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Abstract: In their fourth decade of development, additive manufacturing technologies are slowly 

entering research programs dedicated to building materials. While the majority of research effort is 

focused on using 3D printing of concrete, the authors propose using the technology for creation of 

spatial plastic reinforcement. Obviously, the strength properties of a 3D printed polymer are much 

lower than those of steel. Nevertheless, the unconventional spatial shape of a 3D printed 

reinforcement can substitute for much of the lower mechanical performance of polymer. Flexural 

characteristics of a cement mortar prism specimen reinforced by hexagon spatial elements were 

tested and analyzed in this paper. The hexagonal geometric shape was chosen due to its high 

rigidness. It was proven that it is possible to efficiently reinforce concrete beams by spatial 3D 

printed polymer elements. Directions of needed research were pointed and discussed. 
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1. Introduction 

The term additive manufacturing [1,2] is used to describe the technologies that build 3D objects 

by adding layer upon layer of a material. Currently, 3D printing is the best known and globally 

disseminated additive manufacturing technology. It is based on digitally controlled processes in 

which material is joined (or sometimes solidified) to create a new object. Different types of polymers 

remain the most popular materials used for 3D printing, but metals and concrete are recently gaining 

substantial popularity. The latter caught the attention of research teams dealing with building 

materials and civil engineering [3,4]. All over the world, multiple scientific institutions are currently 

involved in research programs dedicated to 3D printing of concrete, mortar [5] or concrete-like 

composites based on extra-terrestrial soil simulants (mainly lunar and Martian) [6–8]. The achieved 

development of the technology enabled the creation of geometrically complicated curved walls (both 

solid and hollow) and full-scale demonstrators. Nevertheless, key problems with bonding between 

printed layers of concrete and lack of reinforcement remain intact and significantly limit its potential 

for civil engineering applications [9–11]. 

All processes associated with production, transportation, casting and compacting (if needed) of 

concrete are highly automated. 3D printing of concrete and mortars (including fiber-reinforced 

mortars [12]) seems, in this context, like over-engineering of optimized and well-working procedures. 

On the other hand, preparation and placement of steel reinforcement is usually the most complicated 

and time-consuming activity at a construction site [13]. Reinforcing steel is expensive and 

characterized by a large carbon footprint [14]. The very process of reinforcement preparation, 

consisting of steel bars, stirrups, meshes and other smaller elements, is prone to human errors [15]. 

In the authors’ opinion, 3D printing in civil engineering should be primarily harnessed for the 
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creation of reinforcement. The most laborious process in the erection of a concrete structure would 

be finally fully automated. One could also argue that using steel as a reinforcement is very 

conservative and was justified when no other technological solutions were available. 3D printing 

should be recognized as a disruptive technology and used to its limits [16]. The development of 

traditional steel reinforcement reached its technological limits with the production of fiber used for 

the creation of steel fiber-reinforced concrete (SFRC) [17] and slurry-reinforced concrete (SIFCON) 

[18]. Technology of traditional production and casting of concrete should be merged with 3D printing 

of polymer reinforcement. Mechanical properties of any 3D printed polymer are significantly lower 

than characteristics of any steel (especially in terms of strength and modulus of elasticity). In the 

authors’ opinion, this obvious weakness of 3D printed polymer reinforcement can be substituted by 

creation of a very complicated spatial shape with artificially created roughness of its surfaces. Such 

spatial reinforcement, creation of which is not possible using rebars, would match the strength 

properties of steel cages. The mechanical effectiveness of traditional steel rebars is obstructed by 

possible to achieve (by bending, cutting and welding) spacing in a concrete element. In contrast, 3D 

printed polymer reinforcement is almost limitless in the case of its geometry and spacing (e.g., 3D 

printed formwork playing the role of reinforcement). This concept was proved by authors during the 

previous research program dedicated to 3D printed polymer reinforcement which played a role of 

traditional reinforcement [19]. The success of the previous research program encouraged authors to 

prepare a new one described in this paper. During the realization of the research program, different 

spatial reinforcing elements were created based on hexagonal geometry [20]. The hexagonal 

geometry was chosen for the spatial reinforcement due to its proven rigid mechanical characteristics 

[21]. It was also successfully used for creation of beam-like lattice structures [22]. Spatial reinforcing 

elements were used to reinforce cement mortar beams. The main testing focus was dedicated to 

flexural strength of the beams and their load–deflection characteristics. All specimens with 3D 

printed polymer reinforcement were characterized by quasi-plastic properties. 

2. Materials and Methods 

Standardized mortar commonly used for tests of cements (EN 196-1) [23] was adopted as a brittle 

matrix. For the creation of the mortar CEM I 42.5 N-NA, standardized CEN sand (EN 196-1) 

characterized by median diameter [24] of 0.24 mm and tap water were used. The mixture composition 

of the mortar is given in Table 1. 

Table 1. Mixture composition for one batch. 

Ingredient Amount [g] Density [g/cm3] Volume [cm3] 

Standardized sand 1350 2.65 509.4 

Portland cement 450 3.10 145.1 

Tap water 225 1.00 225.0 

Ordinary sequence and characteristics of mixing, casting and compaction used for creation of 

the standardized mortars were utilized [25]. From one batch of the mix (see Table 1), three prism 

specimens (40 mm × 40 mm × 160 mm) were cast. The curing process was divided into two stages. 

During the first stage, the specimens were kept in steel molds covered with glass sheets for 24 h. 

During the second stage, the specimens were put into a water tank for the following 27 days. The 

temperature of air and water during both stages of curing was constant and equal to +20 ˚C ± 1 ˚C. 

All cast specimens were tested after 28 days of curing. 

After 28 days of curing, the cement mortar specimens (with no spatial reinforcement) were 

characterized by a density of 2261 kg/m3 and compressive strength and flexural strength equal to 45.5 

MPa and 7.0 MPa, respectively. Other properties of the cement in question are thoroughly described 

in previous publications [26,27]. 

Acrylonitrile-co-butadiene-co-styrene (ABS) was chosen as a filament [28,29] for 3D printing of 

reinforcing elements. ABS proved to be effective as a material for the creation of non-conventional 

3D printed reinforcement [16]. Key properties of the ABS filament given by the producer are 
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presented in Table 2. The reasoning why the ABS filament was chosen and its properties were 

thoroughly described in a previous publication [19]. 

Table 2. Key properties of the ABS filament used in this study. 

Density 

[kg/cm3] 
Melting Point [˚C] Diameter [mm] 

Thermal Decomposition 

[˚C] 

1100 +225 2.85 >+280 

Tensile 

modulus 

[MPa] 

Tensile 

stress at 

yield 

[MPa] 

Tensile 

stress at 

break 

[MPa] 

Elongation 

at yield [%] 

Elongation 

at break [%] 

Flexural 

strength 

[MPa] 

Flexural 

modulus 

[MPa] 

1681.5 39.0 33.9 3.5 4.8 70.5 2070.0 

The utilized 3D printing process was designed carefully to maintain three layers in every printed 

hexagon wall. The thickness of the walls was varied; thus, the thickness of the three layers was 

adjusted accordingly. Two sizes (0.6 mm and 0.8 mm) of the print cores were used. Both external 

layers and an infill layer of all walls were printed as solids to guarantee the best possible strength in 

any direction. The average speed of printing was equal to 25 mm/s. The adopted three-layered 

structure of printed hexagon walls is presented in Figure 1a. 

For the preparation of the spatial reinforcing elements, a commercially available 3D printer was 

utilized. The size of the printed reinforcement, and subsequently, the size of the tested specimens, 

was limited by the available working space of the printer (197 mm × 215 mm). During one run of the 

printer, three reinforcing elements of the same geometry were created (see Figure 1b). The elements 

were put into the steel mold where overlay polymer helped to keep them in place at the bottom of 

the mold during casting (two layers) and compaction of cement mortar. The compaction was 

conducted using an ordinary jolting table with a drop of 15 mm. Each cast layer was compacted by 

60 jolts. 

  
(a) (b) 

Figure 1. (a) The three-layered structure of printed hexagon walls. (b) A set of three spatial reinforcing 

elements being 3D printed (photos by T. Szatkiewicz). 

3D printed spatial reinforcing elements were analyzed using the optic microscope. In Figure 2, 

one can see a wall of a hexagon consisting of three printed layers. The structure of a wall is not 

homogenized. Borders of specific layers are clearly visible with small crevices separating them. 

An orthogonal experiment design was adopted for choosing types of spatial reinforcement to be 

tested during the research program [30]. The selection of the design of experiment was based on a 

previous research experience with non-conventionally reinforced concrete elements [31]. It was 

decided that spatial reinforcing element will have a triangular cross-section along the length of a 

beam. Thus, the maximum height of the reinforcing element was located in the middle of the span. 
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The size of hexagons and their spacing was constant for all 3D printed reinforcing elements. There 

were only two variables: the height (H) of a spatial reinforcing element and the thickness (D) of a 

hexagon wall. The height was equal to 5 mm, 10 mm, 15 mm and 20 mm. The thickness of the wall 

was equal to 1 mm, 1.33 mm, 1.66 mm and 2 mm. The general view of the designed spatial reinforcing 

element with marked H and D is presented in Figure 3. 

 

Figure 2. Microscopic view of three-layered printed hexagon walls. 

 

Figure 3. General view of the designed spatial reinforcing element. 

The adopted geometry of the spatial reinforcing elements and the three-layered structure of the 

hexagon walls influenced both the time of printing of an element and its mass. The time varied from 

22 min to 111 min. Values of mass of all considered spatial reinforcing elements are presented in 

Table 3. The volume of polymer spatial reinforcement in cast element may reach the values much 

higher in comparison to traditional rebar reinforcement, which usually ranges from 1% to 1.5%. In 

the cases of spatial elements in question, the volume of 3D printed elements reaches the value of 2.8% 

in the case of the element characterized by H = 20 mm and D = 2 mm. Both the density of the used 
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polymer and the volume of the 3D printed spatial reinforcement influence the weight of the cast 

element. 

Table 3. Mass of spatial reinforcing elements. 

 
H [mm] 

5 10 15 20 

D [mm] 

1.00 1.25 2.25 3.2 4.17 

1.33 1.42 3.55 3.71 4.87 

1.66 2.07 3.60 5.09 6.60 

2.00 2.35 4.18 5.98 7.80 

The tests were conducted in a random order to guarantee the objectivity. All achieved results 

were statistically assessed with the help of the Dixon’s Q test [32]. Only results assessed as bearing 

no gross error proceeded further for computation. A dedicated scientific software was utilized to 

create graphic interpretations of the 3D plots of second-degree equations. 

All prepared mortar specimens were measured and weighed before conducting any other tests. 

Calculated density of hardened composites was considered as a basic but efficient quality and 

uniformity check of the casting, compacting and hardening processes [33]. Subsequently, specimens 

were used for the flexural strength test. Two ordinary supports (span l = 100 mm) and one central 

loading point setup were utilized with loading force (F) increasing at speed of 50 N/s. During the test, 

the midspan deflection (d) was recorded every 0.02 s. Due to expected variable quasi-plastic 

characteristics of different specimens, the flexural test was conducted until the deflection of 3 mm 

was achieved. At this point, all specimens were considered as ultimately destroyed. Collected data 

was used to create loading–deflection charts. The special interest was put on four points of loading–

deflection characteristics of each element. These points were as follows: the limit of proportionality 

(first peak of the loading force named 1p), maximum loading force (Fmax), deflection equal to l/150 

(p066) and deflection equal to l/75 (p133). The points were chosen to allow comparison with 

traditional reinforced concrete structures [34], ferrocement [35] and steel fiber-reinforced concrete 

(SFRC) [36]. Additionally, compressive strength of mortar with no reinforcement was tested. 

3. Results and Discussion 

Density, compressive strength and flexural strength of the mortar were equal to 2363 kg/m3, 43.3 

MPa and 8.0 MPa, respectively. These values were serving as a reference point for all other 

mechanical characteristics of reinforced beams. Behavior of the beams during the flexural strength 

test was registered both in digital (force–deflection relations) and graphical (photographs) ways. The 

photographs showing cracking patterns of ultimately destroyed beams are presented in Figure 4. Due 

to quasi-plastic behavior of all tested beams (which in many ways resembles SFRC or ferrocement), 

the traditional approach to achieved results was disabled. On the other hand, recorded deflections at 

the ultimate destruction were much higher than in the case of SFRC or ferrocement, and utilization 

of standards referring to these cement composites was also impossible. The authors decided to use 

four key points to analyze flexural behavior of the tested beams. For each of four key points, the area 

under the curve was calculated. The calculated areas represent the amount of energy needed to get 

to the certain point on the load–deflection curve during the flexural strength test. The idea of using 

these values for further analysis was sourced from the Japanese standard JSCE-SF4 [37] describing 

the flexural testing method of SFRC. Similar to JSCE-SF4, the authors decided to use term flexural 

toughness (Tb) to describe these values of dissipated energy. In Figure 5, using the height (H) of the 

spatial reinforcing element and the thickness (D) of a hexagon wall as independent input variables, 

the contour plot of Tb for Fmax is presented. 
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Figure 4. Cracking patterns of ultimately destroyed prism specimens. 

 

Figure 5. Flexural toughness of tested beams for maximum loading force. 

The value of Tb for Fmax ranges from 244 Nmm (for H = 5 mm and d = 1.00 mm) to 7049 Nmm (for 

H = 20 mm and d = 2.00 mm). The value of Tb for Fmax is increasing alongside both the growing 

thickness of walls and the height of the spatial reinforcing element. The contour graph presented in 

Figure 4 is described by Equation (1). Both the equation and the contour graph were generated using 

STATISTICA software. All other contour graphs in this paper (and equations describing them) were 

created in the same way. 

Tb(Fmax) = 7321.4 + 520.0 H − 14994.7 D − 8.3 H2 − 27.6 H D + 5916.8 D2 (1) 
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One should notice that the value of Fmax for an ordinary mortar prism specimen without any 

reinforcement was equal to 3413 N. It means that four reinforced beams (with spatial reinforcing 

elements: H = 5 mm and D = 1.00 mm, H = 5 mm and D = 1.33 mm, H = 10 mm and D = 1.00 mm, H = 

10 mm and D = 1.33 mm) were characterized by lower maximum loading force than the pure mortar. 

The achieved values of Fmax were equal to 79%, 74%, 98% and 94% of the characteristics of pure mortar, 

respectively. On the other hand, the mortar beam reinforced with the spatial element characterized 

by H = 20 mm and D = 2.00 mm achieved a value of Fmax which is equal to 184% of the characteristics 

of pure mortar. In the cases of all specimens but two, the maximum loading force was achieved after 

reaching the first peak (see Figure 6). The behavior of the specimens up to the first peak reflects the 

elastic behavior of ordinary mortar (or any other brittle cement-based material). In the cases of the 

tested specimens, the loading–deflection relation is not as proportional as in the case of ordinary 

mortar (especially in the cases of specimens with reinforcement with H = 5 mm), but the resemblance 

is good enough to proceed with the further analysis. In Figure 7, the Tb for 1p is presented. The 

contour graph is described by Equation (2). This area is marked grey in all plots in Figure 6. The 

highest value of dissipated energy (equal to 373 Nmm) was achieved by the beam reinforced by the 

spatial element of H = 5 mm and D = 2.00 mm. 

 

Figure 6. Load (F)–deflection (d) relations for tested prism specimens with marked four characteristic 

points (values of load achieved for each key point are listed [N]). 
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Figure 7. Flexural toughness of tested prism specimens for the first peak of loading force. 

Tb(1p) = 398.6 − 16.8 H − 168.4 D + 0.6 H2 − 5.7 H D + 99.8 D2 (2) 

In Figures 8 and 9, flexural toughness for deflections l/150 and l/75 was presented, respectively. 

The value of l/150 was chosen for the analysis due to the fact that, in multiple national and 

international standards, such a deflection of a structural element is considered as a serviceability limit 

state (SLS) or ultimate limit state (ULS) [38]. The deflection of l/75 represents twice the deflection. In 

the cases of the reinforced specimens in question, only in three cases (reinforcing elements: H = 5 mm 

and D = 1.00 mm, H = 5 mm and D = 1.33 mm, H = 5 mm and D = 1.66 mm) did both deflections appear 

after reaching Fmax. In the cases of seven specimens, Fmax is located between l/150 and l/75, and in the 

cases of six prisms, both deflections are located before reaching Fmax (see Figure 6). These varied quasi-

plastic characteristics of tested specimens are also visible in different crack patterns (see Figure 4). 

The specimens with low reinforcing elements (H = 5 mm) have one vertical crack in the middle of the 

span. When the reinforcing element is getting higher and thicker, the main crack is more and more 

curved, and some secondary cracks appear. In the case of the most reinforced specimen (reinforcing 

element H = 20 mm and d = 2.00 mm), the main crack is almost horizontal at its end with the secondary 

crack clearly visible and mirroring in shape the main one. 

The contour graph of flexural toughness of tested prism specimens for deflection of 0.66 mm 

(l/150) presented in Figure 8 is described by Equation (3). 

Tb(p066) = −1540.2 + 105.4 H + 2443.4 D − 4.2 H2 + 6.4 H D − 705.8 D2 (3) 

The contour graph of flexural toughness of tested prism specimens for deflection of 1.33 mm 

(l/75) presented in Figure 9 is described by Equation (4). 

Tb(p133) = −993.3 + 337.4 H + 1529.7 D − 11.1 H2 + 15.6 H D − 97.7 D2 (4) 
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Figure 8. Flexural toughness of tested prism specimens for l/150. 

 

Figure 9. Flexural toughness of tested prism specimens for l/75. 

Achieved flexural characteristics of the tested prism specimens prove that it is possible to 

efficiently reinforce concrete by spatial 3D printed polymer elements. The utilization of such elements 

enables shaping properties of cement composites at a whole new level of influencing their elastic and 
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quasi-plastic properties. In the majority of tested specimens, their enhanced properties were seen 

after reaching the first peak of the loading force. On the other hand, the first peak of the loading force 

can be associated with the first crack of the brittle cement mortar and beginning of the full work of a 

spatial 3D printed plastic element. Large amount of energy needed to ultimately destroy the elements 

(after reaching their SLS) prone this reinforcing technology for special applications where such 

behaviour is needed. All kinds of structures exposed to possible impacts, explosions, shockwaves, 

earthquakes, etc. are coming to mind as the first possible application area. One should also keep in 

mind the fact that polymer filament for a 3D printer can be produced from waste polymers [39,40]. 

Using large amounts of recycled polymer filament for printing spatial reinforcement would create a 

new quality in both construction industry and environment protection. Currently existing 3D printers 

were developed to print small but very precise polymer elements. New kinds of 3D printers should 

be developed for civil engineering applications where size would be the priority, not the smoothness 

of the printed polymer surfaces. To fully justify the structural practicality of 3D printed spatial plastic 

reinforcement, some additional research should be done. Future studies should cover: comparison of 

structural elements reinforced by 3D printed polymer elements versus steel rebars and thorough 

study about "composite behavior" of mortar and 3D printed polymer reinforcement (taking into 

account what happens to the "interface" between two materials during thermal expansion, how 

significant is adhesion, etc.). 

4. Conclusions 

The conducted research program allows us to draw the following conclusions: 

 It is possible to efficiently reinforce cement mortar by spatial 3D printed polymer elements. 

 The shape and size of a spatial 3D printed element influence in a very wide range the flexural 

behavior of a prism specimen. 

 Harnessing existing standards dedicated for reinforced concrete, fiber-reinforced concrete and 

ferrocement for testing and analysis of mortar prism specimen with spatial 3D printed plastic-

reinforced elements is not feasible. 

 Some elements of existing standards (e.g., flexural toughness) can be adopted for the testing and 

analysis of mortar prism specimens with spatial 3D printed polymer reinforcing elements. 

 The shape and size of the 3D printed polymer reinforcing elements should be further developed 

to optimize their efficiency. 

 Tests on larger specimens and full-scale structural elements (e.g., beams, columns) should be 

conducted. 
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