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Abstract: To speed up the implementation of the two-dimensional materials in the development of
potential biomedical applications, the toxicological aspects toward human health need to be addressed.
Due to time-consuming and expensive analysis, only part of the continuously expanding family of
2D materials can be tested in vitro. The machine learning methods can be used—by extracting new
insights from available biological data sets, and provide further guidance for experimental studies.
This study identifies the most relevant highly surface-specific features that might be responsible for
cytotoxic behavior of 2D materials, especially MXenes. In particular, two factors, namely, the presence
of transition metal oxides and lithium atoms on the surface, are identified as cytotoxicity-generating
features. The developed machine learning model succeeds in predicting toxicity for other 2D MXenes,
previously not tested in vitro, and hence, is able to complement the existing knowledge coming from
in vitro studies. Thus, we claim that it might be one of the solutions for reducing the number of
toxicological studies needed, and allows for minimizing failures in future biological applications.

Keywords: machine learning; MXenes; cytotoxicity; van der Waals layered materials

1. Introduction

Experimental development of two-dimensional (2D) materials is booming and the industrial
applications are not only envisioned but also are becoming a reality. On the other hand,
safety verification by systematic and in-depth studies pose a great challenge. The first stage of
research into the safety of individual materials are the in vitro studies on mammalian cells. If material
is nontoxic, they are moving forward into more advanced studies. In this regard, toxicity appears when
the viability of tested cells decreases from 100% to below 70%. This means reduction over 30% which
is significantly below the natural 20% variance of survival rate assumed for the living organisms.

One of the most perspective 2D materials that can be utilized in technological applications are
the MXenes. During last years their development has risen exponentially. MXenes are defined as
early transition metal carbides, nitrides, and carbonitrides. They have received much attention as
their unique 2D crystal structure can be easily tuned to produce dramatic improvement in material
properties [1]. Therefore, it is not surprising that they have been successfully applied in many fields
of materials science and technology [2]. The term ‘MXene’ reflects the unique 2D structure of the

Materials 2020, 13, 3083; doi:10.3390/ma13143083 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-6357-7913
https://orcid.org/0000-0002-8686-7996
https://orcid.org/0000-0001-8900-1859
http://www.mdpi.com/1996-1944/13/14/3083?type=check_update&version=1
http://dx.doi.org/10.3390/ma13143083
http://www.mdpi.com/journal/materials


Materials 2020, 13, 3083 2 of 17

material in which the formula Mn+1XnTz perfectly matches the arrangement of its layered features.
In this formula—M is early transition metal, X is carbon and/or nitrogen, n = 1, 2, 3, or 4, whereas
Tz corresponds to functional groups terminating the surface (e.g., -OH, = -O, -F) [3]. The family of
MXenes has expanded rapidly since the discovery of their first representative—the Ti3C2Tz phase
in 2011 by Naguib et al. [4]. Note, that the first package of MXenes included only several phases
with 19+ successfully synthesized in subsequent years [5]. Since that time, ten years have passed and
now researchers are able to predict new MXene phases theoretically [6], and new phases have been
successfully synthesized (see Reference [7]).

In the case of MXenes cytotoxicity, the first studies concerned in vitro testing of multilayered
Ti3C2Tz MXene and showed a potential threat related to the generation of reactive oxygen species
(ROS) [8]. Further studies showed differences in toxicological effects in view of MXenes stoichiometry
(i.e., Ti3C2Tz or Ti2CTz) [9]. Moreover, the importance of flake thickness was highlighted by us not
only in the case of material stability but also potential toxicity [10]. In addition, cytotoxicity was also
examined in respect to the number of layers constituting MXene compounds [11].

In this regard, we have come to the moment that innovative solutions are needed to extract the
most promising representatives of MXenes with the highest potential for application and the lowest
cytotoxicological threats. It becomes obvious that it is impossible to carry out screening investigations
for all MXenes phases in reasonable time and manageable costs. The most time- and cost-consuming
analyses are undoubtedly the biological studies, which are also inevitable to push through MXenes
applications in industry. What is more, many certification procedures involve verification of the safety
of market products containing the claimed nanomaterials. Accordingly, there is a strong demand for
theoretical solutions that could overcome the problem of so many complicated analyses.

One such solutions might be the machine learning (ML) procedure. Machine learning has
so far proved its applicability for cytotoxicity studies of large number of various chemicals
(see Reference [12]) as well as recent predictions of synthesis of various MXenes compounds [13].
In addition, it can be also used to effectively analyse complex surface science data [14]. Thus,
we assume that it might be one of the solutions for reducing the number of toxicological studies
needed, and allows for minimizing failures in future biological applications. Machine learning studies
concerning toxicity of drug, molecules have been carried out previously, by using deep learning
and XGBoost [15] approaches, and using Atomic Fingerprints [16–21]. However, to the best of our
knowledge, there is a lack of toxicological research based on ML methods concerning layered materials,
in particular, 2D structures. Thus, we present the first approach of predicting the cytotoxicity of
experimentally synthesized MXene compounds.

The aim of this study is to provide the prediction of the potential cytotoxic behavior of MXenes
materials based on ML model with some elemental information provided from experiments. We first
determine the biological and physico-chemical features that describe each 2D material in relation to
the tested cytotoxicity. On this basis, we determine the possible descriptors for predicting the cytotoxic
behavior of MXenes compounds. In particular, the surface characteristics, morphology, and structure
have been taken into account as inputs for our theoretical model. Next, the Random Forest [22]
approach has been applied to identify the most important features, that might have an impact on
MXenes cytotoxicity. Then, we apply Principle Component Analysis (PCA) [23] as feature engineering
to improve our model. We use the key features to train machine learning models. The models are
checked by a 10-fold cross-validation scheme, with their performance measured by accuracy score,
data set contains experimentally measured samples provided from our own research studies, as well
as from screening experiments. Then, we use this model to predict the potential cytotoxic behavior of
19 experimentally examined MXene compounds not tested in vitro. It is crucial to note, that this study
relies on small size of dataset, thus, we include variety of external methods to validate our predictions.

Note, that the theoretical methodology developed here can be further applied to other
types of 2D materials, which exhibit diverse surface characteristics. The detailed information
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about the experimental data and elemental features used in this study are presented in
Appendices A and B, respectively.

2. Materials and Methods

In order to determine a good quality ML model, it is crucial to determine potential descriptors
that can characterize the cytotoxic behavior and identify ML algorithms well suited for a given dataset.

2.1. The Choice of Descriptors

Descriptors, which are representative of the compounds properties play a crucial role in ML, thus,
we decided to describe in details the rationale behind the particular choice of the descriptors used in
our studies.

At first, we choose only the MXenes compounds tested in vitro which are well experimentally
characterised and appear cytotoxic or not. In this regard, the particular MXene exhibits cytotoxicity
if it causes the reduction of viability of tested cells in vitro below 70% within the concentration
range up to 250 mg

L . In addition, the ROS level above 120% at a concentration of 250 mg
L is also an

indicative of the presence of cytotoxicity. The rest of MXenes appears as non-cytotoxic. Furthermore,
we gather and sort the information from material synthesis methodology as well as results from
characterisation. This includes the chemical composition of MXene (M, X), surface modification with
external compounds, lateral size, thickness, etching agent, delaminating agent, elements and oxides
(MxOy) present on the surface which are studied by the X-ray photoelectron spectroscopy (XPS).
Based on these considerations, we aim to select particular experimental descriptors listed in Table A2.

Based on the previous experiments [9] that linked the cytotoxic behavior of MXenes with
the stoichiometry of the structures and thickness of the flakes, the data concerning the geometry
information (lattice and atomic structures) about the known 2D MXenes compounds have been
taken into account. The theoretical descriptors have been build on the basis of the theoretical
dataset, namely atomic types and positions using Atom-Centered Symmetry Functions (ACSF) [24].
The theoretical descriptors are collected in the Table A3.

Note, that the choice of the descriptors which represent the cytotoxic behavior is also limited to
the experimental data available in literature. Therefore, the prediction might change whenever more
experimental data are provided.

2.2. Datasets

The toxicological in vitro data for 2D MXenes is taken from recently published high-throughput
screening experiments, therefore, it is reliable and convenient for comparison. We have decided to test
independently three datatsets in order to answer following questions:

1. What kind of datasets and descriptors: theoretical, experimental or combined ones are sufficient
to build a good quality ML model?

2. Could the cytotoxic behavior be predicted based on purely theoretical descriptors (type of atoms,
stoichiometry, etc.), and hence, does it mean that no experimental data need to be provided to
predict the cytotoxic behavior?

3. Does inclusion of the geometrical descriptors in the ML model improve qualitatively predictions
of the cytotoxicity?

Three datatsets are listed below. For each of the datasets the ML models have been built separately
and discussed in details in the corresponding subsections of Results.

• Dataset I (experimental set)—the experimental data have been selected based on detailed
description of the experiment, as well as detailed information about the structure,
surface modification, in-depth characterization of morphology, and the cytotoxic effect of the
MXenes compound on the cells tested in vitro. Those information have been collected from the
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literature listed in Table A1 and presented in Appendix A. It consists of 71 records and elemental
features (descriptors) listed in Table A2.

• Dataset II (theoretical set)—data taken from the two-dimensional database [25] concerning the
geometry information about the known 2D MXenes compounds (61 records). The elemental
features are collected in Table A3.

• Dataset III (combined set)—dataset consists of both Dataset I and Dataset II. The number of the
records and elemental features are combined from those two datasets correspondingly.

It is worth mentioning, that the first two datasets overlapped partially, namely, the geometry of
each of the compounds in the first set is known. In addition, we do not know anything about the
class of function describing cytotoxicity, so it is not possible to point out the class of algorithms that
should be used. Thus, only the size and the type of the variables in the dataset determine our choice of
ML algorithms. Detailed analysis of the applicability of machine learning algorithms can be found
elsewhere [26]. Below, we present briefly the ML algorithms used in the present study:

• Logistic regression [27] with regularization L1 and L2 (regLOG-L1, regLOG-L2). This approach
allows avoiding over-learning a model even for a large number of variables. The algorithm
removes unimportant features for the model.

• Random Forest (RF) [22] is commonly used for a small dataset, and must be used with care
regarding over-learning. It allows for selecting the most important features.

• Support Vector Machine (SVM) [28] uses only part of the dataset, thus, it can be easily applied
to a small size of dataset. The key point of prediction in the SVM algorithm is the choice of
kernel. In this study, we have tested the commonly used kernels such as—linear, rbf, and sigmoid,
denoted by us regSVM-lin, regSVM-rbf, regSVN-sig, respectively, throughout this paper.

• Extreme Random Tree (ERT) [29] is an extension of a Random Forest algorithm, and is known to
be computationally faster than RF. Both ERT and RF are known to work well for any dataset.

Parametric models such as linear regression are used to help us understand a phenomenon by
determining the functional dependences. In the case of non-parametric models such as Random Forest,
the crucial issue is to identify the importance of features, and thus, it allows us to understand the
studied phenomenon. Note, that other commonly used ML methods such as Kernel Ridge Regression
(KKR) [30] or Neural Networks (NN) [31], are well suited for large datasets, thus, are not applicable in
our case.

In addition, our datasets face a commonly known issue, namely, the class imbalance problem.
Significantly, this problem is widely reported for the toxicity of many other materials, where the size of
the positive data (toxic samples) is considerably smaller than the negative data (non-toxic samples)
(see Reference [32]). To solve this problem, we make use of various data-balancing algorithms such
as—Weight classifier (Weight), and generating synthetic samples (SMOTE). The other commonly used
algorithms such as oversample minority class or undersample majority class are not applicable in the
case of MXenes materials, due to the small number of toxic records for which proper statistics cannot
be built.

We have used the Python programming language (version 3.6.4) with the scikit-learn [33] and
XRT [34] libraries for data analysis and machine learning. The Pandas [35] library was adopted in
order to read and process the data, whereas the NumPy package (version 1.16.1) [36] was used to
construct the features.

3. Results

In this study, we make use of state-of-the-art machine learning (ML) methods to identify the
cytotoxicity of experimentally synthesized as well as deeply characterized 2D MXenes.

This section is divided into three subsections related to the prediction for the three datasets:
experimental set, theoretical set and combined one, as it was mentioned in previous section. Then,
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the models are simplified, by selecting the most important features based on Random Forest algorithm
or by the construction of new features from the given ones by the use of the Principle Component
Analysis (PCA). The models are tested by 10-fold cross-validation, with the performance measured by
class balanced accuracy score of correct predictions [37]. The accuracy score metric is defined in the
range of [0, 1].

3.1. Dataset I—Experimental Set

Our theoretical investigations (see Table 1) reveal that the accuracy score for balanced data shows
a good level of precision, greater than 0.72 (except for regSVM-sig) for all of the algorithms employed in
this paper. Moreover, note that data balancing techniques improve the results approximately by a few
percent (see the results for balanced versus unbalanced data collected in Table 1). The largest values
are obtained in the case of the SVM with rbf kernel (regSVN-rbf) for Weight and SMOTE techniques,
and are equal to 0.92 and 0.93 respectively. The high accuracy obtained in the case of regRF and
regSVM-rbf manifest the non-linearity of the studied problem and the need for using non-parametric
models. Unfortunately, this has a negative effect on understanding of the results and the underlying
phenomenon. It is worth noting, that most of the variables used in this study are categorical variables
described by one-hot-encoded or labeling methods. By use of the SMOTE data balancing algorithm,
the results do not include pure features but contain mixed ones, which results in losing the physical
interpretation of the outcomes. Thus, we have decided to use the Weight data balancing algorithms
further in this study.

Table 1. The accuracy score of correct predictions are obtained for unbalanced and balanced data, for
the various algorithms employed in this paper. The most accurate results are obtained for balanced
data by use of the Support Vector Machine with rbf kernel (regSVM-rbf).

Balanced Data
ML Algorithms Unbalanced Data Weight SMOTE

regRF 0.747 0.826 0.833
regLOG-l1 0.700 0.776 0.783
regLOG-l2 0.720 0.798 0.783
regSVM-lin 0.867 0.725 0.808
regSVM-rbf 0.662 0.917 0.933

regSVM-sigmoid 0.555 0.543 0.4042
ERT 0.722 0.776 0.750

In order to understand the cytotoxicity issue and its dependency on selected descriptors,
feature selection and feature engineering techniques are applied further in this study. The crucial
premise of feature selection is that the data contains some variables that are either redundant or
irrelevant, and can thus be removed without much loss of information. Feature selection and feature
engineering techniques are methodological tools that allow simplification of the model, and hence,
they can facilitate the interpretation of the studied phenomenon. In order to select the most important
features, the feature importance score is obtained from a random forest analysis. Feature importance
shows how much weight the model assigns to the given descriptor during predictions, and thus,
gives insight into which variables are crucial for predicting the cytotoxicity of MXenes materials.
For comparison purposes, we also use feature engineering from PCA.

The results reveal that three features are already sufficient for a good level of prediction accuracy,
for all employed algorithms except regSVM-sig (see Figure 1).
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Figure 1. Feature engineering for dataset I obtained for two methods: (A) Random Forest (RF)
and (B) Principle Component Analysis (PCA). Both methods are methodological tools that allow
simplification of the model.

Moreover, all the models based on PCA show lower accuracy than RF, which means that there
is a low correlation between the features. The PCA approach is based on correlation between the
features, while feature importance from RF selects the most important, original variables. PCA does
not improve the results, thus, the original variables selected by RF have been chosen.

In addition, the feature importance score shows that there are two crucial features, four equally
important features, and the rest seem to be unimportant from the RF analysis (see Figure 2). The most
important features are the presence of the MxOy and the Li atoms on the MXenes surfaces.

Note that the results presented here show that experimental data and descriptors are sufficient to
build a good quality ML model for cytotoxicity predictions in MXenes materials.
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Figure 2. Ranking of feature importance obtained from RF. The most important are two descriptors:
(i) the presence of MxOy, and (ii) Li on the surface, whereas the next four: surface modification,
delaminating agent, lateral size, and Cl on the surface are equally important with smaller weights than
the previous two. All feature labels are described in Table A2.

3.2. Dataset II—Experimental Set

Here, the ML model is built based on theoretical data. We have tested the dataset with structural
information of the compounds included, namely position and type of atoms. There are many
methods available for building descriptors such as Atom-Centered Symmetry Functions (ACSF) [24],
Coulomb Matrix [38], or Ewald Sum Matrix [39], which convert the atomic positions into variables that
can be used in machine learning. We have used the Weighted Atom-Centered Symmetry Functions
(wACSF) [40] as descriptors, in order to substantially decrease the number of variables. The parameters
of this model have been adopted from Reference [24]. Note that only 10% records of dataset have been
labeled as toxic or non-toxic. In order to effectively elucidate the information contained in this dataset,
clustering technique has been applied. Therefore, we have used unsupervised ML techniques. All these
methods do not allow us to correctly distinguish toxic and non-toxic records in two separate clusters.
In other words, the results reveal that the clustering technique cannot be viewed as a mechanism for
toxicity prediction of MXenes.

All the results presented in this subsection reveal that taking into account geometrical descriptors
from theoretical dataset of MXenes materials are not sufficient to build a ML model for cytotoxicity
prediction of MXenes compounds. However, this theoretical set can be combined with experimental
set, to determine whether such enlarged database improves model predictions, which is a subject of
study in the next subsection.

3.3. Dataset III—Combined Experimental and Theoretical Sets

Our study reveals that including the information related to the geometry of the compounds (see
Table 2) does not improve the results, and gives a similar level of accuracy score of correct predictions
as obtained for dataset I (see Table 1), for all of the methods employed here.
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Table 2. The metric of accuracy score of correct predictions is obtained, for various of algorithms
employed in this paper.

ML Algorithms Model Selection: Weight

regRF 0.845
regLOG-l1 0.845
regLOG-l2 0.727
regSVM-lin 0.781
regSVM-rbf 0.876

regSVM-sigmoid 0.545
ERT 0.793

Then, we have built models that include from one to five features by use of the Random Forest
algorithm and PCA method, similarly to the approach for dataset I. The analysis demonstrates that two
features are sufficient to describe the toxicity of MXenes compounds with high accuracy of predictions
(see Figure 3). From the feature importance ranking, we find out that the topmost descriptors are the
presence of MxOy, Li on the surface of MXenes, and surface modification with external compounds
(see Figure 4). Note, that the order of the six top important features is the same as in the case for
dataset I.

Figure 3. Feature engineering for dataset III obtained for two methods: (A) Random Forest (RF)
and (B) Principle Component Analysis (PCA). Both methods are methodological tools that allow
simplification of the model.
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Figure 4. Ranking of feature importance for dataset III. The most important are the first three
descriptors, namely MxOy, Li on the surface and surface modifications, respectively. All feature
labels are described in Tables A2 and A3.

3.4. Discussion of Datasets

Here, we present the discussion concerning the results of employed datatsets in response to the
following questions (previously stated in Section 2.2):

1. What kind of datasets and descriptors: theoretical, experimental or combined ones are sufficient
to build a good quality ML model?
Our results indicate that experimental data are sufficient to build an effective model with high
accuracy score of correct cytotoxicity predictions based on 10-fold cross-validation scheme.

2. Could the cytotoxic behavior be predicted based on purely theoretical descriptors (type of atoms,
stoichiometry etc.) and hence, does it mean that no experimental data need to be provided to
predict the cytotoxic behavior?
Our results reveal that taking into account only geometrical descriptors from theoretical dataset
of MXenes materials are not sufficient to build a ML model for cytotoxicity predictions. Thus,
the experimental information such as material synthesis methodology and characterisations play
a crucial role in building ML model concerning cytotoxic behavior of MXenes compounds.

3. Does inclusion of the geometrical descriptors in the ML model improve qualitatively predictions
of the cytotoxicity?
The inclusion of geometrical features of MXenes do not qualitatively change the ML results based
on experimental dataset.

4. Model Predictions

After successful verification of the ML model based on experimental dataset, we are able to
predict toxicity for 2D MXenes not tested in vitro. To do so, we have searched the available literature
covering the MXenes compounds for which all the elemental features listed in Table A2 have been
provided, but with no in-vitro studies carried out. Despite the fact that there are around a hundred
phases synthesized so far, we have only found 19 MXenes compounds, for which comprehensive data
on the material are available (see Table 3).
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Table 3. Predicted probability of cytotoxicity score of various MXenes compounds. For each of the
compounds different chemical treatment, as well as chemical composition on the surface have been
reported. Thus, different probability scores have been obtained. All data taken from high-throughput
screening experiments (see last column). The abbreviation Us. denotes Ultrasounds, whereas the the
third and fourth columns denote the presence of the MxOy and Li atoms on the surface. Note, that two
descriptors etching agent and delaminating agent are denoted here as the synthesis procedure.

MXene [Ref.]: Probability MxOy Li Atoms Synthesis Procedure Surface Mod.

Ti3C2 [41] 0.18 No Yes LiF/HCl; Us. No
Ti3C2 [42] 0.05 No No HF Au
Ti3C2 [43] 0.18 No Yes LiF/HCl; Us. No
Ti3C2 [44] 0.10 No No HF; Us. No
Ti3C2 [45] 0.10 No No HF; Us. No
Ti3C2 [46] 0.06 No Yes LiF/HCl APTES + CEA
Ti3C2 [47] 0.07 No Yes LiF/HCl; Us. DNA, Pt, Pd
Ti3C2 [48] 0.05 No No HF; Us. Ag
Ti3C2 [49] 0.07 No Yes LiF/HCl L-ACC
Ti3C2 [50] 0.07 No Yes LiF/HCl; Us. PAS
Ti3C2 [51] 0.87 Yes No LiF/HCl No
Ti3C2 [52] 0.88 Yes No LiF/HCl No
V2C [50] 0.05 No Yes LiF/HCl; Us. PAS
V2C [53] 0.05 No No NaF/HCl No

Nb2C [54] 0.04 No No NaF/HCl No
Nb2C [55] 0.04 No No HF; 60◦ No
Ti2N [10] 0.05 No No KF/HCl; Us. No

Mo1.33C [56] 0.04 No No HF; TBAOH No
Ti4N3 [57] 0.03 No Yes KF/LiF/NaF, TBAOH No

The ML models predict two of 2D MXenes can exhibit cytotoxic properties with a high probability
of prediction equal to 0.9, while the rest of them are predicted to be non-toxic (see Table 3). It is
worth mentioning that for the non-toxic ones, no presence of MxOy on the surface has been reported.
The presence of MxOy is the key toxicity-generating feature obtained from our studies.

Our results demonstrate that our ML model is able to complement the existing knowledge
coming from in vitro studies. However, note that this prediction has to be viewed with some caution,
knowing that traditional k-fold cross-validation is highly optimistic when evaluating machine learning
models, due to the fact that materials datasets are rarely uniformly distributed.

5. Discussion

Our results indicate that knowledge of the surface and its modification might be crucial issue
concerning the toxicity of the studied layered 2D materials, whereas geometrical descriptors may
have little impact on the outcomes. These results are in the line with recent experimental findings
concerning the presence of TixOy on the surface [8,58,59], and the biological knowledge of cytotoxicity
mechanisms [60], as well as physical and chemical intuition. It should be stressed that this conclusion is
much more definitive than we expected at the beginning of our studies. The reason is that the chemical
diversity and inhomogeneity of MXenes are already widely known and pose a major challenge in
such complex analysis. The second corresponding aspect is the divided surface characteristics. The
primary strictly depends on the starting materials (MAX phases). The latter is undoubtedly far more
problematic, if it comes into interactions with highly sensitive systems such as biological ones. Basically,
the chemical composition of the surface of MXenes, almost certainly, is closely related to the type
of ‘M’ element and a resulting chemical composition of the MxOy passivation layer that occurs as a
result of M reaction with oxygen and/or water [61]. In fact, every surface of the MXene exposed to
the air can naturally react with oxygen because the freshly exposed metallic surface is energetically
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unsaturated and possesses high reactivity. This can happen immediately after the delamination process
(but certainly must also depend on the MXene stability). What’s more, the freshly exposed surface of
the MXene also acquires bonding with products of chemical reactions that occur during acidic etching
of the ‘A’ element from the MAX phase. As can be seen, the aforementioned surface-related features
influence at first the material itself, but finally, may result in different biological effects such as the
appearance or lack of cytotoxicity.

From this regard, MXenes are the most interesting, because their surface is highly unstable and
susceptible to oxidation in the ambient conditions [52]. It has been shown that the surface effects highly
affect the living cells and it is closely linked to the oxidation process and decomposition to toxic oxides.
In such a case, mechanisms of cytotoxic action refer to cell cycle, DNA synthesis, and cellular membrane
integrity [62]. From this perspective, surface chemistry of MXenes should be managed to avoid further
toxic effects using redirecting into more safe surface compositions [59]. This is indeed a right direction
when the surface modification cannot be used. In other cases, polyanionic salts can be effectively used
for MXene flakes edges capping which results in highly decreased decomposition and stability [50].
In other approach, natural antioxidants are good in diminishing surface oxidation [49]. In addition,
approaches that involve surface modification with bio-organic moieties, specifically designed for
cytotoxicity mitigation, are also highly recommended [62,63].

6. Conclusions

Here, we present the first theoretical study concerning the toxicological aspects of 2D MXene
materials by employing various machine learning models. Our work demonstrate that the most
important features potentially responsible for the toxicological properties are related to the presence of
transition metal oxides MxOy and Lithium atoms on the surface, as well as surface modification with
external compounds. Our detailed analysis reveals, that the crucial issue is what happens on the surface,
while the structural information of the systems might have minimal impact on cytotoxicological aspects
of MXenes materials.

Our ML model successfully complement existing experimental studies, for which no
cytotoxicological measurements have been carried out. In particular, we have predicted the cytotoxicity
of 19 MXenes compounds, for which two of them are predicted to be cytotoxic with 0.9 probability.
The rest of the compounds are predicted to be non-toxic and can be potentially applied in many
technological areas [2,64–68].

Moreover, our results show that the cytotoxic prediction of MXenes can be examined on
the materials that are well experimentally characterised in terms of surface chemistry and the
presence of oxides on the MXenes surface. Thus, we claim that it might be one of the solutions
for reducing the number of toxicological studies needed, and allows for minimizing failures in future
biological applications.

In addition, the theoretical research methodology based on ML models developed here can
be further applied to other types of 2D materials exhibiting complex structure and diverse surface
characteristics, such as for example, novel 2D transition metal borides, so called MBenes [69] as well as
van der Waals heterostructures [70,71]. We expect that the predictions presented here will facilitate the
experimental efforts by providing the information that might accelerate time consuming and expensive
cytotoxical experimental studies, by reducing the large number of compounds, and hence, speeding up
potential future applications.
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Abbreviations

The following abbreviations are used in this manuscript:

SP Soybean phospholipid
PVP polyvinylpyrrolidone
HA hyaluronic acid
PEI polyethylene imine
PEG polyethylene glycol
PVA polyvinyl alcohol
NMP N-methyl-2-pyrrolidone
TMAOH tetramethylammonium hydroxide
TBAOH tetrabuthylammonium hydroxide
TPAOH tetrapropylammonium hydroxide
DMF dimethylformamide
DMSO dimethyl sulfoxide
CTAC cetanecyltrimethylammonium chloride
c(RGDyC) cyclic arginine-glycine-aspartic pentapeptide
PLL poly-L-lysine
APTES (3-aminopropyl) triethoxysilane
CEA carcinoembryonic antigen
L-ACC L-ascorbic acid
PAS polyanionic salts

Appendix A. Detailed Information about the Experimental Data Used in the Machine
Learning Models

Here we present the list of the high-throughput experimental data that we used to build the
database (see Table A1).

Table A1. The types of delaminated 2D MXenes compounds used in this study. The information about
the particular compound are presented in details in the following references.

MXenes Compound:

Ti3C2 References [8,41–52,72–81]
Ta4C3 References [82–84]
Nb2C References [54,55,85,86]
Ti2C Reference [67]

Mo2C References [87]
Mo1.33C Reference [56]
Nb4C3 References [62]

V2C References [50,53]
Ti2N Reference [10]
Ti4N3 Reference [57]



Materials 2020, 13, 3083 13 of 17

Appendix B. Detailed Information about the Elemental Features Used in the Machine
Learning Models

Here we present the detailed information about the elemental features taken into account in the
machine learning predictions, listed in Tables A2 and A3 respectively.

Table A2. Detailed description of the elemental features used in ML scheme and applied for the dataset
I and dataset III.

Detailed Description of the Feature

Surface modification PVP, SP,MnOx+SP, HA, FexOy+SP, PEI, PEG, DNA+Pt+Pd, Ag, L-ACC, PAS
with external compounds CTAC+PEG+SiO2+c(RGDyC)+SiO2, Au+Fe3O4, Au+PEG, PLL, APTES+CEA, PVA, Au

Lateral size from few to hundredths of nm, from few to hundredths of µm
Thickness from few to tens of nm

Etching agent HF, LiF+HCl, LiF+HCl+AlCl3, NaF+HCl, KF+HCl, KF+LiF+NaF,

Delaminating agent Ultrasounds, DMF+high pressure+high Temp., high pressure+high Temp., TBAOH,
TBAOH+ultrasounds, TPAOH, TMAOH, DMSO+ultrasounds, no additional treatment

Carbon (C) on a surface 1-Yes, 0-No
Oxygen (O) on a surface 1-Yes, 0-No

Fluor (F) on a surface 1-Yes, 0-No
Aluminium (Al) on a surface 1-Yes, 0-No

Titanium (Ti) on a surface 1-Yes, 0-No
Nitrogen (N) on a surface 1-Yes, 0-No
Chloride (Cl) on a surface 1-Yes, 0-No

Silicon (Si) on a surface 1-Yes, 0-No
Lithium (Li) on a surface 1-Yes, 0-No

Other on a surface 1-Yes, 0-No
presence of MxOy 1-Yes, 0-No

Toxic 1-Yes, 0-No

Table A3. Detailed description of the elemental features used in ML scheme for the dataset II and
constituting the part of the dataset III.

G2 \ wG2 see Reference [24]; cutoff RC = 6, shift Rs = (0 . . . N), number of the functions N = 10, η = (1, N
Rs
N )

G4 \ wG4 see Reference [24]; cutoff RC = 6, shift Rs = (0 . . . N), number of the functions N = 10, λ = {−1, 1}, ζ = {1, 2, 4, 16}
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Jastrzębska, A. Surface interactions between 2D Ti3C2/Ti2C MXenes and lysozyme. Appl. Surf. Sci.
2019, 473, 409–418. [CrossRef]

69. Khazaei, M.; Wang, J.; Estili, M.; Ranjbar, A.; Suehara, S.; Arai, M.; Esfarjani, K.; Yunoki, S. Novel MAB
phases and insights into their exfoliation into 2D MBenes. Nanoscale 2019, 11, 11305–11314. [CrossRef]

70. Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [CrossRef]
71. Birowska, M.; Urban, J.; Baranowski, M.; Maude, D.K.; Plochocka, P.; Szwacki, N.G. The impact of hexagonal

boron nitride encapsulation on the structural and vibrational properties of few layer black phosphorus.
Nanotechnology 2019, 30, 195201. [CrossRef]

http://dx.doi.org/10.1149/2.0641704jes
http://dx.doi.org/10.1002/adma.201500604
http://www.ncbi.nlm.nih.gov/pubmed/25930685
http://dx.doi.org/10.1016/j.ceramint.2018.07.124
http://dx.doi.org/10.1038/ncomms14949
http://dx.doi.org/10.1039/C6NR02253G
http://dx.doi.org/10.1186/s12951-019-0545-4
http://dx.doi.org/10.1088/2053-1583/ab6a60
http://dx.doi.org/10.1007/978-3-662-59600-5_1
http://dx.doi.org/10.1038/s41699-019-0089-3
http://dx.doi.org/10.1021/acssuschemeng.0c01609
http://dx.doi.org/10.1016/j.msec.2020.110790
http://dx.doi.org/10.1002/asia.201800543
http://www.ncbi.nlm.nih.gov/pubmed/30047591
http://dx.doi.org/10.1016/j.apsusc.2017.04.239
http://dx.doi.org/10.1016/j.ccr.2017.09.012
http://dx.doi.org/10.1016/j.msec.2019.01.021
http://www.ncbi.nlm.nih.gov/pubmed/30813093
http://dx.doi.org/10.1016/j.apsusc.2018.12.081
http://dx.doi.org/10.1039/C9NR01267B
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/10.1088/1361-6528/ab0332


Materials 2020, 13, 3083 17 of 17

72. Xue, Q.; Zhang, H.; Zhu, M.; Pei, Z.; Li, H.; Wang, Z.; Huang, Y.; Huang, Y.; Deng, Q.; Zhou, J.; et al.
Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging. Adv. Mater. 2017,
29, 1604847. [CrossRef]

73. Yu, X.; Cai, X.; Cui, H.; Lee, S.W.; Yu, X.F.; Liu, B. Fluorine-free preparation of titanium carbide MXene
quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 2017,
9, 17859–17864. [CrossRef]

74. Zhou, L.; Wu, F.; Yu, J.; Deng, Q.; Zhang, F.; Wang, G. Titanium carbide (Ti3C2Tx) MXene: A novel precursor
to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and
bioimaging. Carbon 2017, 118, 50–57. [CrossRef]

75. Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for
Photothermal Conversion. Nano Lett. 2017, 17, 384–391. [CrossRef] [PubMed]

76. Dai, C.; Lin, H.; Xu, G.; Liu, Z.; Wu, R.; Chen, Y. Biocompatible 2D Titanium Carbide (MXenes) Composite
Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. Chem. Mater. 2017, 29, 8637–8652.
[CrossRef]

77. Liu, G.; Zou, J.; Tang, Q.; Yang, X.; Zhang, Y.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Surface
Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic
Therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086. [CrossRef]

78. Chen, X.; Sun, X.; Xu, W.; Pan, G.; Zhou, D.; Zhu, J.; Wang, H.; Bai, X.; Dong, B.; Song, H. Ratiometric
photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale
2018, 10, 1111–1118. [CrossRef] [PubMed]

79. Han, X.; Huang, J.; Lin, H.; Wang, Z.; Li, P.; Chen, Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform
for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018, 7, 1701394.
[CrossRef]

80. Hussein, E.A.; Zagho, M.M.; Rizeq, B.R.; Younes, N.N.; Pintus, G.; Mahmoud, K.A.; Nasrallah, G.K.;
Elzatahry, A.A. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with
lower acute toxicity than pure MXene. Int. J. Nanomed. 2019, 14, 4529–4539. [CrossRef]

81. Tang, W.; Dong, Z.; Zhang, R.; Yi, X.; Yang, K.; Jin, M.; Yuan, C.; Xiao, Z.; Liu, Z.; Cheng, L. Multifunctional
Two-Dimensional Core–Shell MXene@Gold Nanocomposites for Enhanced Photo–Radio Combined Therapy
in the Second Biological Window. ACS Nano 2019, 13, 284–294. [CrossRef]

82. Dai, C.; Chen, Y.; Jing, X.; Xiang, L.; Yang, D.; Lin, H.; Liu, Z.; Han, X.; Wu, R. Two-Dimensional Tantalum
Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation.
ACS Nano 2017, 11, 12696–12712. [CrossRef]

83. Lin, H.; Wang, Y.; Gao, S.; Chen, Y.; Shi, J. Theranostic 2D Tantalum Carbide (MXene). Adv. Mater. 2018,
30, 1703284. [CrossRef]

84. Liu, Z.; Lin, H.; Zhao, M.; Dai, C.; Zhang, S.; Peng, W.; Chen, Y. 2D Superparamagnetic Tantalum Carbide
Composite MXenes for Efficient Breast-Cancer Theranostics. Theranostics 2018, 8, 1648–1664. [CrossRef]
[PubMed]

85. Lin, H.; Gao, S.; Dai, C.; Chen, Y.; Shi, J. A Two-Dimensional Biodegradable Niobium Carbide (MXene) for
Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247.
[CrossRef] [PubMed]

86. Han, X.; Jing, X.; Yang, D.; Lin, H.; Wang, Z.; Ran, H.; Li, P.; Chen, Y. Therapeutic mesopore construction
on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow.
Theranostics 2018, 8, 4491–4508. [CrossRef]

87. Feng, W.; Wang, R.; Zhou, Y.; Ding, L.; Gao, X.; Zhou, B.; Hu, P.; Chen, Y. Ultrathin Molybdenum Carbide
MXene with Fast Biodegradability for Highly Efficient Theory-Oriented Photonic Tumor Hyperthermia.
Adv. Funct. Mater. 2019, 29, 1901942. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/adma.201604847
http://dx.doi.org/10.1039/C7NR05997C
http://dx.doi.org/10.1016/j.carbon.2017.03.023
http://dx.doi.org/10.1021/acs.nanolett.6b04339
http://www.ncbi.nlm.nih.gov/pubmed/28026960
http://dx.doi.org/10.1021/acs.chemmater.7b02441
http://dx.doi.org/10.1021/acsami.7b13421
http://dx.doi.org/10.1039/C7NR06958H
http://www.ncbi.nlm.nih.gov/pubmed/29271463
http://dx.doi.org/10.1002/adhm.201701394
http://dx.doi.org/10.2147/IJN.S202208
http://dx.doi.org/10.1021/acsnano.8b05982
http://dx.doi.org/10.1021/acsnano.7b07241
http://dx.doi.org/10.1002/adma.201703284
http://dx.doi.org/10.7150/thno.23369
http://www.ncbi.nlm.nih.gov/pubmed/29556347
http://dx.doi.org/10.1021/jacs.7b07818
http://www.ncbi.nlm.nih.gov/pubmed/29063760
http://dx.doi.org/10.7150/thno.26291
http://dx.doi.org/10.1002/adfm.201901942
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	The Choice of Descriptors
	Datasets

	Results
	Dataset I—Experimental Set
	Dataset II—Experimental Set
	Dataset III—Combined Experimental and Theoretical Sets
	Discussion of Datasets

	Model Predictions
	Discussion
	Conclusions
	Detailed Information about the Experimental Data Used in the Machine Learning Models
	Detailed Information about the Elemental Features Used in the Machine Learning Models
	References

