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Abstract: The use of lightweight concrete has continuously increased because it has a primary benefit
of reducing dead load in a concrete infrastructure. Various properties of lightweight concrete, such
as compressive strength, elastic modulus, sound absorption performance, and thermal insulation,
are highly related to its pore characteristics. Consequently, the identification of the characteristics
of its pores is an important task. This study performs a comparative analysis for characterizing
the pores in cementitious materials using three different testing methods: a water absorption test,
microscopic image processing, and X-ray computed tomography (X-ray CT) analysis. For all 12
porous cementitious materials, conventional water absorption test was conducted to obtain their water
permeable porosities. Using the microscopic image processing method, various characteristics of
pores were identified in terms of the 2D pore ratio (i.e., ratio of pore area to total surface area), the pore
size, and the number of pores in the cross-sectional area. The 3D tomographic image-based X-ray CT
analysis was conducted for the selected samples to show the 3D pore ratio (i.e., ratio of pore volume
to total volume), the pore size, the spatial distribution of pores along the height direction of specimen,
and open and closed pores. Based on the experimental results, the relationships of oven-dried density
with these porosities were identified. Research findings revealed that the complementary use of these
testing methods is beneficial for analyzing the characteristics of pores in cementitious materials.

Keywords: microscopic image processing; X-ray CT analysis; porous cementitious materials;
3D tomographic image

1. Introduction

In recent years, lightweight cementitious materials have extensively been applied in a concrete
infrastructure due to their primary benefit of reducing dead load in structures. Many types of lightweight
cementitious materials—such as lightweight aggregate concrete (LWAC), pervious concrete, and aerated
concrete—have been developed for various purposes. LWAC typically comprises cement, lightweight
aggregate (LWA), water, and mineral and chemical admixtures. In general, the ranges of density and
compressive strength of LWAC are 1460–1910 kg/m3 and 36.5–60.0 MPa, respectively [1–4]. Because of
its low density and moderate strength level for structural purposes, LWAC has successfully been
applied for bridge components [5,6]. Pervious concrete, also called porous concrete, has a macro-porous
structure using gap-graded coarse aggregates without fine aggregates in the mixture [7,8]. In pervious
concrete, the coarse aggregate particles are typically coated in a thick layer of cementitious paste,
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resulting in a formation of highly interconnected macro-pore network [9]. To enhance the pore ratio
of pervious concrete, natural and artificial fibers can be used despite the reduction of strength and
freeze-thaw resistance [10]. Pervious concrete has widely been used for pavements, vegetation concrete
beds, and noise absorbing concrete [11,12]. Its ranges of porosity and compressive strength are
typically 15–25% and 22–39 MPa, respectively [12]. Aerated concrete has a large number of uniformly
distributed small pores that can be generated by adding metallic powder (e.g., aluminum and zinc)
and/or a foaming agent (e.g., glue resin and saponin) [13–15]. Because of its good heat conservation
and low density (300–1800 kg/m3), aerated concrete can be used as a high-efficiency heat-insulating
material in roofs, walls, and floors—as a form of block and panel—despite its relatively low mechanical
properties [16–18]. As various properties of lightweight cementitious materials, such as density,
compressive strength, elastic modulus, water drainage, heat conservation, and noise absorption,
are highly related to their pore characteristics, various methods for analyzing the pore structures have
been introduced [19–24].

Even though many testing methods have been utilized for analyzing the pore structures of
cementitious materials, a suitable testing method should be carefully selected by considering the
properties of testing specimens and the limitations of techniques. The most convenient and widely
used method is the water absorption test, which measures the difference between the saturated and
oven-dried masses of a testing specimen [25,26]. This test provides the total volume of water permeable
pores by filling internal pores with water. Similarly, a gas pycnometer can determine the porosity and
density of a testing sample using nearly ideal gas (e.g., helium or nitrogen) [27,28]. Although this
method limits the size of a testing specimen, due to its small chamber size, the volume of the solid phase
can be measured more accurately by detecting the pressure change caused by the gas displacement
than with the water absorption test [28]. However, neither the water saturation nor the gas pycnometer
method can provide pore characteristics, such as pore size and their spatial distribution. The mercury
intrusion porosimetry (MIP) method can evaluate various pore properties (porosity and pore size) by
measuring the volume of intruded non-wetting liquid (e.g., mercury) at different pressures [29,30].
However, the MIP method also has some drawbacks regarding the accessibility issue of mercury in the
pore throat, resulting in a true pore diameter measuring error [31,32].

As a way to make up for the weakness of the aforementioned methods, the image processing
and X-ray computed tomography (X-ray CT) can be applied for analyzing the characteristics of pores
based on two-dimensional (2D) and three-dimensional (3D) visual images of specimens, respectively.
Using a digital camera and/or a microscope, the image processing technique was conducted to
investigate the size of pores, its spatial distributions, and 2D pore ratios [33,34]. This image processing
approach generally consists of a collection of high-resolution images, a conversion of an RGB image
into a grayscale image, a determination of a threshold, and image binarization [35]. With the use
of a high-quality binary image, the detection and quantification of pores can be carried out well.
However, the difference between the porosity and 2D pore ratio obtained from the image processing
should be considered. Similarly, X-ray computed tomography (X-ray CT) is also available for pore
structure analysis based on a 3D tomographic image of a sample [36,37]. Because X-ray CT analysis
scans the entire testing specimen and virtually reconstructs actual pore structures, this method
can provide information about the internal pore microstructure, 3D pore ratio, pore size, and their
spatial distribution [38,39]. Nevertheless, this test is rather expensive for the analysis and requires
time-consuming post processing due to a large scanning data that needs to be analyzed. Despite their
drawbacks, these testing methods are beneficial for investigating the characteristics of the pore structure
based on the images. However, as a comparative analysis of different methods—conventional method,
image processing, and X-ray CT—has not been fully studied yet, further research is still needed to
select a suitable testing method for highly porous cementitious materials.

In this study, a comparative analysis that uses three different methods—conventional water
absorption test, microscopic image processing and X-ray CT analysis—was conducted for investigating
highly porous structures of cementitious materials. All 12 porous cementitious material series were
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prepared using different amounts of pore generation materials of aluminum powder and natural fibers.
To analyze the pore structures, a conventional water absorption test was first conducted in order
to obtain their water permeable porosities. In addition, their bulk specific gravities were measured.
The microscopic image processing method, which uses a local thresholding algorithm, was adopted
to characterize the pores in terms of the 2D pore ratio, the pore size, and the number of pores in a
cross-section. X-ray CT analysis was also used to provide information about the pore structures—the
3D pore ratio, the pore size, the number of pores, and their spatial distribution—on the basis of a 3D
tomographic image.

2. Materials and Mix Proportions

To fabricate highly porous cementitious materials, aluminum powder (ECKART, Hartenstein,
Germany) and natural fibers (Soo Industry, Gyeongju, Republic of Korea) were added to the mixtures.
The water-to-binder ratio (w/b) of cementitious materials was fixed at 0.3. The binders used in the
cementitious materials were CEM I 42.5 R ordinary Portland cement (OPC) (Ssangyong Cement,
Seoul, Republic of Korea) and silica fume (Elkem, Oslo, Norway). The specific gravity and Blaine
fineness of the OPC were 3160 kg/m3 and 330 m2/kg, respectively. Silica fume had a specific gravity
of 2270 kg/m3 and replaced 10 wt% of the OPC in order to control viscosity, as well as prevent
segregation. The length of the kenaf natural fibers was approximately 1 mm. These fibers consisted of
cellulose of 45–57 wt%, hemicellulose of 22 wt%, and lignin of 8–13 wt%, having a tensile strength
and Young’s modulus of 930 MPa and 53 GPa, respectively. Its specific gravity was 1800 kg/m3,
which was determined using a gas pycnometer (Micromeritics AccuPyc 1330, Norcross, GA, USA).
The amount of natural fibers used in the cementitious materials was controlled up to 5.0 wt% of
mixtures. Aluminum powder was a flake type with a 99.7% purity. Its specific gravity and covering
capacity were 2700 kg/m3 and 1100–1450 m2/kg, respectively. The size of the aluminum powder
particles ranged from 12 to 86 µm, with a mean size of 34 µm, as measured using laser diffraction
(Sympatec Helos, Clausthal-Zellerfeld, Germany). The amount of aluminum powder was controlled
up to 0.1 wt% of binders. A polycarboxylate-based superplasticizer (MasterGlenium SKY 8808,
Ludwigshafen, Germany) was added in order to enhance the workability, as well as the homogeneity
of mixtures. The dosage of superplasticizer was fixed at 2.0 wt% of binders. As provided in Table 1,
a total of 12 mixtures were fabricated following the mixing process. OPC, silica fume, and aluminum
powder (if any) were first dry mixed. Then, superplasticizer in liquid form was added to the mixing
water. Natural fibers (if any) were added to the superplasticizer-concentrated water. Subsequently,
all constituents were mixed in a planetary mixer for 10 min. The fresh mixtures were then cast into a
50 mm cube mold in order to create the specimens to be used for analyzing pore structure and density.
The samples were cured in a water chamber for 28 days at a temperature of 23 ◦C.

Table 1. Mix proportions of porous cementitious materials.

Label
Mix Proportion (g)

w/b1 Water Cement Silica Fume NF2 AP3 SP4

PCM1-1

0.3 660 2000 200

0
0

1.1
2.2

44.0

PCM1-2
PCM1-3

PCM2-1
28.6

0
1.1
2.2

PCM2-2
PCM2-3

PCM3-1
85.8

0
1.1
2.2

PCM3-2
PCM3-3

PCM4-1
143.0

0
1.1
2.2

PCM4-2
PCM4-3

w/b1: water-to-binder ratio,NF2: Natural fibers, AP3: Aluminum powder, SP4: Superplasticizer.
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3. Test Methods for Analyzing the Pore Structures

3.1. Water Absorption Test

A water absorption test was conducted to determine the water permeable porosity of cementitious
materials following ASTM (American Society for Testing and Materials) C 642. First, the oven-dried
mass (Moven) of the testing specimen was measured, which was previously dried in an oven at a
temperature of 110 ± 5 ◦C for not less than 24 h. Afterward, the saturated surface-dried mass (MSSD)
was determined by measuring the mass of the specimen that was immersed in water for 7 days
to saturate porous structure of samples. Subsequently, the water absorption capacity (Pwat) was
calculated as [25]

Pwat[%] = (MSSD −Moven)/Moven × 100 (1)

The water absorption capacity stands for the water permeable porosity of the testing sample.
Considering very low density of testing specimens, their dry bulk densities were measured following
ASTM C 1693 [40]. The dry bulk density of the specimen was equal to the oven-dried mass divided by
the volume of the sample (i.e., 125,000 mm3 in this study). Both the water permeable porosity and the
dry bulk density were determined by the average value of 6 specimens in the form of 50 mm cubes.

3.2. Microscopic Image Processing

The aims of microscopic image processing are to distinguish the cementitious matrix and pores
and to provide information about the pore size, the pore ratio, and the number of pores in a tested
cross-section. This method was performed in three parts: acquisition of microscopic image, image
binarization, and characterization of pores (see Figure 1). The cross-sections of specimens were
prepared using a cutter (Allied High Tech Products Inc PowerCut 10x, Compton, CA, USA) at the
height of approximately 25 mm from the bottom. The cross-sectional images of these samples were
collected using an optical microscope (ZEISS Axio Zoom V16 and ZEISS PlanApo Z 0.5x, Oberkochen,
Germany). It should be noted that no observable cracks were identified in microscopic images, which
indicates that the cutting process did not affect the characterization of pore in cementitious materials.
The size of the observed area via the optical microscope was a 28.64 × 35.70 mm2 rectangular region
with a 12.97 µm/pixel resolution. Through the use of a lateral light source, a shadow was created
in the pore, which enabled image processing to classify both the solid phase and the pores well.
Subsequently, the image obtained was converted into grayscale, with a brightness range from 0 to 255.
During the binarization process, the brightness of each pixel in an image was compared to a threshold.
As provided in Equation (2), the brightness of pixels that was less than the threshold was designated
as zero, while those having higher values became one—resulting in a binary image (Bimg).

Bimg(i, j) = 0 if Mimg(i, j) < t,otherwise Bimg(i, j) = 1, where 1 ≤ i ≤ a and 1 ≤ j ≤ b, (2)

where Mimg(i,j) is the pixel intensity of grayscale image, t is the brightness threshold, and a and b
are the number of pixels along the width and height. Lastly, using the binary image, the 2D pore
ratio—the ratio of the number of pixels for pores to the total number of pixels in the image—and pore
size—equivalent circular area diameter of irregularly shaped pores—were numerically calculated.
Because these values are influenced by the quality of binary image, a suitable threshold value was
carefully determined in order to obtain a reliable classification of pores and cementitious matrix.
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Figure 1. Schematic diagram for the microstructural image processing method.

The threshold value can be determined using the global and local thresholding methods. The global
method (e.g., the Otsu method) uses one threshold value for the binarization of the entire image [41,42].
Although this method is computationally simple and quick, the threshold value depends on the
operator or histogram of pixel intensity. Consequently, a poor binarization result can be obtained if the
image had a noisy or complex background [42]. On the other hand, the local thresholding method uses
the brightness of detected pixels in a neighborhood around a pixel (i.e., window) for the calculation
of the unique local threshold value. Although this local method demands more computational cost,
the local characteristics of pixels in varying background images can be identified well, including
illuminated or degraded images [43,44].

Because non-uniform illumination microscopic images—caused by the lateral light source
(see Figure 1)—were used in this study, a local thresholding method was selected. More
specifically, Sauvola’s image binarization algorithm—used for document analysis and concrete crack
identification—was adapted, as provided in Equation (3) [44,45].

TSauvola = m · (1− k× (1− s/R)) (3)

where TSauvola is threshold value, k is the sensitivity, R is the normalized standard deviation, and m
and s are the average and standard deviation of the brightness value of a pixel in a selected local
area (window), respectively. In this study, the size of the window and the sensitivity used for the
computation were user-defined values. The sensitivity value was fixed at 0.5, which showed a good
result in the previous study [44]. Although this sensitivity caused several false detections in PCM1-1
and PCM1-2, due to their rough surfaces, the errors were very small and acceptable because of their
lower porosity. The optimal window size was determined to be in the range of 10–300 pixels when
comparing changes of the total number of detected pixels for the pores. This value could reach the
plateau value, if the classification of the cementitious matrix and the pores were performed well.
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3.3. X-ray CT Analysis

X-ray CT has strong advantages for analyzing the internal structure of cementitious materials,
providing information about internal defects (i.e., pores), as well as visualized 3D anatomical
images [46–48]. 3D images from X-ray CT can be obtained through two steps: image acquisition and
reconstruction. First, a microfocus X-ray beam passes through a sample and 2D X-ray projection
images are acquired. The sample that is mounted on the stage is rotated in the 180◦–360◦ range
and additional 2D projections are obtained, typically 500–1000 images. Afterward, these projection
images are converted into a complete 3D tomographic image of the sample, through a reconstruction
process using a back-projection algorithm. Further analysis of the 3D image provides the volumetric
information of the solid phase and internal defects on the basis of 3D volumetric elements (voxels).
In the tomographic image, a denser phase has a high X-ray attenuation and is displayed as a bright
color, whereas a low-density phase—consisting of air or gas—would appear as quite dark due to little
X-ray attenuation. Typically, no special pre-processing is required for sample preparation. In a porosity
analysis using a software of VG Studio and myVGL 3.0 (Volume Graphics, Heidelberg, Germany),
the defect detection algorithm compared the potential defect with its local neighborhood. If the
appearance of a potential defect was very similar to the surrounding structure, its probability was
reduced, which started from zero. Based on preliminary tests, probability threshold of 0.5 was selected
to classify pores and cementitious matrix. The value for minimum pore size was no less than 8 voxels
edge lengths (2 × 2 × 2 voxels).

In this study, X-ray CT (Nikon Metrology XT H 320, Tokyo, Japan) was used for characterizing the
porous internal structures of cementitious materials as shown in Figure 2. A 50 mm cube specimen
was mounted on the 360◦ rotational stage and the 3D image was acquired at a 230 kV accelerating
voltage and a 300 µA current. A total of 1140 pictures were obtained from each X-ray CT analysis,
taking 354 ms for each image projection. These 2D images were converted into 3D tomographic images
consisting of voxels with an edge length of 48 µm. A total of four cementitious samples were examined
through the X-ray CT test. Their porosity and pore size results were compared to the water absorption
capacity and microscopic image processing-based analysis. Furthermore, the volume of open and
closed pores in cementitious materials can be analyzed. The open and closed pores stand for a cavity
or channel with access to an external surface and a pore not connected to the surface, respectively.
Because of these advantages of X-ray CT, this test could be applied for various purposes, such as
internal structure analysis of asphalt concrete [49] and permeability of oil-well cement [50].
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4. Experimental Results and Discussion

4.1. Density and Water Absorption Capacity

It is known that porous cementitious materials generally have a low density with a high-water
absorption capacity [37], which was also identified in this study. As shown in Figure 3, the
specimens—which incorporated aluminum powder and natural fibers—showed a decrease in the
oven-dried density and an increase in the water absorption capacity. In the PCM1 series, which contained
0–0.1 wt% of aluminum powder, the densities were drastically decreased from 1859 kg/m3 to 944 kg/m3.
The PCM2-1, PCM3-1, and PCM4-1 samples, which incorporated 1.0–5.0 wt% of natural fibers,
also showed a decrease in densities from 1797 kg/m3 to 944 kg/m3. The synergistic effect of these two
materials was also observed. For example, the PCM4-3 sample, which contained 0.1 wt% of aluminum
powder and 5.0 wt% of natural fibers, showed the lowest density of 792 kg/m3. The decrease of the
oven-dried density for cementitious materials was highly related to the reaction of aluminum powder
and the dispersion of natural fibers. More specifically, the chemical reaction of aluminum powder with
calcium hydroxide and water generated air bubbles (hydrogen gas) in the fresh state, resulting in the
formation of porous structures [51,52]. In case of natural fibers, the dispersion of fibers during the
mixing process can create entrapped air pores in the matrix phase [10,37]. Therefore, the use of these
pore generation materials was effective for making highly porous cementitious materials that have
low densities.
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Figure 3. (a) Oven-dried density and (b) water absorption capacity of the tested porous
cementitious materials.

It was also revealed that the water absorption capacities of the samples were inversely proportional
to their densities, as shown in Figure 3b. In the PCM1 series, which incorporated 0–0.1 wt% of aluminum
powder, the water permeable porosity significantly increased from 9.2% to 25.1%. The PCM2-1, PCM3-1,
and PCM4-1 samples, which contained 1.0–5.0 wt% of natural fibers, also showed an increase in the
porosity from 10.0% to 23.9%. The combination of aluminum powder and natural fibers significantly
increased the porosity of the samples. Based on this experimental work, the oven-dried density and
water absorption capacity of samples were used as references for a comparison with the results obtained
from microscopic image processing and X-ray CT analysis.

4.2. Microscopic Image Processing Analysis

Following Section 3.2, microscopic image processing was conducted in order to characterize
the porous structures of cementitious materials in terms of their 2D pore ratio, the pore size and the
number of pores. Because of the non-uniform illumination characteristics of microscopic images,
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the local thresholding method (Sauvola’s method) was applied for the image binarization. In this
section, the optimal window size for the local method was identified to obtain a high-quality binary
image. Using this binary image, the characteristics of pores were numerically calculated.

4.2.1. Image Binarization Using the Local Thresholding Method

In the analysis of microscopic image processing, a suitable user-defined parameter—window
size—for the local method was first determined to obtain high quality binary image. In Figures 4–6,
the results obtained from representative samples—the less porous PCM1-1 and the highly porous
PCM3-3—are provided in order to show the effects of different window sizes on image binarization.
First, the total number of pixels for pores in the cross-section was counted using different window sizes
of 10–300 pixels (see Figure 4). As the size of the window increased, the number of pixels for pores
also rapidly increased, showing a plateau convergence at a 50-pixel window for PCM1-1 and PCM3-3.
This result indicated that the classification of pores can be achieved well using a window size at this
convergence value. Therefore, the window sizes of 50, 100, and 200 pixels were selected to evaluate the
quality of binary images. As shown in Figure 5, the binary images for the PCM1-1 sample did not show
a big difference, regardless of the window size. On the contrary, the large window size of 200 × 200
pixels showed good binarization performance for the highly porous PCM3-3 sample (see Figure 6).
Small windows were not enough to cover several large-sized pores in the PCM3-3 sample, resulting in
a false binarization for the inside of some large pores. Hence, the 200 × 200 window size was selected
for Sauvola’s algorithm in microscopic image processing.
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Figure 4. The relationship of the number of pixels designated as pores with the window size: (a) PCM1-1
and (b) PCM3-3.
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Figure 5. PCM1-1: (a) microscopic image; (b–d) binary images using 50 × 50, 100 × 100, and 200 × 200
windows, respectively.
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4.2.2. Characteristics of Pores

Using binary images, the characteristics of pores can be identified in terms of the 2D pore ratio,
the pore size, and the number of pores, as provided in Table 2. In the PCM1 series, the 2D pore ratio
increased from 4.0% to 43.9% with aluminum powder of 0–0.1 wt%. The PCM2-1, PCM3-1, and PCM4-1
samples, containing natural fibers of 1.0–5.0 wt%, showed a 2D pore ratio of 6.7–26.5%. Here, PCM3-3
showed the highest 2D pore ratio of 54.2%, using the combination of aluminum powder of 0.1 wt%
and natural fibers of 3.0 wt%.

Table 2. Microscopic image processing-based pore analysis using the local method.

Measurement Label
Aluminum Powder

0% 0.05% 0.10%

2D Pore Ratio

PCM1 4.0% 35.6% 43.9%
PCM2 (NF 1%) 6.7% 36.9% 49.6%
PCM3 (NF 3%) 19.3% 34.7% 54.2%
PCM4 (NF 5%) 26.5% 48.9% 51.1%

Mean Pore Size
(µm)

PCM1 103.2 167.3 200.9
PCM2 (NF 1%) 91.7 161.0 242.1
PCM3 (NF 3%) 101.7 147.4 212.9
PCM4 (NF 5%) 141.2 173.3 215.0

Total Number of
Pores

PCM1 3568 10,317 8397
PCM2 (NF 1%) 8234 11,669 4914
PCM3 (NF 3%) 18,421 13,384 5282
PCM4 (NF 5%) 10,513 7984 6023

In the analysis of the mean pore size, it was revealed that the mean pore size was increased
with a dosage of 0–0.1 wt% aluminum powder. The mean pore size of the PCM1 series ranged from
103.2 µm for PCM1-1 to 200.9 µm for PCM1-3 because of pore generation resulting from the aluminum
powder reaction. In addition, the increase in the mean pore size was observed for PCM2-1, PCM3-1,
and PCM4-1 as the amount of natural fibers increased. The relationship between the 2D pore ratio and
the mean pore diameter was linearly proportional for all 12 samples, as shown in Figure 7.

The number of pores did not proportionally increase as the amount of aluminum powder and
natural fibers increased. This is because the number of pores for a given observed area was decreased
as the size of pores increased for highly porous cementitious materials. Meanwhile, PCM1-1, PCM2-1,
and PCM3-1 samples having low 2D pore ratio and relatively small mean pore size showed an increase
of the number of pores as the amount of natural fiber increased.
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Figure 7. The relationship of the 2D pore ratio with the mean pore diameter obtained using the local
thresholding image processing method.

4.3. X-ray CT Analysis

X-ray CT analysis provided cross-sectional and 3D tomographic images of the porous cementitious
materials, as well as information about the 3D pore ratio, the pore size, and the number of pores.
In order to show the effects of aluminum powder and natural fibers, four samples—PCM1-1, PCM 1-3,
PCM3-1, and PCM3-3—were selected for the X-ray CT analysis. Figure 8 shows the cross-sectional
images of PCM1-1 and PCM3-3. As discussed in Section 4.2, the PCM1-1 control sample had a less
porous structure in comparison to the PCM3-3, which incorporated aluminum powder of 0.1 wt% and
natural fiber of 3.0 wt%. In Figure 8, the colors of open and closed pores are designated as black and
yellow, respectively.
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Figure 8. Cross-sectional images of (a) PCM1-1 and (b) PCM3-3 from the X-ray CT analysis.

Based on the volumes of the solid phase and the closed pores, the volume of the open pores,
as well as the porosity of the samples, can be calculated. It was assumed that the porous concrete
specimen consisted of the cement matrix phase, as well as open and closed pores. Then, the volume
of the open pores was calculated by subtracting the volumes of the solid phase and the closed pores
from the sample volume. The volume of the 50 mm cube specimen was assumed to be 125,000 mm3.
The volumes of the solid phase and the open and closed pores were provided in Table 3. The total 3D
pore ratios of the PCM1-1, PCM1-3, PCM3-1, and PCM3-3 samples were 8.4%, 21.3%, 9.3%, and 23.3%,
respectively. The difference between the water permeable porosity, the 2D pore ratio, and the 3D
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pore ratio is discussed in Section 4.4. Their mean pore sizes were 347.2 µm, 302.2 µm, 335.7 µm,
and 360.4 µm, respectively, where the high values were caused by the limited voxel resolution of
X-ray CT. The total numbers of closed pores for PCM1-1, PCM1-3, PCM3-1, and PCM3-3 were 194,425,
212,650, 133,471, and 272,721, respectively.

Table 3. X-ray CT-based analysis for the porous structures of PCM1-1, PCM1-3, PCM3-1, and PCM3-3.

Label
Volume (mm3) 3D Pore Ratio

(Open/Closed)
Mean Pore Size

(µm)Solid Phase Closed Pore Open Pore

PCM1-1 114,451 5616 4933 8.4%
(3.9%/4.5%) 3472

PCM1-3 98,395 21,443 5162 21.3%
(4.1%/17.2%) 3022

PCM3-1 113,337 7325 4339 9.3%
(3.5%/5.9%) 3357

PCM3-3 95,860 18,312 9528 23.3%
(8.7%/14.6%) 3604

X-ray CT analysis can be applied for evaluating the distribution of the pore ratio based on the image
processing technique [53]. Here, the cross-sectional images obtained from X-ray CT were collected
along the height direction at 1 mm intervals. As shown in Figure 9, the 2D pore ratios of PCM1-1,
PCM1-3, PCM3-1, and PCM3-3 were 1.5–3.3%, 4.7–6.2%, 28.9–32.4%, and 29.5–37.8%, respectively.
This result revealed that the PCM1-1, PCM1-3, and PCM3-1 samples had homogeneous distributions
of the pore ratio along the height direction. In case of the PCM3-3 sample, which incorporated both
aluminum powder and natural fibers, the pore ratio was inconsistent along the height. This is because
some natural fibers agglomerated on the top surface, resulting in the formation of a fiber ball, as well
as in the reduction of the pore ratio in the matrix [54].
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Figure 9. Distribution of the 2D pore ratios obtained through X-ray CT analysis along the
height direction.

The difference between the average 2D pore ratio and 3D pore ratio obtained from the X-ray CT
were identified. The average 2D pore ratios were 2.2%, 31.0%, 5.4%, and 35.2% for PCM1-1, PCM1-3,
PCM3-1, and PCM3-3, respectively. These results were different from their 3D pore ratios of 8.4%,
21.3%, 9.3%, and 23.3%, respectively. This indicated that the less porous sample had a relatively low
2D pore ratio, while the highly porous one had a high 2D pore ratio. This was caused by the different
calculation for area of circle and volume of sphere. A detailed discussion is provided in Section 4.4.

As provided in this experimental result, X-ray CT analysis was beneficial for analyzing various
characteristics of pores, such as open and closed pores, pore distribution in 3D space, and 3D
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tomographic images. Furthermore, the homogeneous pore distribution can be evaluated using the
cross-sectional image processing. These results are highly related to the unique properties of porous
cementitious materials, such as heat insulation, sound absorption, and water drainage. Consequently,
more diverse applications of the X-ray CT method are expected in the field of construction materials.

4.4. Comparative Analysis

In this section, the characteristics of the porous structures obtained from the water absorption test,
microscopic image processing, and X-ray CT analysis were compared. First, the relationships of the
oven-dried densities and porosities determined by these different testing methods were investigated,
as shown in Figure 10. The regression curves for the water permeable porosity and the 3D pore ratio
showed similar trends. This is because both methods determined the porosities of the specimens by
considering all 3D pores in them. Furthermore, testing four specimens for X-ray CT analysis—covering
a wide range of porosities and densities—was adequate to estimate the trend for all 12 samples.
It should be noted that the difference of the 3D pore ratio and the water permeable porosity for the
highly porous samples might be attributed by the classification errors of the cementitious matrix and
the pores due to the limited voxel resolution of X-ray CT.
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Figure 10. The relationship of the oven-dried density with the porosities obtained using the water
absorption test, microscopic image processing, and X-ray CT analysis.

On the other hand, the results from microscopic image processing showed a relatively low porosity
for the high-density sample and a high porosity for the low density one. The low 2D pore ratio might
be attributed to small-sized pores, which were quite bright and designated as matrix due to shallow
depths. The high 2D pore ratio obtained from microscopic image processing was caused by different
calculations. Let us assume that a pore with a 1 mm radius was located inside a cube that is 2 mm in
length. The 3D pore ratio would be 0.52 and the 2D pore ratio, at the center, would be 0.79. Because
the cross-sections of the highly porous samples were almost fully filled with pores, the 2D pore ratio
was always higher than the water permeable porosity and the 3D pore ratio obtained using X-ray
CT. Furthermore, closed pores could represent a portion of the pores in a high-resolution microscopic
image—and they cannot be saturated by water. For these reasons, there was a difference between the
results obtained from the 3D-based testing methods—water absorption test and X-ray CT—and the
2D-based image processing. Hence, considering the different characteristics of each testing method,
their complementary uses are recommended for analyzing the porous structures of cementitious
materials well.
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5. Conclusions

This experimental study conducts a comparative analysis for characterizing the pores in
cementitious materials by adopting microscopic image processing and X-ray CT. All 12 porous
cementitious samples were fabricated using various dosages of aluminum powder and natural fibers.
The porous structures were evaluated in terms of the pore size, the number of pores, the spatial
distribution of pores along the height, and open and closed pores. The key observations and findings
of this study are summarized as follows:

1. In microscopic image processing, the local thresholding method was adopted by considering
non-uniform illumination images caused by a lateral light source. As a preliminary study,
user-defined parameters of window size and sensitivity were carefully selected as 200 × 200 and
0.5, respectively. Consequently, microscopic image processing was successfully performed and
various characteristics of pores were provided using high quality binary images. Furthermore,
the linear relationship between the 2D pore ratio and the mean pore diameter was identified.

2. X-ray CT analysis was conducted for the representative samples with a wide range of porosities.
This 3D tomographic image-based analysis provided various unique characteristics of pores,
such as open and closed pores and the distribution of pores in the 3D space. However,
a high-resolution 3D tomographic image is required in order to obtain a more accurate analysis
on the porous structures.

3. To compare the properties of porosity obtained using different testing methods, the relationship
of porosity with oven-dried density was investigated. The regression curves obtained for the
water permeable porosity and the 3D pore ratio using X-ray CT showed similar trends. On the
other hand, the results obtained using microscopic image processing provided a low 2D pore ratio
for dense materials and a high 2D pore ratio for porous materials due to both the calculations
used and the portion of closed pores that the samples contained.

As technology advances, it is expected that a high-resolution 3D tomographic image from X-ray
CT would provide a more accurate analysis for the characteristics of porous cementitious materials.
Furthermore, it might also be beneficial for investigating the relationships of porous cementitious
materials with their unique properties, such as heat conservation, noise absorption, and water drainage.
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