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Abstract: New materials, such as polymer inclusion membranes, can be used for water and
wastewater treatment. In this paper, the selective transport of silver(I) and zinc(II) ions from nitrate
solutions through the polymer inclusion membranes (PIMs), which consist of cellulose triacetate as
a polymeric support, o-nitrophenyl pentyl ether as a plasticizer, and either 1-hexylimidazole (1) or
1-hexyl-2-methylimidazole (2) as an ion carrier, is studied. Both Zn(II) and Ag(I) model solutions (CM

= 0.001 M, pH = 6.5), as well as the solutions after the leaching of a spent battery with a silver–zinc
cell (silver-oxide battery), are tested. The results show that Zn(II) ions are effectively transported
through PIMs containing either carrier, whereas Ag(I) is more easily transported through PIMs doped
with (1). In the case of the leaching solution after 24 h transport, the recovery coefficients of Ag(I) and
Zn(II) for PIMs doped with (1) are 86% and 90%, respectively, and for PIMs doped with (2), 47% and
94%, respectively. The influence of basicity and structure of carrier molecules on transport kinetics is
discussed as well. PIMs are characterized by using an atomic force microscopy (AFM) technique.
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1. Introduction

The world’s silver reserves are estimated at approximately 540,000 Mg. Annually, approximately
22,000 Mg of this metal is extracted from ore. These data show that in approximately 25 years,
silver reserves may be depleted. Therefore, the recovery of silver from various silver-containing
waste materials, such as printed circuit boards, electronic devices, catalysts, and silver–zinc batteries,
is necessary. Over the last 10 years, average annual silver recovery has constituted only 6600 Mg of
silver, which is approximately 22% of the annual supply of this raw material [1]. This level varies
greatly from country to country. For instance, in Sweden, Boliden produces approximately 150 Mg of
silver from electronic waste (25% of its production) annually, whereas in the USA in 2015, only 21 Mg
out of every 186 Mg of consumed silver was recycled, i.e., approximately 11%. The processing of waste
materials is important as the largest producers obtain only 252 g of silver on average from 1 Mg of ore,
and Boliden obtains 1 kg of silver on average from 1 Mg of waste mobile phones. Unfortunately, not
all waste materials containing silver, including silver–zinc batteries, containing approximately 31%
silver, are used efficiently. Annually, 1.5 billion silver–zinc batteries are produced, consuming almost
550 Mg of silver alone. Silver–zinc battery life does not exceed two years, so batteries become waste
relatively quickly, and they need to be recycled for the recovery of silver. The level of recycling for this
type of material is low. For instance, in Canada, only 2.2% of waste Zn–Ag batteries are recycled [2].
Therefore, effective waste management technologies are still being sought for this waste [3–5].
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A number of reports on the recovery of silver from waste solutions (wastewater) containing silver
can be found in the literature. Electrochemical methods [6], electro-flotation process [7], ion flotation [8,9],
ion exchange [10], silica gel sorption on activated organosulfur compounds [11], chitosan-based
hydrogel sorption [12], or adsorption [13,14] can be used to recover silver. Zinc can be also effectively
recovered from waste materials by hydrometallurgical processes [15–21]. In hydrometallurgical processes,
solid waste-containing metals, including silver and zinc, are comminuted and then leached [22,23].
For leaching silver, nitric acid is most commonly used [24]. Additionally, attempts were made to leach
waste with thiourea and its derivatives [25]. The solutions obtained as a result of leaching are subjected to
separation processes, which may include separation with liquid membranes [26–34]. Various carriers are
used in membrane processes, e.g., thiourea derivatives [26,27], phosphoric acid derivatives [28,29],
calixpyrroles [30,31], crown ethers [32–36] or calixarene [37]. Currently, polymer membranes are the
most popular for membrane processes, which are increasingly used in the separation of various metal
ions [38–40].

1-alkylimidazole (alkyl—from hexyl to decyl) were used for Cu separation from a Cu–Zn–Co–Ni
mixture from nitrate [41,42] or chloride solutions [43], and for Zn separation from Zn–Co–Ni [44],
Zn–Cd–Ni [45], and Zn–Mn mixtures [46]. 1-vinylimidazole was used to separate Cu(II) and Fe(III) ions
during transport across polyvinyl acetate membranes [47]. 1-alkyl-2-methylimidazole (alkyl—from
hexyl to octyl, and decyl) was used for Cu separation from a Cu–Zn–Co–Ni mixture [42,48–50], as well
for Zn separation from a Zn–Cd–Ni mixture [45]. Separation of Zn from a Zn–Cd [51] or a Zn–Mn [45]
mixture is also possible using alkyl imidazole derivatives.

The aim of this study was to examine the possibility of separation and recovery of silver(I)
and zinc(II) from solutions after leaching of waste silver–zinc batteries in the process of transport
through polymer inclusion membranes (PIMs). Alkyl imidazole derivatives of different structure, i.e.,
1-hexylimidazole and 1-hexyl-2-methylimidazole, were used as ion carriers.

2. Materials and Methods

2.1. Reagents

Theinorganicchemicals, i.e., silver(I)andzinc(II)nitrates, 65%HNO3 solution, andtetramethylammonium
hydroxide were of analytical grade and were purchased from POCh (Gliwice, Poland). The organic reagents,
i.e., cellulose triacetate (CTA), o-nitrophenyl pentyl ether (o-NPPE), and dichloromethane were also of
analytical grade, were purchased from Fluka (Busch, Switzerland), and were used without further purification.
The 1-hexylimidazole (1) and 1-hexyl-2-methylimidazole (2) pictured in Figure 1 were synthesized
according to the procedure described in [52].
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Figure 1. The chemical formula of 1-alkyl-imidazoles (carriers): (a) 1-hexylimidazole (1) b.p.
134–136 ◦C/12 mmHg; (b) 1-hexyl-2-methylimidazole (2) b.p. 130–131 ◦C/14 mmHg.

The possibility of the separation of zinc and silver was tested from model solutions containing
0.001 mol/dm3 of the tested metal ions. Model solutions of each metal ion were prepared by dissolving
appropriate amounts of nitrates in deionized water. All aqueous solutions were prepared using
analytical reagent-grade chemicals and deionized water (conductivity = 0.10 µS/cm). Silver and zinc
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contents were determined using an atomic absorption spectroscopy (AAS) method (AAS Spectrometer,
Solaar 939, Unicam, Geleen, Netherlands).

The spent silver-oxide (Zn–Ag2O) button cells (Figure 2) were obtained from a local market
(watchmaking workshops). After mechanical comminution, the silver-oxide button cells (containing
10% zinc, 31% silver, 0.5% mercury, and other materials) were leached for 6 h with 2 mol/dm3 of HNO3

solution at a temperature of 70 ◦C. Under these conditions, 87.1% silver and 95.0% zinc were leached
from the powder. The leached solution was then boiled with a small amount of activated carbon to
remove any organic material. The obtained solution was filtered, and the levels of silver and zinc were
determined using the AAS method. The Zn(II) and Ag(I) content was 9.5% and 27%, respectively.
For transport tests, the solution was diluted.
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Figure 2. The button cell batteries (a) and used battery powder (b).

2.2. Polymer Inclusion Membrane

The polymer inclusion membranes were obtained and prepared for metal ion transport according
to the procedure described in previous studies [21,41,46,48–50,53]. The composition of the membranes
and their thicknesses are given in Table 1.

Table 1. The composition of the membrane used.

Support Plasticizer Carrier

cellulose triacetate
(CTA)

o-nitrophenyl pentyl ether
(o-NPPE)

1-hexylimidazole (1) or
1-hexyl-2-methylimidazole (2)

Quantitative composition:
2.6 cm3 o-NPPE/1 g CTA and 1.0 mol/dm3 carriers (calculated on plasticizer)
Thickness: 28–31 µm (standard deviation below 1%)

2.3. Transport Studies

Transport experiments were carried out at the temperature of 20 ± 0.2 ◦C, according to the procedure
described in previous papers [41,43,46,48–50,53,54]. The feed and receiving aqueous phases were an
aqueous solution with pH = 6.5 (tetramethylammonium hydroxide) and 0.01 M HNO3, respectively.
Changes in metal concentration in both phases were measured at appropriate time intervals.

3. Results

3.1. Characteristic of Membranes

Surface PIM characterization was performed by atomic force microscopy (AFM) [21,41,43,46,53–55].
An AFM image of the PIMs doped with (1) or (2) in two- and three-dimensional forms is shown
in Figure 3.
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Figure 3. Atomic force microscopy (AFM) images (2D and 3D) of polymer inclusion membranes (PIMs)
with alkylimidazol. (a,b) 1-hexylimidazole (1), (c,d) 1-hexyl-2-methylimidazole (2).

The darker areas in the AFM images (Figure 3) show elongated pores (cavity channels), which
may indicate the crystallization of carrier molecules inside the CTA. The same effect was observed by
Gherrou et al. [32].

Based on the membrane surface analysis (NanoScope v. 5.12 program, Park Systems Europe
GmbH, Mannheim, Germany), the roughness (Rq, nm) and the porosity (ε, [%]) were determined,
which are shown in Table 2 with the tortuosity (τ), determined from the dependence (τ = 1 − ln ε),
as developed by Wolf and Strieder [56].

Table 2. AFM characterization parameters for PIM doped with 1-alkyl-imidazole.

Carrier in the CTA-o-NPPE
Membrane Effective Pore Size, µm Tortuosity Roughness (Rq), nm

1-hexylimidazole (1) 0.050 ± 0.002 2.34 5.70 ± 0.05
1-hexyl-2-methylimidazole (2) 0.053 ± 0.002 2.37 6.20 ± 0.05

The roughness, the effective size of pores, and the tortuosity have higher values for membranes
containing (2) as the carrier. The roughness of the obtained membranes was lower than the roughness of
the CTA membrane obtained by Tor et al., which was 14 nm [57]. The microstructure of the membrane
(roughness [42,57,58], porosity [32,59], and tortuosity [56]) has an impact on the transport.
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3.2. Transport of Zn(II) and Ag(I) Ions across PIMs from Zn–Ag Model Solution

Danesi [60] described the kinetics of transport via PIMs as a first-order process in relation to
the metal ion concentration. Based on analytical data, the values of the permeability coefficient (P),
initial flux (Jo), selectivity coefficient (S), and recovery coefficient (RF) were calculated on the basis of
relationships described in our earlier works [21,46]. All values given are mean values of three replicates
with a standard deviation of 5%.

The transport of Zn(II) and Ag(I) ions from equimolar nitrate solutions (pH = 6.5) through PIMs
doped with (1) or (2) is discussed below. Two-component Zn–Ag model solutions containing metal
ions at a concentration of 0.001 mol/dm3 were prepared for this study. The changes in Ag(I) and Zn(II)
ions concentration during transport are presented in Figure 4.
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Figure 4. The changes of Zn(II) (�, �) and Ag(I) (N, ∆) ions concentration over time during transport
across PIMs with (a) (�, N) 1-hexylifiguremidazole (1) or (b) (�, ∆) 1-hexyl-2-methylimidazole (2).

To calculate the value of the rate constant (k) for each membrane, relationships ln(c/co) = f(t) were
plotted (Figure 5).
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Figure 5. The relation of ln(c/co) versus time for Zn(II) (�, �) and Ag(I) (N, ∆) transport across PIMs
with (a) (�, N) 1-hexylimidazole (1) or (b) (�, ∆) 1-hexyl-2-methylimidazole (2).

In the case of the tested membranes, the functions ln(c/co) = f(t) are rectilinear (the correlation
coefficient (R2) ranging from 0.9817 to 0.9950), which confirms Danesi’s transport model [60].
The transport rate of metal ions decreased in the following order: Zn(II) > Ag(I), and though
the transport rates of Zn(II) and Ag(I) ions through PIMs with (1) are similar, Ag(I) ions are much more
slowly transported through PIMs doped with (2).
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The values of parameters characterizing transport (initial flux values (J0) and selectivity coefficients
SZn(II)/Ag(I)) are shown in Table 3.

Table 3. The values of parameters characterizing Zn(II) and Ag(I) transport across PIM doped with
alkylimidazole; membrane: pH of the feed phase was 6.5, receiving phase was 0.01 M HNO3.

Carrier Metal Ions Initial Flux J0,
µmol/m2

·s
Selectivity Coefficients

SZn(II)/Ag(I)

1 Zn(II) 2.02 Zn(II) > Ag(I)
Ag(I) 1.46 1.38

2 Zn(II) 2.09 Zn(II) > Ag(I)
Ag(I) 0.48 4.35

As indicated by the data shown in Table 3, for all investigated PIMs, the initial flux value for the
transport of Zn(II) ions is higher than for Ag(I) ions and achieves the highest value for (2). In the case
of a PIM doped with (1), both ions are transported and the Zn(II)/Ag(I) selectivity coefficient (S) has a
lower value than (2), for which the coefficient is above four.

The literature [61–64] shows that the size and position of the alkyl group in alkylimidazole
molecules affects both their acid-base and complex-forming properties. The stability constant values of
Zn(II) and Ag(I) [62–64] complexes with the investigated carriers are summarized in Table 4.

Table 4. The dissociation constants (pKa) of 1-hexylimidazole (1) and 1-hexyl-2-methylimidazole (2)
and the stability constants (log β) their complexes with Zn(II) and Ag(I) ions.

Carrier pKa [56] Metal Ions log β

1 7.30
Zn(II) 5.87 [62]
Ag(I) 6.33 [63]

2 8.32
Zn(II) 5.80 [64]
Ag(I) 7.14 [63]

Table 4 shows that the basicity of (2) is an order of magnitude higher than the basicity of
1-hexylimidazole (1). Complexes with Zn(II) ions have similar stability for (1) and (2). The stability of
Ag(I) complexes is an order of magnitude higher for (2) than for (1). These highly complex-forming
properties enable the use of (1) and (2) as effective carriers in PIM transport processes, and the difference
in the stability of complexes forming in the membrane can be the basis for the separation of Ag(I) and
Zn(II) ions.

The initial fluxes of Zn(II) ions are comparable in both carriers (Table 3), whereas the initial
flux value for Ag(I) is much higher for (1) than for (2). The Zn/Ag selectivity coefficient (S) for (2) is
much higher than for (1). The reason for this difference is the steric effect, resulting from the presence
of a methyl substituent at position 2 in (2) (Figure 1). It hinders the formation of complexes with
ions of many metals [46,49,53,54], and with Ag(I) ions in particular. The impact of the steric effect
depends on the structure of the metal ion coordination sphere. In the case of zinc ions, tetrahedral
complexes are formed next to octahedral complexes, facilitating the transport of Zn(II) ions through
the membrane [46,49,53,54]. A similar phenomenon was observed in the case of Zn(II) separation from
Zn–Cd–Co–Ni mixtures [65], Zn-Cd mixtures [51], Zn–Cd–Ni mixtures [45], and Zn–Mn mixtures [46],
as well as zinc recovery from metallurgical waste [66] or galvanic wastewater [53].

3.3. Recovery of Metal

The recovery coefficients (RF) of Zn(II) and Ag(I) ions as a result of transport by PIMs doped with
(1) or (2) from their equimolar nitrate solutions into HNO3 solutions are shown in Table 5.
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Table 5. The recovery coefficients (RF) of Zn(II) and Ag(I) ions from feed phase after 24 h transport
across PIMs doped 1-hexylimidazole (1) or 1-hexyl-2-methylimidazole (2); conditions as in Table 2.

Carrier Metal Ions RF, %

1 Zn(II) 92
Ag(I) 90

2 Zn(II) 94
Ag(I) 51

In the case of (1), high and comparable recovery coefficients were obtained after 24 h transport,
whereas in the case of (2), zinc recovery was very high (94%), but only 51% of the silver was recovered.

3.4. Transport of Zn(II) and Ag(I) Ions across PIMs from the Ag–Zn Battery Leaching Solution

The next step was the separation of Zn–Ag from the solution after leaching a battery with a
silver–zinc cell. The concentration of silver(I) and zinc(II) ions in the solution was 0.003 mol/dm3 and
0.015 mol/dm3, respectively. In Figure 6, kinetic curves for transport of Ag(I) and Zn(II) ions from
solutions after leaching the Zn–Ag2O battery are shown.
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Figure 6. The relation of ln(c/co) versus time from the leaching solution for Zn(II) (�, �) and Ag(I) (N, ∆)
transport across PIMs with (a) (�, N) 1-hexylimidazole (1) or (b) (�, ∆) 1-hexyl-2-methylimidazole (2).

Figure 6 shows that ln(c/co) dependencies as a function of time are linear. Hence, the transport
of Ag(I) and Zn(II) ions through PIMs using (1) or (2), according to the model given by Danesi [60],
can be described by the first-order kinetics in terms of the transported ions. The values of initial fluxes
for the transport of metal ions from the solution after leaching waste batteries, a selectivity coefficient,
and a degree of separation are shown in Table 6.

Table 6. Initial fluxes (J0), selectivity coefficients (S), and recovery coefficients (RF) of Zn(II) and Ag(I) ions from
feed phase after 24 h transport across PIMs doped with 1-hexylimidazole (1) or 1-hexyl-2-methylimidazole
(2); feed phase: the leaching solution (pH = 6.5), receiving phase: 0.01 M HNO3.

Carrier Metal Ions J0, µmol/m2
·s SZn(II)/Ag(I) RF, %

1 Zn(II) 3.67
1.13

90
Ag(I) 3.24 86

2 Zn(II) 3.98
3.46

94
Ag(I) 1.15 47
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The initial flux, shown in Table 6, for Ag(I) ion transport through the polymer membranes
containing (1) was higher than in the case of membranes containing (2). The initial flux for Zn(II) ion
transport through the polymer membranes containing (2) was higher than in the case of membranes
containing (1). The partition coefficients of Zn(II)/Ag(I) ions, using (1) or (2), were 1.13 and 3.46,
respectively. The high recovery of zinc(II) (90%) and silver(I) (86%) was obtained as a result of the
transport through membrane with (1). In the case of membrane with (2), the recovery of zinc(II) and
silver(I) were 94% and 47%, respectively.

Comparing the data from Tables 5 and 6, it can be concluded that the results obtained for model
and true solutions are comparable.

4. Conclusions

The polymer inclusion membranes can be used due to their properties and long-term stability for
water and wastewater treatment. The use of these polymer membranes containing 1-hexylimidazole
(1) or 1-hexyl-2-methylimidazole (2) allows the separation of Ag(I) and Zn(II) ions in the transport
process from both model and real solutions. In the case of PIMs with (1), both ions were transported
and the Zn(II)/Ag(I) selectivity coefficient was not high. In the case of PIMs with (2), Zn(II) ions were
transported better than Ag(I) ions, so the selectivity coefficient was above four. In the case of PIMs
doped with (1), the recovery of both ions was high, both in the model solution and in the solution
after leaching silver-oxide waste batteries. For PIMs doped with (2), the recovery of Zn(II) was almost
double that of Ag(I), both in the model and real solutions. To separate Zn(II) and Ag(I) using a
membrane technique, a two-stage process should be used: firstly, Zn(II) should be recovered using
PIMs doped with (2); secondly, PIMs doped with (1) should be used to recover Ag(I).
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