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Abstract: This paper presents the results of predictions of springback of cold-rolled anisotropic steel
sheets using an approach based on a multilayer perceptron-based artificial neural network (ANN)
coupled with a genetic algorithm (GA). A GA was used to optimise the number of input parameters
of the multilayer perceptron that was trained using different algorithms. In the investigations,
the mechanical parameters of sheet material determined in uniaxial tensile tests were used as
input parameters to train the ANN. The springback coefficient, determined experimentally in the
V-die air bending test, was used as an output variable. It was found that specimens cut along the
rolling direction exhibit higher values of springback coefficient than specimens cut transverse to the
rolling direction. An increase in the bending angle leads to an increase in the springback coefficient.
A GA-based analysis has shown that Young’s modulus and ultimate tensile stress are variables
having no significant effect on the coefficient of springback. Multilayer perceptrons trained by back
propagation, conjugate gradients and Lavenberg–Marquardt algorithms definitely favour punch
bend depth under load as the most important variables affecting the springback coefficient.

Keywords: elastic strain; genetic algorithm; material properties; perceptron-based prediction;
springback; steel sheet metal

1. Introduction

Bending is a method of plastic working consisting in plastic deformation of the materials
under the influence of the bending moment. Elastic deformation of the material resulting from
the relaxation of the elastic part of internal stresses after unloading is one of the basic phenomena
determining the dimensional and shape accuracy of formed elements [1,2]. The phenomenon of
changing the geometry of bent products, which often have complex geometry, is also the result of the
nonuniformity of the state of deformation on the cross-section of the bent element. The bent element is
conditioned by the mechanical properties of the material (e.g., yield stress, tendency to work hardening,
microstructure and anisotropy of mechanical properties) and the geometric parameters of the bending,
including bending radius, the ratio of width to thickness of the sheet metal [3] and technological factors,
including temperature [4] and speed of deformation [5]. The assessment of sheet metal springback is
carried out in appropriate free bending tests, including the V-shape [6,7] and U-shape [1,8,9] bending,
flanging [10], three- and four-point bending, cylindrical bending or rotary bending tests. However,
the most commonly used experimental method to analyse sheet metal springback is V-shaped bending,
which is easy to carry out. Bending is one of the metal forming processes that allows one to get the
finished product within a narrow range of dimensional tolerances. Knowledge of the amount of elastic
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springback is necessary at the tool design stage. The idea of tool correction is to use compensation for
elastic deformations by selected process parameters, the shape of the preform die or both dimensional
and shape correction of the tool [11,12]. When designing the bending process, the critical bending
radius should be taken into account. The value of the critical bending radius depends on the surface
quality of the material being bent, the material’s tendency to crack, and the position of the bending line
in relation to the rolling direction of the sheet metal.

Traditional approaches to control springback in the sheet metal industry are based on trial-and-error
procedures. Among numerical techniques, the finite element method (FEM) takes precedence and is
currently the most popular [13,14]. FEM simulations permit one to determine the stress and strain
distribution, material deformations, forming forces and potential locations of defects in the forming
process. An effect of computational parameters on springback prediction by FE-based numerical
simulation has been studied by Trzepiecinski and Lemu [7]. Theoretical [15], analytical [8,14],
semi-analytical [16] and methods of artificial intelligence are also widely used to predict springback
behaviour. Most analytical studies have focused on air bending while limited work has been done
on V-die bending due to the inherent difficulties arising from the coining action associated with this
problem [6].

Artificial neural networks (ANNs) are tools that enable the construction of linear [17] and
nonlinear [18] models that solve complex classification [19] and regression [20,21] tasks in many areas
of industrial problems. Calculations performed by neural networks belong to the techniques of so-called
soft computing. In contrast to finite element (FE) modelling, an Artificial Neural Network (ANN) is
trained based on experimental results in order to make predictions regarding the elastic unloading
of a workpiece. A springback prediction model has been developed by Kazan et al. [22] for the
wipe-bending process by using the ANN approach. Sharad and Nandedkar [23] predicted springback
by using ANN based on the FEM results of U-bending, for various die radii, sheet thicknesses,
strain hardening exponents and strength coefficients, and for two different materials. The results
obtained by numerical models compared with ANN are found in good agreement. Jamli et al. [24]
used FE program integrated with the ANN to facilitate nonlinear elastic recovery of sheet metals in the
draw-bend test. The results show the significance of emphasising the nonlinearity of the unloading
modulus instead of the chord modulus, as the final product of springback will result with residual
stresses. Panthi et al. [25] used ANN springback predictions to investigate the effect of velocity on
springback in a straight flanging process. Song and You [26] investigated the prediction of springback
in the bending process of a T-section beam using ANN and FEM. The FE-based simulation results of
springback show satisfactory agreement with the experimental data. The maximum relative error was
less than 10%. Liu et al. [9] implemented genetic algorithms (GAs) to optimise the weights of a neural
network for predicting springback in typical U-shaped bending. The established GA-ANN model is
capable of accurately predicting springback with less time and better convergence.

Han et al. [27] also investigated a coupled FEM and ANN technique and a FEM with a particle
swarm optimisation (PSO) algorithm, which was used to optimise the weights and thresholds of the
ANN model. It was observed that the BP neural network prediction model of the proposed PSO
algorithm improved not only the accuracy of prediction, but also the learning speed of the network.
Şenol et al. [28] used ANN to predict the amounts of springback of stainless steel sheets through
experiment-based networks. It was concluded that ANN can be effectively applied to determine
springback in the air bending process. Spathopoulos and Stavroulakis [29] used Bayesian regularised
back propagation (BP) networks and FEM to predict springback in sheet metal forming processes.
A good agreement was attained between the target and predicted output values. An overview of
the literature on the use of ANN applications in the prediction of springback has been provided by
Dib et al. [30].

The literature review has shown that most of the investigations focused on the development
of regression models of the experimental data, often without proper selection of input features and
without determination of their importance in the model. This paper proposes a novel coupled genetic
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algorithm-based ANN model to predict the springback properties of anisotropic DC04 sheets in a V-die
air bending process. The approach developed is based on the different learning algorithms. Moreover,
the input parameters of sheets with anisotropic properties for learning the ANN were processed by a
genetic algorithm which, as far as the authors’ knowledge of the literature is concerned, has not been
tried out for the purpose of springback prediction. The importance of the specific features in the ANN
model is also determined.

2. Experimental

2.1. Material

The experiments were conducted on cold-rolled DC04 steel sheets of 2 mm thickness. The basic
mechanical properties of the sheets tested were determined in uniaxial tensile tests conducted at room
temperature according to the ISO 6892–1 standard. To characterise the material’s properties though
uniaxial tensile test, specimens of steel sheets were cut at 0◦ and 90◦ orientations to the rolling direction.
Three specimens were tested for each direction and the average values of each basic mechanical
parameter (Table 1) were determined.

Table 1. Mechanical properties of the DC04 steel sheets 1.

Orientation of Specimen E, MPa σy, MPa σm, MPa K, MPa n r

0◦ 1.98·105 186.7 324.1 558.9 0.211 1.74
90◦ 1.92·105 194.3 318.6 542.6 0.223 1.82

1 E—Young’s modulus, σy—yield stress, σm—ultimate tensile stress, K—strain hardening coefficient, n—strain
hardening exponent, r—Lankford’s coefficient.

The values of the strain hardening exponent n and strain hardening coefficient K in the Hollomon
equation are determined as follows:

σp = K·εn (1)

where σp—stress and ε—plastic strain are determined from the logarithmic true stress–true strain plot
by linear regression.

The strain hardening exponent n can be determined using the following formula:

n =
dlogσ
dlogε

=
dσ
dε

ε
σ

(2)

The anisotropic plastic behaviour of sheet metals is characterised by Lankford’s coefficient r,
determined by the following formula:

r =
ln w

w0

ln l0·w0
l·w

(3)

where w0 and w are the initial and final widths, while l0 and l are the initial and final gauge
lengths, respectively.

Due to the anisotropic properties of the sheet material, the specimens for bending experiments,
in the form of rectangular strips of dimension 20 mm × 110 mm, were cut along the rolling direction of
the sheet and transverse to the rolling direction.

2.2. Method

Air bending experiments were carried out in a semi closed 90◦ V-shaped die (Figure 1). During the
bending test, a punch bends the specimen by applying the progressive vertical movement fl. Punch bend
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depth under load fl and punch bend depth load released fu (Figure 2) were registered by the QuantumX
Assistant program through punch stroke transducers. The amount of springback was then evaluated as:

Ks =
γl

γu
(4)

where γl = arctan 2 fl
x is the bend angle under load, γu = arctan 2 fu

x is the bend angle when the load is
released (Figure 2). Angle ∆β defines the difference between bend angles under load γl and after
unloading γu. For all punch depths under load, three bending tests were conducted and then the
average value of springback was evaluated.
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Figure 2. A schematic diagram of the measurement of springback.

3. Establishment of an Artificial Neural Network Model

3.1. Background

Artificial neural networks are tools enabling the construction of linear and nonlinear models
to solve classification and regression problems. The structure of the ANN and its operation reflects
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the processes occurring in the biological nervous system. They are sets of interconnected elements
called neurons that process information supplied to the network’s inputs based on the idea of parallel
processing. The basic feature of systems based on ANN that distinguishes them from typical information
processing algorithms is their ability to generalise. It is defined as the ability of a neural network
to approximate the value of a function of several variables, which is contrary to the interpolation
obtainable by algorithmic processing.

The operation of the ANNs is based on the idea of parallel processing. Each signal is introduced
to the neuron through a connection of a certain weight (Figure 3). In addition, each neuron has a
threshold value that determines its level of excitation. In the k-th neuron, the sum of the input signal
values xn multiplied by the weighting factors wn is calculated, which is then increased by the bias Θk.
The stimulation e of the neuron is transformed by a specified activation function of the k-th neuron
fk(e), which determines the nonlinear relationship between the input and output signals of the neurons.
The most commonly used activation functions include the threshold function and its modifications
(i.e., binary step) as well as nonlinear functions (sigmoid, logistic function, hyperbolic tangent, etc.).
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Due to the network topology, unidirectional networks are distinguished in which signals flow
in one direction from the input to output neurons, as are recursive networks containing feedbacks.
For the architecture, single and multilayer networks are distinguished. As a result of the learning
process, ANNs may acquire the ability to predict output signals based on the sequence of input signals
and their corresponding output signals. The task of the learning algorithm is to select weight values
and threshold values of all neurons to ensure minimisation of the error of the ANN. The surface of
errors for a neural network that performs a nonlinear task is a hyper-surface with a complex shape.
Starting from the initial random weight system and threshold values, the learning algorithm modifies
these values in a way that aims to achieve the global minimum. During each iteration, all learning sets
are presented to the network. Based on the difference in the value of the output signals with ideal
cases, the value of the network error is determined.

3.2. ANN Modelling

The behaviour of the specific neuron and the entire ANN is strongly dependent on the type of
activation function used. The basic function to activate the neurons is a threshold function. It generates
a value of 0 on the neuron output if the input is less than zero or 1 if the input is greater than or equal
to zero. In such conditions, it can be assumed that the neurons act in a similar fashion as biological
equivalents. Subtracting the threshold value from the sum of weighted inputs is a procedure that
unifies the form of the transition function. So, the output signal of neurons always occurs depending
on whether the subtraction result is greater or less than zero. Moreover, the output signals of neurons
do not depend on any variable of threshold value [31]. The problem with the threshold is that it does
not allow multi-valued outputs. Consequently, despite the strong biological justification, the threshold
activation function is rarely used in ANNs [31].

The operation of ANN when selecting a linear activation function is to directly pass a value
expressing the total excitation of the neuron to its output. This type of activation function of neurons is
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used in different types of ANNs. However, there are some problems with a linear activation function.
It does not allow to use the back-propagation algorithm to train an ANN because the derivative of
a function is constant and has no relation to the input. In such conditions, all layers of the neural
network collapse into one with linear activation functions, regardless of the number of layers in the
ANN. The output layer is the linear function of the first layer (because the linear combination of linear
functions is still a linear function) [31]. A neural network with a linear activation function works like a
linear regression model with a limited ability to handle the complexity of input parameters.

Therefore, in solving complex problems using ANNs, the aim is to use the activation function
providing signals with continuous changing values, although their biological interpretation is more
complex than in the case with a threshold function [31,32]. Nonlinear activation functions allow the
model to create complex mappings between inputs and outputs that are necessary for ANN training
and modelling complex data. It was shown [32] that the amount of neuron excitation is encoded in
nerve fibres by the instantaneous pulse frequency, and not by the presence or absence of a single
pulse. If the frequency of impulses in a biological brain can have higher or lower values, in a certain
sense, this justifies the continuous changing of signals in artificial neural networks. In this paper,
the hyperbolic tangent (tanh) function (Equation (5)) is used as an activation function. As in the case
of the logistic function, it is an S-shaped curve. Due to the bipolarity of the tanh activation function,
it often works better than the logistic function. This function is recommended for usage in numerous
nonlinear neural networks—especially in multilayer perceptrons [33–35].

fk(e) =
ex
− e−x

ex + e−x (5)

where x is an argument (input) function.
The Multilayer Perceptron (MLP) function has been selected to model the springback phenomenon.

The network learning process uses a data set containing process parameters, the mechanical properties
of the test sheets, and the corresponding values of the springback coefficient Ks, which was determined
in the bending test. As the input signals to the network, the following parameters have been initially
selected: punch bend depth under load fl, Young’s modulus E, yield stress σy, ultimate tensile
stress σm, strain hardening coefficient K, strain hardening exponent n, and Lankford’s coefficient r.
Sample orientation was not explicitly entered at the network input. However, this orientation in
the input data to ANN was identified by different mechanical parameter values measured for these
two orientations. The expected signal at the output is the coefficient of springback Ks. The training
data consist of 54 training sets. Factors affecting the amount of springback should significantly affect
the elastic strains of metallic sheets and they must be independent of each other [36]. The selection
of factors affecting the amount of springback is difficult due to the complex interactions of many
parameters often correlated with each other.

As the magnitudes of the original training data are different, the input data must be normalised to
the range (0, 1), which can be carried out using the min–max method, according to the relationship in
Equation (6). Normalisation of min–max by means of a linear function transforms the values of the
original data to a new range (Nmin, Nmax):

D′ =
(D−min)
max−min

(Nmax −Nmin) + Nmin (6)

where (min, max) is the interval of the primary data, D is the value of the variable being normalised.
Among all the experimental sets of input data that correspond to the amount of springback, 20%

were separated and assigned as a test set. From the remaining set of training data, 10% was separated
and assigned as the validation set.

At a later stage of creation of the ANN model, the significance of individual explanatory variables
was analysed. To select factors which significantly influence springback, the genetic algorithm was
used. Several MLPs were built in the Statistica program for different numbers of neurons in the hidden
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layer. The round mean square (RMS) error values determined separately for individual subsets of data
were adopted as the criterion for the assessment of the quality of training of ANNs [36]:

RMS =

√∑N
k=1(xk − yk)

2

N
(7)

where: xk—expected signal of the output neuron signal for the k-th pattern, yk—output signal for the
k-th pattern, N—number of vectors of the training set.

Training of MLPs was carried out using several algorithms, the first of which was the back
propagation (BP) algorithm. The classic BP algorithm modifies the input weight wji by a value (∆wji),
which is proportional to the derivative of the objective function:

∆w ji = −η
∂E
∂w ji

(8)

where µ is a learning coefficient.
During network learning by means of the BP algorithm, the direction of the greatest decrease in

error is first evaluated at a predetermined point on the error surface, and then the algorithm jumps in a
designated direction on the error surface to a distance proportional to the learning coefficient µ:

w ji(t + 1) = w ji(t) + µδ j(t)yi(t) + φ
(
w ji(t) −w ji(t− 1)

)
(9)

where wij—input weight i in the j-th neuron, t—number of algorithm period, δj—derivative of the
neuron activation function, µ—learning coefficient, φ—coefficient of momentum.

BP training with a momentum unit allows to increase the effectiveness of the learning rate without
worsening the process stability. With the coefficient of momentum φ, once the weights start moving in
a particular direction in the weight space, they tend to continue moving in that direction with a certain
inertia proportional to the change of this weight in the previous iteration. The use of a small value of
the learning coefficient extends the calculation time, but at the same time causes precise “jumps” on
the error surface to achieve the global minimum.

The proper selection of the learning coefficient µ and the coefficient of momentum φ has a great
effect on the rate and convergence of the learning process. Optimal values of both coefficients may be
different not only for individual iterations but even for each weight. There are no analytical methods
for their selection, therefore the values adopted at the beginning of the network learning process may
be inappropriate. The values of these parameters should be adapted to the nature of the learning data
and modified if necessary. In the investigations, the learning coefficient µ and coefficient of momentum
φ were assumed to be 0.1 and 0.3, respectively.

Second-order algorithms, which are used to optimise nonlinear functions, i.e., the conjugate
gradients (CG) algorithm, the variable metric algorithm (Quasi-Newton—QN) and the
Levenberg–Marquardt (LM) algorithm [37], were also tested. According to the literature (e.g., [38]),
in most applications, these algorithms are significantly faster than the BP algorithm. The algorithms
cited combine the features of two groups of algorithms designed to search for the minimum of the
error function: methods searching along a designated straight line and methods based on the adopted
area of the model (model-trust region approach) [38]. The operation of the search algorithm along a
straight line consists in guiding the straight line in a certain direction of motion on a multidimensional
surface. The minimum error function is determined for all points lying on this line.

In order to prevent the overlearning of MLPs, no further reduction of the RMS error value of the
validation set is assumed as the criterion for completing the network learning process. Continuing the
learning process could lead to over-matching of network responses to learning vectors and loss of
ability to generalise training data.
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4. Results and Discussion

4.1. Experimental Springback

The effect of specimen orientation in the V-die bending process on the springback coefficient
Ks is shown in Figure 4. As can be observed in this figure, the specimens cut along the rolling
direction exhibit higher values of the springback coefficient compared to the specimens cut transverse
to the rolling direction. However, the difference between the springback coefficient measured for
both directions does not exceed 2.3%. The greatest difference is clearly visible for small values of
bending angle under load. An increase in the bending angle γl leads to an increase in the springback
coefficient. This relationship is nonlinear. According to Equation (4), low punch bend depth under load
fl produces high values of bending angle γl. In the case of small punch depths, the material mainly
undergoes elastic strains. Significant plastic deformation appears in the external layers of the sheet
strips with increasing punch depth. The stress forces on the border between the elastic region and the
plasticised region reach the yield stress value. So, if the material undergoes greater plastic deformation,
the difference between the springback coefficient for both orientations becomes smaller and smaller
(Figure 4). The difference in the character of the springback phenomenon of cold rolled sheets is due to
the crystallographic structure of the material [7]. The cold rolling of the sheets produces the directional
change in the deformation of material microstructure, i.e., the grains are elongated in the direction of
the cold rolling process. This results in different material properties of the material rolled, which is
explained by planar anisotropy when it gives various flow strengths in various directions in the plane
of the sheet metal. Thus, the material is more pronounced to plastic deformation when elongated
grains are oriented parallel to the bending plane. Moreover, as shown by Albrut and Barbie [39] in the
case of the transverse direction, a significant quantity of deformation energy is used to change the
crystallographic orientation of grains.
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4.2. ANN-Based Springback Prediction

The selection of input variables is a critical element of neural network design. The feature selection
analysis is carried out using GA, which has been built in the Statistica program. GAs are global
optimisation techniques that work very well with nonlinear problems because of their ability to search
a large number of combinations (in this case, sets of input variables) in order to find the best solution.
Use of GAs is particularly beneficial in situations where there are correlations between the optimised
variables, and the elimination of their interactions must be taken into account when eliminating them.
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GAs are models for the development of chromosome populations. In the classical version of the
algorithm, the chromosome is understood to be a chain of binary values of a certain length. The way
the genetic algorithm works when operating consists of the following stages:

1. Adopting a method of coding the real parameters of the adaptation function in the form of a
chromosome (interconnected binary numbers representing subsequent parameters which form a
chromosome).

2. Determining the form of the adaptation function.
3. Random selection of starting points—the process of searching for the optimal set of parameters

begins with the random selection of starting points.
4. Selection of chromosomes for a new population—the selection of individuals for the new

population is carried out according to the roulette wheel rule in which each individual corresponds
to a segment of a circle of a size proportional to the value of the adaptation function, and then a
random point is selected on the wheel and the chromosome to which the randomly drawn part of
the circle corresponds is transferred to the new population. This process is repeated until the
number of chromosomes in the new population is equal to the number of chromosomes in the
old population.

5. Genetic operators are used for individuals from the new population, the most common of which
are: crossover and mutation.

Many ANN experiments were carried out with different numbers of neurons in the hidden layer.
The evaluation of a set of input variables by the genetic algorithm is made on the basis of the error
achieved for the training set. To the network, error is added as the so-called penalty component,
which is the product of the defined coefficient (unit penalty) and the number of variables included.
Defining the unit penalty expresses the desire to minimise the set of input variables. The analyses
were conducted for a unit penalty in the range of δ = 0.0005-0.01 (Table 2). In this analysis “Yes” means
that specific parameter carries out the important information which affects the value of springback
coefficient Ks. If the specific parameters do not significantly affect the parameter on the output of
ANN, then it may be ignored (“Ignore”). The results of future selection carried out in the Statistica
program are two-stated, and the specific parameter is important or not important.

Table 2. The results of future selection analysis at δ = 0.0005 to 0.01.

Parameter fl E σy σm K n r

Useful at δ = 0.0005 Yes Yes Ignore Ignore Yes Yes Ignore
Useful at δ = 0.001 Yes Ignore Yes Ignore Yes Yes Yes
Useful at δ = 0.002 Yes Ignore Yes Ignore Yes Yes Yes
Useful at δ = 0.005 Yes Yes Ignore Ignore Yes Yes Yes
Useful at δ = 0.01 Yes Ignore Yes Ignore Yes Yes Ignore

The values of the coefficients of smoothing and of crossover were equal to 0.3. Based on the
variables selected by GA, ANN experiments to determine RMS error for the training set were performed.
The results of the computations made in Statistica program are shown in Figure 5. The RMS error for
the training set, which is represented by the greatest number of training data, reaches a minimum
for δ = 0.002. Increasing the unit penalty causes a slight increase in the RMS error for the training
set, however the RMS error to verify and test sets increase more significantly. So, further analyses
were conducted for MLPs consisting of five neurons in the input layer corresponding to punch bend
depth under load fl, yield stress σy, strain hardening coefficient K, strain hardening exponent n,
and Lankford’s coefficient r.
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It was also found that the punch bend depth under load fl, strain hardening coefficient K and
strain hardening exponent n are not susceptible to the unit penalty. It confirms that these parameters
carry important information. The Young’s modulus and ultimate tensile stress are the variables that do
not have a significant effect on the coefficient of springback.

Globally, the objective of the analyses of MLPs was to find the network architecture that ensures
the smallest value of standard deviation (SD) ratio in connection with a high value of Pearson’s
correlation coefficient R [13]. With the help of the Network Designer built in Statistica, a number of
network models were established with different numbers of neurons in the hidden layer. The quality of
the MLPs was given a preliminary validation by Network Designer and a set of three networks (MLP
5:5-6-1:1, MLP 5:5-7-1:1 and MLP 5:5-9-1:1) with the highest performance were selected for further
analysis and the learning process. The highest quality specified in the Statistica program with the
performance parameter was characterised by an MLP 5:5-7-1:1 network with five neurons in the input
layer and one neuron in the output layer and seven neurons in the hidden layer (Figure 6).
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The surface responses of the MLP 5:5-7-1:1 network are shown in Figure 7. It is clear that
increasing punch bend depth under load fl leads to an increase in the predicted springback coefficient
Ks. On the contrary, the predicted value of Ks coefficient decreases with increasing of yield stress σy,
strain hardening exponent n, and Lankford’s coefficient r.
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The problems relating to the occurrence of local minima as a function of error and the problems
associated with the need to make decisions about the size of the network in practice entail the need
to carry out a series of experiments with a large number of networks. Each of these must be taught
repeatedly in order to avoid learning being falsely stopped by a local minimum. Each of these networks
is separately trained and independently assessed in order to select the network that can be considered
optimal. The most important information taken into account when assessing the MLPs is the RMS error
value for training and validation sets. When assessing the ANN model, special attention should be paid
to the SD ratio and the correlation coefficient [38]. Table 3 presents selected statistics of MLPs including
the RMS error separately for the training (T) and validation (V) sets. From the point of view of network
quality, the smallest RMS error value for a training set is characterised by the network trained with the
Quasi-Newton and Lavenberg–Marquardt algorithms. RMS error values for both networks trained
by QN and LM algorithms are very similar for all the network architectures tested. The operation of
the LM algorithm, combining the gradient descent method and Newton’s algorithm, is based on the
assumption that the real function modelled by the ANN that represented the input signal to the output
signal is linear. During operation of LM algorithm, it selects a method that gives better results at a
given moment by trying hypothetical linear approximation and, if it does not give positive results,
it goes back to the gradient descent method. The assumption that the function represented the output
signal is linear enables analytical determination of the minimum of error function, but because the
real function is not linear, the determined minimum value is not necessarily the actual minimum.
The disadvantage of the LM algorithm is finding local minima when the influence of the gradient
descent algorithm is becoming more dominated.

Table 3. Effect of the learning algorithm on the statistics of Multilayer Perceptrons (MLPs).
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The network trained with the BP algorithm (MLP 5:5-7-1:1) has the best statistics, i.e., the highest
value of correlation with the lowest value of SD ratio. For each network, the RMS error for the training
set was less than the RMS error determined for the validation set. This is due to the different number
of learning sets on the basis of which the network gains the ability to generalise data.

Sensitivity analysis allowed the importance of individual input signals in assessing the quality
of the network to be determined. MLPs trained by the BP, CG and LM algorithms definitely favour
punch bend depth under load fl as the most important variable affecting the springback coefficient Ks

(Table 4). The second in order of importance is the strain hardening coefficient K, which, on average to
the highest degree, was preferred by networks that also learned with the BP, CG and LM algorithms.
The anisotropic coefficient r has been recognised by most algorithms as the least important parameter.
This does not mean, however, that this parameter does not provide enough information for network
input. Probably, this parameter interacts with other input parameters and only then is an information
carrier, as demonstrated by the analysis of future selection conducted using GA.
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Table 4. Sensitivity analysis of the test MLPs.
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(•••••—signal the most important, •—signal the least important).

The correlation coefficient of the values of springback coefficient presented at the network output
and the values obtained as a result of the training algorithm was between 0.962 and 0.972. At the same
time, the SD ratio value was below 0.269. The value of the SD ratio is much smaller than 1, so the
MLPs present good performance. Considering that the experimental set consists of only 54 training
sets, the quality of the MLP models obtained is acceptable.

The forecasting of MLP 5:5-9-1:1 is presented in Figure 8 and Table 5 based on a randomly selected
20% of cases that were assigned for the test set that was not presented during the training process.
The high value of the correlation coefficient with the low value of the MSE errors indicates good
prediction properties of this neural network. This is reflected in the good matching of the values of
springback coefficient determined by the ANN with the experimental data represented by the test set.

Materials 2020, 13, x FOR PEER REVIEW 13 of 15 

 

 

 

Figure 8. Comparison of the prognostic capacity of the MLP 5:5-9-1:1 trained using the 
Quasi-Newton (QN) algorithm with the experimental values of springback coefficient Ks. 

Table 5. Quantitative comparison of the springback coefficients Ks determined experimentally and 
by MLP 5:5-9-1:1. 

Case 
Input Parameter Springback Coefficient Ks 

fl, mm σy, MPa K n r ANN Experiment 
1 3 186.7 558.9 0.211 1.74 0.867 0.869 

13 12 186.7 558.9 0.211 1.74 0.914 0.907 
17 24 186.7 558.9 0.211 1.74 0.953 0.956 
18 27 186.7 558.9 0.211 1.74 0.952 0.954 
28 3 194.3 542.6 0.223 1.82 0.834 0.832 
31 12 194.3 542.6 0.223 1.82 0.914 0.918 
37 3 194.3 542.6 0.223 1.82 0.831 0.832 
41 15 194.3 542.6 0.223 1.82 0.862 0.876 
51 18 194.3 542.6 0.223 1.82 0.939 0.928 

5. Conclusions 

This paper presents the results of the prediction of springback in cold-rolled anisotropic steel 
sheets by using a coupled ANN and GA approach. The following conclusions are drawn from the 
research: 
1. The specimens cut transverse to the rolling direction exhibit lower values of springback 

coefficient Ks compared to the specimens cut along the rolling direction. The difference between 
the springback coefficients measured for both directions does not exceed 2.3%. 

2. An increase in the bend angle γl leads to a nonlinear increase in the springback coefficient Ks. 
The higher the bend angle γl, the smaller the difference between the springback coefficients Ks 
measured for both sample orientations. 

3. The Young’s modulus E and ultimate tensile stress σm are variables which have no significant 
effect on the coefficient of springback. 

4. The smallest RMS error value for a training set is seen in the network trained with the QN and 
LM algorithms. RMS error values for both networks trained by these algorithms are very 
similar for all the network architectures tested.  

5. The network trained with the BP algorithm (MLP 5:5-7-1:1) had the highest value of correlation 
coefficient in connection with the lowest value of SD ratio. 

6. For each network, the RMS error for the training set was less than the RMS error determined for 
the validation set. This is due to the different number of learning sets on the basis of which the 
network gains the ability to generalise data. 

7. The MLP trained by the BP, CG and LM algorithms favoured the punch bend depth under load 
fl as the most important variable affecting the springback coefficient Ks.  

Figure 8. Comparison of the prognostic capacity of the MLP 5:5-9-1:1 trained using the Quasi-Newton
(QN) algorithm with the experimental values of springback coefficient Ks.



Materials 2020, 13, 3129 14 of 16

Table 5. Quantitative comparison of the springback coefficients Ks determined experimentally and by
MLP 5:5-9-1:1.

Case
Input Parameter Springback Coefficient Ks

fl, mm σy, MPa K n r ANN Experiment

1 3 186.7 558.9 0.211 1.74 0.867 0.869
13 12 186.7 558.9 0.211 1.74 0.914 0.907
17 24 186.7 558.9 0.211 1.74 0.953 0.956
18 27 186.7 558.9 0.211 1.74 0.952 0.954
28 3 194.3 542.6 0.223 1.82 0.834 0.832
31 12 194.3 542.6 0.223 1.82 0.914 0.918
37 3 194.3 542.6 0.223 1.82 0.831 0.832
41 15 194.3 542.6 0.223 1.82 0.862 0.876
51 18 194.3 542.6 0.223 1.82 0.939 0.928

5. Conclusions

This paper presents the results of the prediction of springback in cold-rolled anisotropic steel sheets
by using a coupled ANN and GA approach. The following conclusions are drawn from the research:

1. The specimens cut transverse to the rolling direction exhibit lower values of springback coefficient
Ks compared to the specimens cut along the rolling direction. The difference between the
springback coefficients measured for both directions does not exceed 2.3%.

2. An increase in the bend angle γl leads to a nonlinear increase in the springback coefficient Ks.
The higher the bend angle γl, the smaller the difference between the springback coefficients Ks

measured for both sample orientations.
3. The Young’s modulus E and ultimate tensile stress σm are variables which have no significant

effect on the coefficient of springback.
4. The smallest RMS error value for a training set is seen in the network trained with the QN and

LM algorithms. RMS error values for both networks trained by these algorithms are very similar
for all the network architectures tested.

5. The network trained with the BP algorithm (MLP 5:5-7-1:1) had the highest value of correlation
coefficient in connection with the lowest value of SD ratio.

6. For each network, the RMS error for the training set was less than the RMS error determined for
the validation set. This is due to the different number of learning sets on the basis of which the
network gains the ability to generalise data.

7. The MLP trained by the BP, CG and LM algorithms favoured the punch bend depth under load fl
as the most important variable affecting the springback coefficient Ks.

8. It was found that the anisotropic coefficient r was the least important parameter.
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