliptical surface cracks; finite element analysis

1. Introduction

Functionally graded material (FGM) is a new type of composite material, which consists of two
or more types of material with different properties. The use of advanced material compounding
technology to build the composition and structure of the intermediate shows continuous changes in
gradients, without an obvious interface at the intermediate layer, with gradient changes that appear
in the properties and functions of materials along the thickness direction [1]. The superior physical,
mechanical and thermal properties of FGMs mean that they have been rapidly developed and widely
applied in the aerospace, machinery, weapons, medical, electronics and other industries in the past few
decades. Research on the behaviors of FGMs has been also ongoing since the concept of FGM was first
proposed by Yamanouchi et al. [2].

The manufacturing process of functionally graded (FG) members may result in different shaped
cracks on the surface of the slab due to thermal stress or the improper use of reheating and rolling
parameters, which leads to mechanical deformation. Since the shapes of the cracks on FG structures
are generally irregular and cannot be directly simulated, the irregular-shaped cracks are simplified in
accordance with BS 7910 [3] as semi-elliptical cracks. The stress intensity factor (SIF) is considered to
be a significant parameter for evaluating the safety and predicting the fatigue life of cracked structures
or components. While there are many effective ways to calculate SIFs, the finite element method (FEM)
is the most prevalent one among the current numerical methods. Walters et al. [4] provided widely
accepted solutions of SIFs for semi-elliptical surface cracks on FG plates. Nevertheless, finite element
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(FE) modeling and mesh generation are extremely time-consuming processes when various stress
distributions are taken into account, and it is difficult to calculate the SIFs of all the points on the
crack front. To address this shortcoming, an effective analytical technique, namely the weight function
method, which is independent of the stress fields, was introduced to determine the SIFs for various
loading conditions. The SIFs calculated by the weight function method vary continuously along the
crack front. The maximum SIF can be more easily predicted by using this method if the variation of
the SIFs along the crack front is minimal and stable. The weight function method was first described
by Rice [5]. The algebraic expressions of the weight functions for a homogeneous elastic material
were derived by Shen and Glinka [6]. The derived weight functions are related to the geometric
characteristics of the cracked members, but independent of the applied stress distributions [7,8],
and the accuracy is not affected by crack dimensions, geometries and stress distributions [9]. Therefore,
the weight function method is more simple, convenient and efficient in calculating SIFs for a variety of
stress distributions compared to the FEM [10]. Moreover, if the stress distribution cannot be denoted
by polynomials in practical applications, this effective analytical integration method can be used in
lieu [11]. However, the complex mechanical properties of FGMs mean that the weight functions for
surface cracks on FG plates have been rarely presented in the literature, especially for the general
points on the crack front, which have never been reported in any study.

The maximum SIF has great significance for fracture analyses and fatigue life predictions of cracked
FG plates [12]. Thus, the location of the maximum SIF should be focused. In general, the maximum
SIF of a homogeneous plate with a semi-elliptical crack usually occurs at the surface point or the
deepest point. Nevertheless, owing to the inhomogeneity of FG plates and the changes in applied
loads, the maximum SIF of an FG plate with a semi-elliptical crack may be found at any point along
the crack front. Therefore, the weight functions for the deepest, surface and general points of a surface
crack on an FG plate need to be derived.

In this study, the general expressions of weight functions for an FG plate with a semi-elliptical
surface crack are derived in accordance with an expression that uses the first four terms of a Taylor’s
series expansion. The weight functions in this work, derived by combining the solutions of constant
and linear stress distributions, have a wide range of applications. The newly derived weight functions
of the surface, deepest and general points within the range of 0.2 ≤ a/c ≤ 1.0 and 0.1 ≤ a/t ≤ 0.8 are
validated by comparing the analytical solutions in this study with the FE results for parabolic or
cubic stress distributions, where a/c denotes the aspect ratio and a/t represents the crack depth ratio.
The existing numerical results show that the crack length c, crack depth a and crack-tip location have
a significant impact on the analysis results of crack problems [13,14]; therefore, a wide range of a/c
(0.2, 0.4, 0.6, 0.8, 1.0) and a/t (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) are assigned in FE models. According
to reference [15], the condition of h/c = w/c ≥ 4 and t equal to a constant is defined in FE simulations,
where h, t and w denote the half height, thickness and half width of the FG plate, respectively. It should
be noted that the calculation results (such as the SIFs) have been expressed in non-dimensional ratios
for specific cases [16]. The annotation of parameters or symbols used in this study can be found in the
“Nomenclature” section of the Supplementary Materials.

2. Fracture Analysis of Surface Crack on FG Plates

2.1. FE Modelling of Cracked FG Plates

Figure 1a shows a three-dimensional FE model for an FG plate with a semi-elliptical surface
crack subjected to a local stress field, where a and c denote the crack depth and half crack length of a
semi-elliptical surface crack, respectively, and σ(x) denotes a local stress distribution perpendicular to
the crack face. A detailed semi-elliptical crack face is illustrated in Figure 1b, where points S, P and D
represent the surface, general and deepest points on the crack front, respectively, and φ denotes the
parametric angle of the elliptical surface crack. Due to the double symmetry of the model, only one
quarter of the cracked plate was numerically modelled [17]. For homogeneous linear elastic material,
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material properties are defined, such as the Young’s modulus E = 210 GPa and Poisson’s ratio v = 0.3.
For FGMs, the Young’s modulus E(x) varies continuously along the x-coordinates and is governed by
an exponential function, as expressed in Equation (1), where E0 and E1 denote the Young’s modulus of
starting and ending constituents of an FG plate, respectively [18]. Yang et al. [19] proposed that the
Young’s modulus of the ceramic-steel FG layer can be described by Equation (1). An FGM for which
the Young’s modulus can be described by Equation (1) was used in Li et al.’s study [20], where the
FGM was made of ethylene carbon monoxide copolymer.

E(x) = E0 exp
[

1
t

ln
(

E1

E0

)
x
]

(1)
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Figure 1. (a) Geometry and coordinate system of a functionally graded (FG) plate with a semi-elliptical
surface crack subjected to local stress field; (b) semi-elliptical surface crack.

Table 1 presents the typical values of aspect ratio (a/c) and crack depth ratio (a/t) for the plates
with semi-elliptical surface cracks. An FORTRAN program for mesh generation was developed to
generate all necessary FE models [21].
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Table 1. Parameters assigned in finite element (FE) models.

Parameter Values

a/c 0.2, 0.4, 0.6, 0.8, 1.0
a/t 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

Figure 2 demonstrates a typical mesh of an FE model of an FG plate with a semi-elliptical surface
crack; this FE model has 2517 elements and 12,244 nodes. The ratio of w/c decreases with the increase in
c; to maintain w/c ≥ 4, additional elements are added to eliminate the effect of w—details are available in
the literature [15]; therefore, the number of elements in each FE model is within the range of 2517~2943,
and the number of nodes is within the range of 12,244~14,132. In the FE models, the elements of the
crack-tip region used were 15-node quadratic triangular prisms (C3D15), all the other elements used
were 20-node quadratic bricks (C3D20).
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varies with the aspect ratio (a/c), is expressed as follows: 

Figure 2. Typical FE mesh of FG plate with semi-elliptical surface crack, a/c = 0.2, a/t = 0.2. (a) FE mesh
of the entire cracked FG plate; (b) FE mesh near the surface point; (c) FE mesh near the deepest point;
(d) FE mesh of the near-tip region.

The J-integral method, which is an effective energy-based method, was used to determine the SIFs.
In case of linear elasticity, the J-integral is equal to the energy release rate; therefore, the SIF, K, can be
expressed by using the following equation. All the points on the crack front other than the surface
point were treated as plane stress conditions.

K =
√

JE′tip (2)

where E′tip denotes the modified crack-tip Young’s modulus, Etip denotes the crack-tip Young’s
modulus, E′tip = Etip for plane stress condition, and E′tip = Etip/(1 − v2) for plane strain condition.
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SIFs were normalized as follows:
F =

K

σ0
√
πa/Q

(3)

where F is a boundary correction factor (BCF), σ0 is a nominal stress, and Q is the shape factor and
denotes the square of the complete elliptic integral of the second kind [11]. The equation of Q which
varies with the aspect ratio (a/c), is expressed as follows:

Q = 1.0 + 1.464(a/c)1.65 (4)

Four types of stress distributions are defined that act on crack surfaces:

σ(x) = σ0

(
1−

x
a

)n
(5)

with n = 0, 1, 2, 3. For n = 0, σ(x) is a constant stress distribution; n = 1, σ(x) is a linear stress distribution;
n = 2, σ(x) is a parabolic stress distribution; and n = 3, σ(x) is a cubic stress distribution.

2.2. Validation of FE Models

In order to validate the effect of the present FE models to simulate cases under non-uniform stress
fields, linear and parabolic stress fields are assumed to act on the crack face. The results of the FE
models for the deepest and surface points were validated against the existing data [11]. The calculated
BCFs are found to be in good agreement with the results in reference [11], in which the largest difference
is still less than 2.61% and most are less than 2%, as shown in Table 2.

Table 2. Comparison of boundary correction factors (BCFs) (F): current study vs. results Fs in reference [11],
for a/c = 0.2.

(a) F of Current Study

σ(x) Position a/t = 0.2 a/t = 0.4 a/t = 0.6 a/t = 0.8

Linear
Surface 0.5011 0.5785 0.7083 0.9450
Deepest 0.4724 0.6134 0.7956 0.8647

Parabolic
Surface 0.4553 0.5160 0.6153 0.7995
Deepest 0.2956 0.4001 0.5381 0.5844

(b) Difference Between F and Fs, |F− Fs|/Fs × 100

Linear
Surface 1.9325 2.6073 2.3851 1.5147
Deepest 1.6857 1.4302 1.4493 1.5597

Parabolic
Surface 1.5325 2.3673 2.1651 1.2147
Deepest 2.1857 1.8607 1.9103 2.0397

This section discusses FGMs for which the elastic modulus conforms to Equation (1), and cracked
FG plates that are subjected to a uniform tensile stress field. Two cases were studied: (i) a/t = 0.2,
a/c = 1/3, E(1)/E(0) = 0.2, and (ii) a/t = 0.8, a/c = 1, E(1)/E(0) = 5. The results of the FGM and corresponding
homogeneous material cases were compared with the findings in reference [4]. Figures 3 and 4 show
that the FEM results for the FGMs and homogeneous material are in good agreement with the FEM
results in reference [4], in which the maximum difference is within 3.13% and most are within 2%.

The results show that the generated FE models are suitable for addressing cases with non-uniform
stress fields and calculating the SIFs of surface cracks found on FG plates.
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3. Weight Functions for Calculating SIFs of Cracked FG Plates

3.1. General Weight Function Forms

Although there are many numerical methods that can be used to accurately calculate SIFs,
they can only calculate one stress distribution and one crack length at a time; therefore, the process is
time-consuming. Since the weight function method is independent of the stress distributions, it can
simplify the calculation process of SIFs with various stress distributions. SIFs were calculated by
using the integration of the weight function m(x, a) multiplied by the stress distribution σ(x), and the
integration was performed over the crack length a.
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K =

∫ a

0
m(x, a)σ(x) dx (6)

The SIFs for a given cracked body under any stress distribution can be obtained after the weight
function is determined due to the uniqueness of the weight function [22].

The relationship between the crack opening displacement u(x, a) and the weight function m(x, a)
was derived by Rice [5], it is expressed as follows:

m(x, a) =
Etip

Kr(a)
∂u(x, a)
∂a

(7)

where Kr(a) denotes the reference SIF that related to the crack length a.
Even if the Young’s modulus of an FGM varies with the x-coordinates, E = E(x), the near-tip field

of the FGM must be identical to a homogeneous material, which means that the Young’s modulus at
the crack tip of an FGM is equal to a constant Etip [7].

The four-term weight function is derived from reference [7]:

m(x, a) =

√
2
πa

[(
1−

x
a

)−1/2
+ D1

(
1−

x
a

)1/2
+ D2

(
1−

x
a

)3/2
+ D3

(
1−

x
a

)5/2
]

(8)

where D1, D2 and D3 are the coefficients of the derived weight function.
Equation (6) is transformed into the following form by introducing Equations (5) and (8) into (6).

K =

√
2a
π
σ0

( 2
2n + 1

+
2

2n + 3
D1 +

2
2n + 5

D2 +
2

2n + 7
D3

)
(9)

The weight function for the deepest point is expressed by using the following equation:

mD(x, a) =

√
2
πa

[(
1−

x
a

)−1/2
+ DD1

(
1−

x
a

)1/2
+ DD2

(
1−

x
a

)3/2
+ DD3

(
1−

x
a

)5/2
]

(10)

where DD1, DD2 and DD3 are the weight function coefficients for the deepest point.
The weight function for the surface point is expressed as follows, according to reference [6].

mS(x, a) =
2
√
πx

[(x
a

)−1/2
+ DS1

(x
a

)1/2
+ DS2

(x
a

)3/2
+ DS3

(x
a

)5/2
]

(11)

where DS1, DS2 and DS3 are the weight function coefficients for the surface point.
In this study, since the stress distributions on the crack face and the elastic modulus along the

crack front are variable, the maximum SIF may occur at any point on the crack front. Therefore,
the weight function for the general point is required. However, the weight function for the general
point on a semi-elliptical surface crack of an FG plate has not been reported in the literature. Therefore,
closed-form local weight functions for the general point P within the range of 0◦ < φ < 90◦ are newly
derived from reference [23].

The weight functions for the general point P are expressed as follows:
For 0 ≤ x ≤ a sinφ:

mP1(x, a) =

√
2

πa sinφ

(1− x
a sinφ

)− 1
2

+ DP1

(
1−

x
a sinφ

) 1
2

+ DP2

(
1−

x
a sinφ

) 3
2
 (12)
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For a sinφ ≤ x ≤ a:

mP2(x, a) =

√
2

πa sinφ

( x
a sinφ

− 1
)− 1

2

+ DP3

(
x

a sinφ
− 1

) 1
2

+ DP4

(
x

a sinφ
− 1

) 3
2
 (13)

where DP1, DP2, DP3 and DP4 are the weight function coefficients for the general point.
Since the present FE simulations and derivation of weight functions are based on the condition of

h/c = w/c ≥ 4, that is, the crack size is small enough compared to the FG plate [15]. Therefore, for a
surface crack with depth a, it can be proved (see Supplementary Materials) that the curvature of the
crack contour at the surface (x = 0) vanishes [24]:

∂2u(x, a)
∂x2 |x=0 = 0 (14)

The second derivative of the weight function for the deepest point is therefore equal to zero
at x = 0 according to Equations (7) and (14), as follows. The detailed derivation is shown in the
Supplementary Materials.

∂2mD(x, a)
∂x2 |x=0 = 0 (15)

The additional condition for the deepest point is obtained from Equation (15), as follows:

DD1 − 3DD2 − 15DD3 = 3 (16)

Due to the weight function for the surface point of a semi-elliptical surface crack is derived
from the weight function for the embedded penny-shape crack; therefore, the weight function in
Equation (11) must vanish at x = a [25], as follows; details are available in the Supplementary Materials.

mS(x, a)|x=a = 0 (17)

The additional condition for the surface point is obtained from Equation (17), as follows:

DS1 + DS2 + DS3 = −1 (18)

The deepest point (φ = π/2) and surface point (φ = 0) are special cases of the general points.
The additional conditions for the general point are obtained by analogy with Equations (15) and
(17) [26]. The detailed explanation is shown in Supplementary Materials.

mP2(x, a)|x=a = 0 (19)

∂2mP1(x, a)
∂x2 |x=0 = 0 (20)

The additional conditions for the general point are given:

−DP1 + 3DP2 = −3 (21)

1+DP3

(
1

sinφ
− 1

)
+ DP4

(
1

sinφ
− 1

)2

= 0 (22)

3.2. Weight Function for Deepest Point of Surface Crack on FG Plate

The reference SIFs for constant stress distribution are determined by using :
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KD
r1 = σ0

√
πa
Q

Y0 (23)

The reference SIFs for linear stress distribution are determined with:

KD
r2 = σ0

√
πa
Q

Y1 (24)

The coefficient equations of the weight function for the deepest point are obtained by substituting
Equations (23) and (24) into (9) and adding Equation (16):

DD1 − 3DD2 − 15DD3 = 3 (25)

2
3

DD1 +
2
5

DD2 +
2
7

DD3 =
π
√

2Q
Y0 − 2 (26)

2
5

DD1 +
2
7

DD2 +
2
9

DD3 =
π
√

2Q
Y1 −

2
3

(27)

The coefficients DD1, DD2 and DD3 are determined by solving Equations (25)–(27). The weight
function (mD(x, a)) for the deepest point can be obtained by substituting Equations (28)–(30) into
Equation (10).

DD1 =
π
√

2Q
(10.389Y0 − 14.766Y1) − 10.999 (28)

DD2 =
π
√

2Q
(−17.861Y0+29.521Y1)+16.332 (29)

DD3 =
π
√

2Q
(4.265Y0 − 6.889Y1) − 4.200 (30)

3.3. Weight Function for Surface Point of Surface Crack on FG Plate

The reference SIFs for the constant stress distribution can be determined by using:

KS
r1 = σ0

√
πa
Q

F0 (31)

The reference SIFs for linear stress distribution can be determined with:

KS
r2 = σ0

√
πa
Q

F1 (32)

The coefficient equations of the weight function for the surface point are obtained by substituting
Equations (31) and (32) into Equation (9) and adding Equation (18):

DS1 + DS2 + DS3 = −1 (33)

2
3

DS1 +
2
5

DS2 +
2
7

DS3 =
π
√

2Q
F0 − 2 (34)

2
5

DS1 +
2
7

DS2 +
2
9

DS3 =
π
√

2Q
F1 −

2
3

(35)

The coefficients DS1, DS2 and DS3 are determined by solving Equations (33)–(35). The weight
function (mS(x, a)) for the surface point can be obtained by substituting Equations (36)–(38) into
Equation (11).

DS1 =
π
√

2Q
(16.411F0 − 29.531F1) − 15.003 (36)
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DS2 =
π
√

2Q
(−45.945F0 + 98.461F1) + 35.008 (37)

DS3 =
π
√

2Q
(29.537F0 − 68.919F1) − 21.004 (38)

3.4. Weight Function for General Point of Surface Crack on FG Plate

The reference SIFs for constant stress distribution can be determined with:

KP
r1 = σ0

√
πa
Q

Z0 (39)

The reference SIFs for linear stress distribution can be determined by using:

KP
r2 = σ0

√
πa
Q

Z1 (40)

The coefficient equations of the weight function for the general point are obtained by substituting
Equations (5), (12), (13), (39) and (40) into Equation (6) and adding Equations (21) and (22). Detailed
derivation process is available in the Supplementary Materials.

3−DP1 + 3DP2 = 0 (41)

1+DP3

(
1

sinφ
− 1

)
+ DP4

(
1

sinφ
− 1

)2

= 0 (42)

[
1 +

1
3

DP1 +
1
5

DP2

]
+

( 1
sinφ

− 1
) 1

2

+
1
3

DP3

(
1

sinφ
− 1

) 3
2

+
1
5

DP4

(
1

sinφ
− 1

) 5
2
 = π

√
1

8Q sinφ
Z0 (43)

[
1 + 1

3 DP1 +
1
5 DP2

]
−

[
2
3 sinφ+ 2

15 sinφDP1 +
2
35 sinφDP2

]
+

[
2
3 sinφ

(
1

sinφ − 1
) 3

2

+ 2
15 sinφDP3

(
1

sinφ − 1
) 5

2 + 2
35 sinφDP4

(
1

sinφ − 1
) 7

2

]
= π

√
1

8Q sinφZ1

(44)

The coefficients DP1, DP2, DP3 and DP4 are determined by solving Equations (41)–(44).
The weight functions (mP1(x, a) and mP2(x, a)) for the general point can be determined by substituting
Equations (45)–(48) into Equations (12) and (13).

DP1 =

[
32 f 5 sinφ− 128 f

7
2 sinφ− 96 f

9
2 sinφ+ 168 f

7
2 − 210 f

7
2 V1

(
1

Q sinφ

) 1
2

+120 f
9
2 V0 sinφ

(
1

Q sinφ

) 1
2

]
/
[
2 f

(
16 f

5
2 sinφ+ 24 f

7
2 sinφ− 42 f

5
2
)] (45)

DP2 =

[
32 f 5 sinφ− 224 f

7
2 sinφ− 240 f

9
2 sinφ+ 420 f

7
2 − 210 f

7
2 V1

(
1

Q sinφ

) 1
2

+120 f
9
2 V0 sinφ

(
1

Q sinφ

) 1
2

]
/
[
6 f

(
16 f

5
2 sinφ+ 24 f

7
2 sinφ− 42 f

5
2
)] (46)

DP3 =

96 f 2 sinφ− 96 f
5
2 sinφ− 192 f

7
2 sinφ+ 252 f

5
2 − 315 f 2V0

(
1

Q sinφ

) 1
2
+315 f 2V1

(
1

Q sinφ

) 1
2

+120 f 2V0 sinφ
(

1
Q sinφ

) 1
2

/[
f
(
16 f

5
2 sinφ+ 24 f

7
2 sinφ− 42 f

5
2

)] (47)

DP4 =

−96 f sinφ+ 80 f
3
2 sinφ+ 168 f

5
2 sinφ− 210 f

3
2 + 315 f V0

(
1

Q sinφ

) 1
2
− 315 f V1

(
1

Q sinφ

) 1
2

−120 f sinφV0

(
1

Q sinφ

) 1
2

/[
f
(
16 f

5
2 sinφ+ 24 f

7
2 sinφ− 42 f

5
2

)] (48)
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where f = 1
sinφ − 1, V0 = π

2
√

2
Z0, V1 = π

2
√

2
Z1

3.5. Validation of Derived Weight Function

An FGM with a Young’s modulus that is governed by the following equation was defined to
validate the SIFs calculated from the derived weight functions.

E(y) = E0 exp
[( 1

w

)
· ln

(
E1

E0

)
y
]

(49)

where E0 = 210 GPa, E1 = 200 GPa, and w = 100 mm. The accuracy of the derived weight functions is
validated against the numerical results in this study. Comparisons between the FE results and the
weight function results for the surface, deepest and general points affected by parabolic or cubic stress
distribution are shown in Figures 5–10, in which the comparisons of the BCFs for the general points are
under the conditions of a/t = 0.2 and 0◦ < φ < 90◦ (the range of parametric angle).Materials 2020, 13, x FOR PEER REVIEW 12 of 16 

 

 
Figure 5. Comparison of weight function and FE results in this study with parabolic stress distribution 
(surface point). 

 
Figure 6. Comparison of weight function and FE results in this study with parabolic stress distribution 
(deepest point). 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F

a/t

Surface point, parabolic

Weight Function
FEM a/c=0.2
FEM a/c=0.4
FEM a/c=0.6
FEM a/c=0.8
FEM a/c=1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F

a/t

Deepest point, parabolic

Weight Function
FEM a/c=0.2
FEM a/c=0.4
FEM a/c=0.6
FEM a/c=0.8
FEM a/c=1.0

Figure 5. Comparison of weight function and FE results in this study with parabolic stress distribution
(surface point).

Materials 2020, 13, x FOR PEER REVIEW 12 of 16 

 

 
Figure 5. Comparison of weight function and FE results in this study with parabolic stress distribution 
(surface point). 

 
Figure 6. Comparison of weight function and FE results in this study with parabolic stress distribution 
(deepest point). 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F

a/t

Surface point, parabolic

Weight Function
FEM a/c=0.2
FEM a/c=0.4
FEM a/c=0.6
FEM a/c=0.8
FEM a/c=1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F

a/t

Deepest point, parabolic

Weight Function
FEM a/c=0.2
FEM a/c=0.4
FEM a/c=0.6
FEM a/c=0.8
FEM a/c=1.0

Figure 6. Comparison of weight function and FE results in this study with parabolic stress distribution
(deepest point).



Materials 2020, 13, 3155 12 of 15Materials 2020, 13, x FOR PEER REVIEW 13 of 16 

 

 
Figure 7. Comparison of weight function and FE results in this study with parabolic stress distribution 
(general point). 

Figures 8–10 show the comparisons between the FE results and the weight function results for 
the surface, deepest and general points affected by cubic stress field. The difference between the BCFs 
obtained from the numerical simulations and the BCFs calculated from the weight functions is mostly 
less than 1.48% for the surface point, 2.61% for the deepest point and 3.70% for the general point. 

It can be concluded that the results obtained from the weight functions are in reasonable 
agreement with the numerical solutions and the previously derived weight functions are accurate 
enough to predict the BCFs of cracked FG plates subjected to non-uniform stress distributions. 

 
Figure 8. Comparison of weight function and FE results in this study with cubic stress distribution 
(surface point). 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F

2/

General point, parabolic, a/t=0.2

Weight Function
FEM (a/c=1.0)
FEM (a/c=0.8)
FEM (a/c=0.6)
FEM (a/c=0.4)
FEM (a/c=0.2)

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F

a/t

Surface point, cubic

Weight Function
FEM a/c=0.2
FEM a/c=0.4
FEM a/c=0.6
FEM a/c=0.8
FEM a/c=1.0

Figure 7. Comparison of weight function and FE results in this study with parabolic stress distribution
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Figures 5–7 show the comparisons between the FE results and the weight function results for the
surface, deepest and general points affected by parabolic stress field. The difference between the BCFs
calculated from the FE models and the BCFs calculated from the weight functions is generally less than
1.43% for the surface point, 2.46% for the deepest point and 3.52% for the general point.
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Figure 9. Comparison of weight function and FE results in this study with cubic stress distribution
(deepest point).

Figures 8–10 show the comparisons between the FE results and the weight function results for the
surface, deepest and general points affected by cubic stress field. The difference between the BCFs
obtained from the numerical simulations and the BCFs calculated from the weight functions is mostly
less than 1.48% for the surface point, 2.61% for the deepest point and 3.70% for the general point.

It can be concluded that the results obtained from the weight functions are in reasonable agreement
with the numerical solutions and the previously derived weight functions are accurate enough to
predict the BCFs of cracked FG plates subjected to non-uniform stress distributions.
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4. Conclusions

A weight function method has been developed in this study to calculate the SIFs of FG plates
with semi-elliptical surface cracks. Constant, linear, parabolic and cubic stress fields have been applied
to act on the crack face. The weight functions for the surface, deepest, and general points on a cracked
FG plate have been derived and well validated. It can be concluded that the weight function method is
accurate for evaluating the SIFs of cracked FG plates subjected to non-uniform stress distributions.
The derived weight functions are applicable for fracture analyses of surface cracks on FGMs.
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