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Abstract: Alpha-calcium sulfate hemihydrate (α-HH) has been used effectively in grafting through
its desired features to support bone regeneration. In recent years, many synthetic methods have been
proposed. Among them, the autoclave method for manufacturing α-HH is best suited for cost-savings
due to its simple operation and limited use of additives. Despite these advantages, the synthesis of
surgical grade products without the use of any additives has not yet been clearly discussed. In this
study, surgical grade α-HH was successfully produced from calcium sulfate dihydrate (DH) using
the autoclave method at an elevated temperature and pressure. The synthesized powder had a
high purity of about 98.62% α-HH with a prismatic morphology (20.96 ± 8.83 µm in length and
1.30 ± 0.71 µm in diameter). The screening tests, in simulated body fluid (SBF) solution, for the
product properties showed no bioactivity, and fast degradation accompanied by a slight decrease in
pH. The lactate dehydrogenase (LDH) assay showed good biocompatibility of the material, however,
its potential for cytotoxicity was also observed in NIH 3T3 cells. Briefly, despite some unfavorable
properties, the autoclave-synthesized α-HH is a promising bone graft substitute that can be applied
in orthopedic and maxillofacial surgeries.

Keywords: α-calcium sulfate hemihydrate (CaSO4·0.5H2O); autoclave method; surgical grade;
in vitro biocompatibility; cytotoxicity

1. Introduction

Bone regeneration, or fracture healing, is a fascinating process in which bone is able to
self-regenerate and reach its initial function without leaving any types of scar tissue [1]. Despite its
potential for robust healing, there are conditions in which bone fails to heal leading to delayed or
nonunions as systemic bone loss (i.e., osteoporosis and osteopenia) and large bone defects due to trauma
or cancer [2]. This is a substantial medical issue because treating such conditions remains a challenging
clinical scenario for the treating physician, and especially a growing financial burden for patients.
Although many efforts have been made for bone reconstruction, they all have specific indications
and limitations. Established methods are bone transport distraction osteogenesis, or bone grafting,
including autografts, allografts, xenografts, and synthetic substitutes [3,4]. Autografts are the most
effective bone graft materials because they contain live cellular component. However, the operative
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time of autografts and the donor site morbidity increase due to the harvesting of a graft from the
patient’s own body [5]. Thus, the introduction of alternative sources is necessary. In particular, the use
of synthetic bone substitutes is advantageous because they help avoid the problems of finding suitable
bone from within the body (autografts) and the infective risks associated with the use of human cadaver
materials (allografts) or other animal tissue (xenografts) [5,6]. Calcium sulfate (CS) is the simplest
bone substitute and has been widely recognized as a well-tolerated and readily available material
with the most affordable price and prolonged history of clinical use for grafting [6,7]. Calcium sulfate
benefits from a crystalline structure and biodegradation to support space for cell growth and increases
extracellular calcium ions [1,4]. Thus, it promotes osteoconduction, regeneration, and hemostasis when
placed in surgical/periodontal bone defects, where it resorbs the blood proteins to start the intrinsic
coagulation pathway, and then is fully absorbed and leaves behind a calcium phosphate lattice [8,9].
Furthermore, CS seems to stimulate angiogenesis, i.e., the formation of new blood vessels, leading to
improved osteogenic processes [6]. Calcium sulfate exists in the following three crystalline phases:
dihydrate (DH, CaSO4·2H2O), hemihydrate (HH, CaSO4·0.5H2O) and anhydrite (AH, CaSO4). In terms
of hemihydrate, there are two distinction structure, i.e., α and β [10,11]. Among all the polymorphs of
CS, so far, α-calcium sulfate hemihydrate (α-HH) is studied the most for medical applications because
of its proper mechanical properties [7,12]. The manipulation of α-HH as bone grafts has long been
known and used, with proven efficacy in patients [13–15]. It is easily molded and sterilizable with
gamma radiation, before use in surgical procedure. Accordingly, using α-HH could also cut down on
handling costs, giving patients more opportunities for proper treatment.

In nature, calcium sulfate hemihydrate is rare but dihydrate is the most abundant sulfate mineral
in the Earth’s crust [12]. Thus, it is profitable to synthesize α-HH from dihydrate in order to reduce
the therapeutic expenditure for patients in bone grafting. Various methods for producing α-HH
have been reported, namely: (i) autoclave method, (ii) oxidation process, (iii) salt solution method,
(iv) electrochemical deposition, (v) microemulsion method, and (vi) microwave–assisted route [16–20].
The autoclave method is the only method, so far, that has been employed to produce α-HH from
dihydrate (DH) for large quantity synthesis due to its simple operation [11,17]. In addition, for
other methods, additives (salts, acids, organic solvents, and surfactants, etc.) are essential to meet
the conditions for the phase transition or to act as modifiers for homogeneous crystal morphology.
Consequently, these chemicals can be integrated into α-HH crystals during the synthetic process.
When applied, the human body can produce unwanted immune reactions with such impurities, and
thus new FDA approval criteria are required [21]. The first commercial processes for α-HH production
were used in building construction in Germany, Japan, and America [16,22]. As a traditional method
used in industry, the production of α-HH by autoclaving has long been known [17], however, the
output of high purity for medical application, especially when not adding any additives in processing,
has hardly been studied.

With the focus of reducing expenses and associated clinical risks with bone treatments, the present
study provides a one-step synthetic process of α-HH from dihydrate. The synthesized α-HH was
obtained at the surgical grade and minimized potential risks from additives. For additional information
on the biological properties, preliminary assessment in simulated body fluid (SBF) was also carried
out. A cytotoxicity assay was used to investigate the potential toxic effects of α-HH, particularly in the
form of calcium sulfate particles, which can exist clinically in patients.

2. Materials and Methods

2.1. Dehydration Process into Hemihydrate in Production

Calcium sulfate dihydrate powder (98%; Acros Organics–Thermo Fisher Scientific Inc., Morris
Plains, NJ, USA) was used as a precursor in this study. Firstly, 5 g CaSO4·2H2O was added into a glass
laboratory bottle containing 200 mL of distilled water and stirred at a speed of 600 rpm for 15 min.
Then, it was brought to synthetic conditions at 140 ◦C, and pressure of 2.7 MPa for 4 h in an autoclave.
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After the reaction ended, the suspension was immediately filtered and rinsed five times with boiling
distilled water. Finally, an acetone washing step was employed to remove water followed by drying at
55 ◦C, for 16 h, to remove acetone. The synthesized powder was preserved in a dark glass container at
room temperature for study.

2.2. Hydration Process into Dihydrate in Usage

The synthesized powder was mixed with deionized water with a liquid to powder (L/P) ratio
of 0.8 mL/g. The mixture was stirred to form homogeneous paste, then, injected into polystyrene
molds (14 mm diameter × 4 mm thickness) and stored in 65% humidity at 37 ◦C for 24 h. The formed
disc-shaped samples corresponding to the usable form of α-HH, also known as calcium sulfate cements,
were characterized and evaluated for their bioproperties.

2.3. In Vitro Preliminary Assessment in SBF

The simulated body fluid (SBF) is an inorganic solution with ion concentrations similar to human
blood plasma. SBF solution has been the best solution, so far, to check the in vitro bone bioactivity
through the apatite-forming ability of implant surfaces intended to come into direct bone contact [23,24].
Apatite is chemically similar to the main inorganic component of mammalian bone tissue. It is one of
the few materials that is classified as bioactive material, meaning that it supports bone ingrowth and
osseointegration when being implanted into a living body [25]. Increased biological activity leads to
apatite forming on the material surface in a shorter time.

The Tris-HCl-buffered SBF solution of 27 mM HCO3− (namely Tris-SBF-27), used in this study, was
formulated based on Kukobo’s specification [24] with modifications from A. Cuneyt Tas et al. [26] to
better match with ion concentrations of human plasma. All chemical reagents were analytical reagents
(AR) and were used directly without any purification. The materials were monitored for different
immersion periods in the solution (1, 3, 5, 7, and 10 days). The ratio of total surface area to Tris–SBF-27
solution volume was 10 mm2 mL−1 at pH 7.4 and 37 ◦C for each disk-shaped sample. The solution
was refreshed every 24 h to ensure constant initial chemical composition [27]. The pH value of the
solution was measured daily for a group of samples without refreshing. After the preselected soaking
time, the samples were washed gently with deionized water to remove the SBF solution followed by
air-drying in a desiccator. Then, the dry mass was weighed to calculate the change before and after the
immersion in the SBF solution. The degradation was calculated in terms of percentage by the weight
loss per its initial weight.

2.4. Material Characterization

The morphology images of samples were taken with a scanning electron microscopy (SEM)
(S-4800; Hitachi Ltd., Tokyo, Japan) and dimensioned using ImageJ software (ImageJ; version 1.52a,
National Institutes of Health, Bethesda, MD, USA). Crystallinity analysis and phase identification
were carried out by infrared spectrum (FTIR) (Frontier FTIR/NIR spectrometer; PerkinElmer Inc.,
Waltham, MA, USA) in the 4000–400 cm−1 wavenumber range using the KBr pellet method, and
X-ray diffraction (XRD) (D8 Advance-Bruker X-Ray Diffractometer; Bruker AXS GmbH, Karlsruhe,
Germany) with Cu Kα radiation (λ = 1.54178Å), at a scanning rate of 5◦/min in the 2θ range from 5◦ to
70◦. Thermogravimetric analysis (TGA) was performed to determine the purity of the phases using a
thermal analysis system (TGA-DSC 3+; Mettler Toledo Inc., Columbus, OH, USA) from 0–300 ◦C at a
heating rate of 10 ◦C /min in the air.

2.5. Lactate Dehydrogenase (LDH) Cytotoxicity Assay

In the present study, LDH cytotoxicity assay was performed in direct contact between cells
and CS particles for short-term exposure evaluation. The mouse embryonic fibroblast cell line
(NIH 3T3; Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam) was cultured in
Dulbecco’s modified Eagle medium (DMEM) (Gibco–Thermo Fisher Scientific Inc., Waltham, MA,
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USA). The synthesized powder was weighed at 10, 25, 50, 100, and 200 mg. These samples were,
then, sterilized with ultraviolet radiation for 2 h. The sterilized samples were soaked in 1 mL cell
culture medium for 1 h of sonication to obtain sample solutions. The NIH 3T3 cell suspensions with
1 × 105 cells/well per 100 µL were seeded to each well and incubated under cell culture conditions
for 24 h to form a semi-confluent monolayer. Subsequently, cell culture mediums were replaced
with 100 µL of sample solutions (n = 7). The cytotoxicity after incubation for 24 h was determined
using the Cytotoxicity LDH Assay Kit-WST (Dojindo Molecular Technologies Inc., Kumamoto, Japan)
according to the manufacturer’s instructions. Following the incubation for 4 h, the formazan crystals
were formed.

The membrane integrity was visualized based on the cleavage of a tetrazolium salt (WST) to red
color formazan by the released intracellular lactate dehydrogenase (LDH) in living cells. The cell
viability increased in proportion to the amount of formazan formed, which was recorded by the optical
density (OD) value at 450 nm using a microplate reader (VersaMax™Microplate Reader; Molecular
Devices LLC, Sunnyvale, CA, USA). The percentage viability was calculated from the OD value using
the following equation:

Viability (%) =
ODs − ODb

ODn −ODb
× 100

where ODs is the mean value of the measured OD of the tested samples; ODn is the mean value of the
measured OD of the negative control samples; and ODb is the mean value of the measured OD of the
blank samples. The sample is considered to have acute cytotoxic potential when the viability value
declines less than 70%.

2.6. Statistical Analysis

The datasets were processed using Microsoft Excel 2019 software and were expressed as
mean ± standard deviation. The experimental mean values were compared by one-way analysis of
variance (ANOVA) using Minitab software (Minitab®; version 16.0, Minitab LLC, State College, PA,
USA) with the Tukey’s test for comparison between groups. In all evaluations, p < 0.05 was considered
to be statistically significant.

3. Results and Discussion

3.1. Characterization of the Synthesized Powder

The Fourier transform infrared (FTIR) (Figure 1) shows absorbances of crystalline components in
the synthesized powder. The principal peaks corresponding to hemihydrate represented at 660 cm−1

for bending vibrations of SO4
2− ion, 3560 and 3610 cm−1 for O–H valence (stretching), and 1620 cm−1

for bending vibrations of a single type of water in molecular structure [28,29]. The other peaks denoted
vibrations of sulfate ion including 600 cm−1 (bending), 1008 cm−1 (stretching), 1096 cm−1 (stretching),
1115 cm−1 (stretching), and 1152 cm−1 (stretching). There was no presence of foreign functional groups
in crystals which showed that acetone in the washing step was effectively removed.

The XRD pattern (Figure 2) further confirms the formation of calcium sulfate phases by their
typical peaks. Most peaks were indexed corresponding to standard HH (ICDD 41-0224). Three peaks
corresponding to standard DH (ICDD 33-0311) were also detected at a low signal. The results
revealed that HH was almost the only mineral in the synthesized powder, but there were still traces
of DH. The XRD was still unable to verify whether the hemihydrate belonged to α-form or β-form.
Nevertheless, Surajit M. et al. pointed out from the standard patterns of CS phases that β-HH would
have broad and low intensity diffraction peaks [30]. Additionally, the peak of α-HH at (204) plane
would be remarkably lower than (400) plane. The present synthesis using an autoclave resulted in the
formation of highly crystalline crystals as opposed to β-HH and crystal planes compatible with α-HH.
Consequently, the synthesized calcium sulfate hemihydrate was expected to be in α-form.
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Figure 2. X-ray diffraction (XRD) pattern of the synthesized powder.

Figure 3 shows the morphological changes before and after dehydration treatment. From the
micrographs, the dihydrate precursor with varied shapes (Figure 3a) was converted to hemihydrate
crystals which have homogeneous morphology of prismatic shape with sharp edges (Figure 3b).
It is widely accepted that α-HH crystals are characterized by well-formed transparent idiomorphic
crystals with sharp crystal edges, whereas β-HH consists of flaky particles made up with small
crystals [10,15,31]. Therefore, combined with the XRD results in Figure 2, it can be strongly concluded
that the as-synthesized hemihydrate was ascribed to α-form. Size measurements gave an average
crystal length of 20.96 ± 8.83 µm and diameter of 1.30 ± 0.71 µm.
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Figure 3. Scanning electron microscopy (SEM) micrographs of (a) Dihydrate (DH) precursor and (b) the
synthesized powder.

Figure 4 shows the weight loss (%) of the synthesized product measured by TGA. Theoretically,
the crystal water content of HH and DH is 6.2% and 20.9%, respectively. Starting from an ambient
temperature, the curve showed that the powder gradually lost a small amount of mass through
physisorbed water. The rapid mass loss due to the dehydration (at around 100 ◦C) of sample was
recorded at 6.4026%, which is greater than the percentage of water by theory of HH [32,33]. Therefore,
the phase analysis in TGA was compatible with the XRD results in Figure 2, indicating that HH and
DH were both included. Calculating from the recorded weight loss, the purity of α-HH was estimated
to be 98.62%. Consequently, with the chemical minimization in production, the α-HH has sufficiently
reached surgical grade in the FDA standard for the purity (CaSO4 ≥ 98 mass%) to be applied as bone
materials [21].
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3.2. In Vitro Studies of Cement Samples in SBF

3.2.1. Bioactivity Assessment

Calcium sulfate hemihydrate (α-HH) powder, when mixed with water, readily hydrates into
calcium sulfate dihydrate (DH). This reaction took place to convert the as-synthesized α-HH powder
into a form that can be used in medical treatment, namely calcium sulfate cement [10,11]. Figure 5
exhibits FTIR spectra and XRD patterns of the cements before and after 1, 3, 5, 7, and 10 days of
immersion in the Tris–SBF-27 solution.
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In FTIR analysis (Figure 5a), the peak at 670 cm−1 was typical for bending vibrations of SO4
2−

ion in dihydrate (DH). The bands at 3610 and 3560 cm−1 in HH were lowered to 3545 and 3402 cm−1

in DH, respectively, indicating the addition of hydrogen bonds in O–H stretching. Two bending
vibrations at 1686 and 1622 cm−1 indicated the presence of two types of water molecules in DH crystals.
The other vibrations of DH are shown at 603 cm−1 (SO4

2− bending), 1005 cm−1 (SO4
2− stretching),

1140 cm−1 (SO4
2− stretching), and 3246 cm−1 (H2O stretching) [28,34]. There were no typical peaks

of apatite that appeared, which would be around 1455–1420 cm−1 for CO3
2− stretching vibrations,

1030 cm−1 for PO4
3− stretching vibrations, and 870 cm−1 for bending vibrations of CO3

2− substituting
for PO4

3− in apatite lattices [26,31]. The XRD patterns (Figure 5b) revealed all characteristic peaks
of DH and remained unchanged after the immersion. There were no impurity peaks as compared
with the nonimmersion samples that appeared in both FTIR and XRD. These results pointed out that
α-HH was completely hydrated into DH and did not convert or create any other substance during the
immersion period.

The SEM micrographs of the cement samples after the immersion test in the SBF (Figure 6) display
porous structures consisting of interlocking crystals in the form of large and irregular particles. When
samples were immersed in the SBF, the dissolution of CS occurred leading to a gradual change in shape
of the crystals from rough plates into needles with smooth surfaces as a function of the immersion time.
These morphologies were also described by N. B. Singh and B. Middendorf [10], Jalota S. et al. [26],
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and Chen Z. et al. [32]. XRD, FTIR, and SEM provided evidence proving that the forming crystals are
of dihydrate (DH). Many in vitro and in vivo studies have indirectly or directly revealed that CS has
always failed to form bonds with bone tissue [13,33,35]. This is also supported by the results in this
study that no microspheric apatite aggregated on the crystal surface of cement samples after 10 days
immersed in Tris–SBF-27 solution. The bioactivity are assessed through the newly formed apatite layer,
which helps living bone tissue cling to the material surface [24,31,35]. Therefore, it can be deduced
from these results that CS lacks bioactivity for better bone regeneration in defects. An advantage is
that the by-products of CS degradation did not consist of foreign substances making CS harmless if
being degraded in the human body.
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The nature of calcium sulfate is less beneficial for bone regeneration due to the lack of bioactivity
gained from apatite layers as mentioned above. However, it has the advantage of being used as an
inorganic binder to fill defects for bone regeneration, thanks to the setting process as happened to
form the cements [11,15]. It is easily molded into the bone defects and acts as a barrier to prevent
excessive invasion of soft tissue [4]. Meanwhile, CS still provides sufficient space for osteoconduction,
neovascularization, and osteogenesis owning to its porous structure [4,36]. Furthermore, when CS
cement is placed in bone defects, it begins to dissolve and releases calcium (Ca2+) and sulfate (SO4

2−)
ions [1,37]. The ions are not sufficient to induce apatite nucleation but can act as a reservoir of calcium
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ions for bone reconstruction in patients [37]. Moreover, local increases in calcium ion concentration
can also induce osteogenesis by establishing interaction between the osteoclasts (OCs) and osteoblasts
(OBs) with Ca-sensing receptors (CaR) [1,7].

3.2.2. Degradation and pH Alteration of Cement Samples

The weight calculation for degradation rate and pH measurement of CS cements are presented in
Figure 7. It was found that the weight loss of the cements increased over time. The degradation process
occurred vigorously when CS first came into contact with the solution, and then, tended to progress
gently and reached the rate of 59.89% at the end of the testing period. The pH value of SBF solution
dropped sharply within three days (from 7.4 to 7.0), and was maintained after soaking for 10 days.Materials 2020, 13, x FOR PEER REVIEW 9 of 13 
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As a disadvantage feature of CS, the recorded weight loss was compatible with the fast degradation
of CS reported in previous literatures [33,35]. Apparently due to the fast degradation, the resulting
calcium-rich fluid led to a decrease in pH, which suggested that acidic products were produced in
the solution. In the human body, the biological processes and the chemical transformations of cells
are mostly carried out within a pH range of 6–8 [38]. Proteins and enzymatic rates can suffer from
changes in response to modification of the pH of the surrounding fluids [39,40]. A profound alteration
of pH can lead to the disruption of protein structure and loss of its function [39]. Several studies
have reported that degradation products, which were released by CS, would produce a mild acidic
microenvironment [31,35]. In agreement with previous studies, the pH variations of CS cements, found
in this study, slightly reduced to just under neutral, therefore, they remained within the permissible
range of the human body.

Degradation and pH alteration in calcium sulfate when it is being applied are both a virtue and
vice. Its rapid and complete resorption can, under some circumstances, be disadvantageous due to
insufficient support time for the host bone to grow into the defect area [7,26,35]. Rapid dissolution
leads to slightly acidic cytotoxic microenvironments and Ca2+ accumulation in the surrounding fluid
responsible for local inflammatory processes to take place in the early stage after implantation [40].
The incipient inflammation has three functions as follows: (1) to clean the fracture region from dead cells,
(2) to initiate processes to restore the blood supply, and (3) to congregate mesenchymal stem cells [41].
It is a crucial biological process for eradication of pathogens and maintenance of tissue homeostasis.
The crosstalk between inflammatory cells (leukocytes and cells of the monocyte-macrophage-osteoclast
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lineage) and cells related to bone healing (cells of the mesenchymal stem cell osteoblast lineage and
vascular cells) is essential to the formation, repair, and remodeling in bone [42]. The onset of the
inflammatory process through CS can contribute to bone regeneration but can occur excessively leading
to immoderate inflammation. Permanent soft tissue alterations can result due to chronic inflammation,
where active inflammation, fibrosis, and attempts at repair all occur simultaneously [40]. The α-HH, at
the surgical grade, has already been used for decades in grafting as bone defects fillers [7] and 13.8–19.0%
incidences of associated complications have been reported in clinical studies [13,14,40]. Still, there are
no statistically significant factors that could predict its development [14,40]. The inflammation reaction
is essentially self-limited and quite benign that can be observed and treated with anti-inflammatories.
It is well known and this can confidently be reported to patients before surgery along with the other
risks of surgery [14].

3.3. Cytotoxicity Tests of the Synthesized Powder

Materials cannot be used as implants if they are not biocompatible with humans. The cytotoxicity
is one of the main tests that provides evidence for the biocompatibility in the context of assessing
human risks for exposure scenarios with materials [25]. A cytotoxicity assay should be compatible with
the physicochemical properties of the test material. Calcium sulfate is a hydrophilic substance that
tends to release ionic components capable of altering intracellular enzyme activities [40]. Therefore,
the LDH assay is an appropriate method to verify changes in cell membrane integrity, which is a vital
mechanism of assessing cell viability/toxicity. The quantitative difference in the viability of NIH 3T3
cells treated with various CS concentrations (Figure 8) was statistically significant (p < 0.05).
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The investigations of intracellular enzyme activities, after 24 h of acute exposure, revealed no
signs of cytotoxicity at low CS concentrations (5, 10, and 25 mg/mL) with the viability over 85%.
No significant difference in cell viability was observed between the group treated with 5 mg/mL as
compared with the negative controls and the group treated with 10 mg/mL, as well as between the
group treated with 10 mg/mL as compared with the group treated with 25 mg/mL (p < 0.01). It is
apparent that a high cell viability rate indicated that CS manifested good biocompatibility [32,33].
However, at higher concentrations (groups treated with 50, 100, and 200 mg/mL), the synthesized
powder exhibited reductions in cellular activities, suggesting its transient cytotoxicity. The main reason
for this unfavorable feature has been assumed to be the rapid degradation of CS leading to an enhanced
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Ca2+ concentration [43], which was clearly shown in Figure 7. Moreover, the phagocytosis of calcium
sulfate particles has also been pointed to cause death in cells [43,44].

Biocompatibility requires a risk assessment in which a cytotoxicity test must be performed to verify
if calcium sulfate is capable of causing toxic responses in patients. Most materials at some concentrations
produce a toxic reaction [45]. Although CS is characterized as a biocompatible material [15], cell
behavior varies depending on the material characteristics and the testing system [43]. Thus, various
in vitro testing methods are useful to verify if the material is potentially toxic in different ways [45,46].
CS particles induced the adverse cell response at high concentrations, however, this effect could be
expected efficiently compensated in vivo. The question is, “Could patients be exposed to the source of
concentrations of formed material that cause a toxic response?” In medical treatment, CS is utilized in
the form of hard-setting cement, and therefore the chance of releasing a large quantity of CS particles
at a time from the solid mass is relatively low. Consequently, CS has not been reported to cause
substantial adverse reactions in clinical studies [13,14,40]. Nevertheless, this is only a proper level
of chance with the solidified mass, and therefore we cannot exclude the possibility due to human
manipulation of α-HH powder when performing surgery, especially in the event of an incomplete in
situ setting process of calcium sulfate, causing the release of CS particles to reach a toxic level.

To conclude, regardless of the good biocompatibility of the synthesized powder,
particulate-mediated cytotoxicity was noticed. Calcium sulfate is FDA approved and widely used
because of the benefits it provides to patients. The results of cytotoxicity tests should be viewed
and cautioned in the context of a complete biocompatibility test for the most accurate picture of the
potential biological risks associated with the clinical use of material.

4. Conclusions

In this study, a facile one-step autoclave method was developed to synthesize α-HH with high
purity. Using dihydrate as a raw material, without adding additives, the final product successfully
reached the surgical grade. Hence, the synthesized product could potentially be used in human
applications. The bioproperties of α-HH, determined in a preliminary assessment in SBF have
both advantages and disadvantages, including fast degradation, pH alteration, and no bioactivity.
The cytotoxicity results indicated that the synthesized powder did not influence the viability of NIH-3T3
cells, suggesting its biocompatibility. Nevertheless, at high concentrations of CS particles, a reduction
in cell viability was observed. The undesirable factors were introduced that could have caused this
result represent a cautious issue which needs to be considered in clinical treatment. Generally, the
instability of CS cements caused by the incomplete setting process leads to the strong release of its
particles which could be harmful when in direct contact with host tissues in the body. An in vivo study
has to be performed for more detailed justification.
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