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Abstract: Fe3O4 decorated graphene was synthesized for electromagnetic wave absorption via a facile
one-pot hydrothermal approach. The structure and morphology of the as-prepared nanomaterials
were systematically investigated. The graphene oxide (GO) was reduced and Fe3O4 nanoparticles
were evenly decorated on the surface of reduced graphene oxide (rGO) nanosheets. The average
particle size of Fe3O4 nanoparticles is about 15.3 nm. The as-prepared rGO-Fe3O4 nanocomposites
exhibited a good microwave absorption performance because of the combination of graphene and
magnetic Fe3O4. When the thicknesses are 1.6 mm and 6.5 mm, the reflection loss (RL) values are up
to −34.4 dB and −37.5 dB, respectively. The effective bandwidths are 3.8 and 1.9 GHz.
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1. Introduction

With the extensive usage of digital devices, the electromagnetic wave (EMW) is becoming a new
environmental pollutant and threat. It not only seriously disrupts the operation of electronic equipment
and satellite communication but also jeopardizes human health [1,2]. EMW absorbing materials are
considered to be the most effective strategy to eliminate EMW pollution because they can absorb
EMW and convert the electromagnetic energy into heat loss. Therefore, there is an urgent demand for
developing high-performance EMW absorbing materials to counteract the adverse effects [3].

The ideal EMW absorbing materials should possess strong absorption ability, broadband, and low
density [4]. To serve these purposes, various materials have been investigated, such as magnetic
metal powders [5], ferrite [6], and titanates [7]. However, these materials cannot meet the increasing
requirements of the EMW absorbing materials due to drawbacks like high density and being easily
corroded or oxidized in harsh environments. To overcome these problems, carbon-based materials
including graphite [8,9] and carbon nanotubes [10,11] have been developed to improve the EMW
absorption because of low density, good thermostability, and corrosion resistance. As a representative
of novel carbon-based nanomaterials, graphene is considered as an excellent EMW absorbing material
due to its prominent carrier mobility, high surface area, ultra-light weight, and high thermal and
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chemical stability [12]. However, the EMW absorption of pristine graphene is very weak because of its
poor impedance matching caused by low permeability and high permittivity [13].

Graphene oxide (GO), as an important graphene precursor, exhibits some similar properties to
graphene. It is widely regarded as a simple method to obtain graphene by reducing GO. These structural
defects arising from oxygen-containing groups (hydroxyl, epoxy, and carbonyl) are facilitated to the
multiple dielectric loss [14]. However, the EMW absorption property needs to be further improved
because of the weak impedance matching. The most conventional approach to solve the problem
is introducing magnetic nanoparticles on reduced graphene oxide (rGO). The introduced magnetic
materials are mainly metallic magnetic nanoparticles, such as Co, Fe, and Ni [15–17]. Ding et al.
synthesized a CoFe@rGO nanocomposite via a three-step chemical method by using the raw materials
of FeCl3·6H2O, CoCl2·6H2O and rGO. The CoFe@rGO nanocomposites exhibited a maximum reflection
loss of −25.66 dB at 16.63 GHz [18]. However, these metallic nanoparticles with high electrical
conductivities may decrease magnetization because of the eddy current effect [19]. Furthermore,
these nanoparticles are easily oxidized and corroded. Compared with metallic nanoparticles,
Fe3O4 nanoparticles are commonly considered as an important candidate for EMW absorbing
materials because it possesses low electrical conductivity, good corrosion resistance and oxidation
resistance [20]. Herein, we are motivated to prepare Fe3O4 nanoparticle decorated rGO nanocomposites
(rGO–Fe3O4) via a simple hydrothermal treatment. The structure and morphology, EMW absorption
properties in high frequency and low frequency, and the mechanism of the obtained products are
systematically investigated.

2. Experimental

2.1. Materials

GO powders were bought from the Sixth Element Materials Technology company (Jiangsu, China).
The FeCl3·6H2O, polyethylene glycol (PEG) and ethylene glycol were supplied by the Xilong Chemical
company (Beijing, China). Sodium acetate (CH3COONa) was purchased from the Tianjin Huadong
Reagent Factory (Tianjin, China).

2.2. Preparation of rGO-Fe3O4

GO powders (100 mg) were added to ethylene glycol (100 mL) and ultrasonicated for 1.5 h.
Concurrently, 2.4 g FeCl3·6H2O, 2.4 g CH3COONa, and 5.4 g PEG were added into 30 mL ethylene
glycol. The two solutions were transferred into a 150 mL Teflon-lined stainless steel autoclave.
After reacting at 200 ◦C for 12 h, the product (rGO-Fe3O4) was separated by magnet and washed using
distilled water and ethanol, then dried by freeze drying for 1 day. The bare Fe3O4 and rGO were also
prepared in a similar process except for the addition of GO or FeCl3·6H2O, respectively.

2.3. Characterization

The products were characterized through X-ray diffraction (XRD, Rigaku D/Max 2400 diffractometer,
Tokyo, Japan) with Cu Kα source at a scanning speed of 5◦/min from 10 to 70◦. GO, rGO, Fe3O4,
and rGO-Fe3O4 were analyzed with a Fourier transform infrared spectrometer (FTIR, Thermo Fisher
Scientific Nicolet iS 50, Waltham, MA, USA). Raman spectra (Thermo Scientific DXRxi, Waltham, MA,
USA) were recorded by a Raman system with an excitation wavelength of 514.5 nm. Thermogravimetric
analysis (TGA, PerkinElmer TGA 8000, Waltham, MA, USA) was carried out using a thermal analyzer
at a heating rate of 10 ◦C/min under nitrogen atmosphere. The distribution of Fe3O4 on the surface of
rGO was observed by a transmission electron microscopy (TEM, JEOL JEM-2100F, Tokyo, Japan) at an
accelerating voltage of 200 kV. The electromagnetic parameters were collected using a vector network
analyzer (Agilent HP8753D, Santa Clara, CA, USA). All the samples (35% nanocomposites and 65%
wax) were pressed to toroidal-shaped rings (Dinner: 3 mm, Douter: 7 mm).
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3. Results and Discussion

The crystalline structures of the obtained nanocomposites are investigated (Figure 1). GO shows a
typical diffraction peak at 11.7◦, which can be attributed to the introduction of oxygenic functional
groups on the honeycomb carbon skeleton of graphene. After hydrothermal treatment for 12 h, a new
peak appears at 23.3◦ and the peak at 11.7◦ disappears in the spectrum of rGO, implying the reduction
of GO to graphene. For Fe3O4, seven peaks located at 18.3◦, 30.1◦, 35.5◦, 43.1◦, 53.5◦, 57.0◦ and 62.6◦

can be assigned to the reflections of (111), (220), (311), (400), (422), (511) and (440) planes of Fe3O4

(JCPDS, Card No. 75-0033) with the face-centered cubic structure [21]. The spectrum of rGO-Fe3O4

exhibits similar patterns with that of Fe3O4 except for a slightly broad peak at nearly 23.3◦, because of
the combination of Fe3O4 nanoparticles and rGO.
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Figure 1. X-ray diffraction patterns of GO, rGO, Fe3O4, and rGO–Fe3O4 nanocomposites.

The chemical structure of GO, rGO, Fe3O4, and rGO-Fe3O4 were studied through FTIR spectra
(Figure 2). The characteristic absorption bands located at 1717, 1033, 1578, 1398, and 3398 cm−1 are
associated with C=O, C–O in the epoxide group, C=C in the aromatic ring, and the deformation and
stretching vibration of -OH groups, respectively. The spectrum of rGO is consistent with that of GO
except for the intensity of these peaks decrease greatly. It is implied that GO is reduced during the
solvothermal process. Two bands appear at 2918 and 2867 cm−1, corresponding to -CH2 and -CH3

groups in the residual polyethylene glycol. For Fe3O4, a characteristic absorption band appears at
535 cm−1, corresponding to Fe–O vibrations of Fe3O4. rGO–Fe3O4 also exhibits the same curve as
Fe3O4 and rGO, indicating Fe3O4 nanoparticles were effectively decorated on rGO nanosheets.
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Figure 2. Fourier transform infrared spectra of GO, rGO, Fe3O4, and rGO–Fe3O4.

Raman is used to further investigate the structural changes of rGO–Fe3O4 composites. The results
are shown in Figure 3. Except for Fe3O4, the other nanocomposites present the typical reflections of
carbon at 1349 cm−1 (D band, the disordered structures of GO) and 1589 cm−1 (G band, the in-plane
vibrations of sp2 bonded carbon atoms). The ID/IG is used to measure the quantity of defects. The ID/IG

ratio of rGO (0.95) is slightly lower than that of GO (0.98), indicating the reduction of GO. The existence
of Fe3O4 nanoparticles may disorder the structure of graphene, so the ID/IG ratio of rGO-Fe3O4 increases
up to 1.11. The typical peaks of Fe3O4 centered around 215, 276, 388, 481, and 585 cm−1 appear in
Fe3O4 and rGO–Fe3O4 spectra, which is assigned to the Ag1(1), Eg2 + Eg3, Eg4, A1g(2), and Eg5 modes,
respectively [22].
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The thermal stability of these samples are also investigated (Figure 4). The weight losses of GO
are ~10 wt.% (at around 100 ◦C) and ~40 wt.% (at around 300 ◦C), indicating the removal of H2O and
the pyrolysis of the oxygenic functional groups, respectively. The total weight loss of rGO is nearly
30 wt.% at around 400 ◦C, resulting from the decomposition of residual oxygenic functional groups.
The improved thermal stability of rGO demonstrates the reduction of GO. Compared to GO and rGO,
Fe3O4 and rGO–Fe3O4 exhibit better thermal stabilities, and the weight losses are 6 wt.% and 9 wt.%
at 800 ◦C, suggesting the mass ratio of Fe3O4 is much larger than that of graphene nanosheets in
rGO-Fe3O4 composites. It is concluded that the obtained rGO-Fe3O4 nanocomposites will possess an
excellent EMW absorption at low thickness because the magnetic Fe3O4 nanoparticles are preponderant
in mass.
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Typical transmission electron microscope (TME) of rGO–Fe3O4 are presents in Figure 5. Fe3O4

nanoparticles with spherical structures are dispersed on the rGO nanosheets (Figure 5a). The average
diameter of Fe3O4 particles is 11.3 ± 1.8 nm based on the size distribution analysis with 100 arbitrarily
selected nanoparticles (Figure 5b). In the hydrothermal process, Fe3+ ions are anchored by the rGO
nanosheets and grow into Fe3O4 nanoparticles. The rGO nanosheets play a confinement function
to prevent the Fe3O4 nanoparticles from detaching and aggregating. From the high-resolution
transmission electron microscopy (HRTEM) image in Figure 5c, the interplanar spacing (0.253 nm) is
assigned to Fe3O4 (311) plane [23]. The selected area electron diffraction (SAED) in the bottom-left
inset of Figure 5c implies the face-centered cubic (fcc) structure of polycrystalline Fe3O4 nanoparticles.
Therefore, the TEM results further confirm the formation of Fe3O4 nanoparticles on rGO.
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As shown in Figure 6, the complex permittivity εr = ε′ − jε′′ and complex permeabilityµr = µ′ − jµ′′

of Fe3O4 and rGO–Fe3O4 were measured. The values of ε′ and ε′′ for Fe3O4 and rGO-Fe3O4 are shown
in Figure 6a,b. For rGO–Fe3O4, the ε′ decreased from 14.11 to 11.48, and ε′′ values increased from
3.13 to 4.67 (in 2–18 GHz). It is obvious that the ε′ and ε′′ for rGO–Fe3O4 are much larger than that of
Fe3O4. Higher values of ε′ are attributed to the existence of conductive rGO nanosheets. The higher
ε′′ values are ascribed to the multiple dielectric loss behaviors of rGO–Fe3O4. Firstly, the high electric
conductivity of rGO-Fe3O4 is facilitated to increase the dielectric loss. Besides, the Fe3O4 nanoparticles
loaded on rGO and the residual -OH and -COOH groups of rGO can serve as dipoles to enhance the
dipole polarization. Furthermore, the multiple interfaces between rGO and Fe3O4 nanoparticles can
enhance the interfacial polarization. The above factors are beneficial for the enhancement of dielectric
loss behaviors of rGO–Fe3O4.
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The Debye dipolar relaxation is regarded as a key reason to explain EMW absorption mechanism
of materials [24]. The εr can be described as Equation (1) [25]:

εr = ε∞ +
εs − ε∞

1 + j2π fτ
= ε′ − jε′′ (1)

where εs and ε∞ are the static and optical permittivity. τ is the relaxation time. Based on the Equation (1),
ε′ and ε” are expressed as Equations (2) and (3):

ε′ = ε∞ +
εs − ε∞

1 + (2π f )2τ2
(2)

ε′′ =
2π fτ(εs − ε∞)

1 + (2π f )2τ2
(3)

The relation of ε′ and ε” is expressed as Equations (4) and (5):(
ε′ −

εs + ε∞
2

)2
+ (ε′′ )2 =

(
εs − ε∞

2

)2
(4)

ε′ =
ε′′

2π fτ
+ ε∞ (5)

From Equation (5), the ε′′ versus ε′ curve is a semicircle. Every semicircle is considered as single
Debye relaxation process. The ε′′-ε′ plots for Fe3O4 and rGO–Fe3O4 are presented in Figure 6c.
The curve of Fe3O4 is irregular, while the curve of rGO–Fe3O4 exhibits four semicircles, and every
semicircle is corresponding to a Debye dipolar relaxation. It suggests that the existence of multiple
dielectric relaxations in the electromagnetic wave absorption processes. Besides, the Cole–Cole
semicircles are distorted, which implys there are other processes (conductive loss, Maxwell–Wagner
relaxation, and dipolar polarization) [26].

The µ′ and µ′′ of Fe3O4 and rGO–Fe3O4 are presented in Figure 6d,e. The µ′ values of Fe3O4

exhibit a decreasing trend from 1.28 to 0.88 at 2–8 GHz and remain constant with slight fluctuations
over 8–18 GHz. Compared with Fe3O4, rGO–Fe3O4 have a similar tendency in µ′, which is attributed to
a mass of magnetic Fe3O4 particles on non-magnetic rGO. The values of µ′′ for Fe3O4 and rGO–Fe3O4

sharply decrease with the increasing frequency between 2 GHz and 8 GHz. The peak is mainly ascribed
to the natural resonance derived from Fe3O4 nanoparticles [27]. The resonance frequencies of Fe3O4

nanoparticles are usually less than 2 GHz [7]. The obtained nanocomposites with nanometer-scale
sizes will possess enhanced anisotropy energies and their resonance frequencies can shifts to higher
frequencies due to the small size effect [28].

Theµ′′ of Fe3O4 is approximately constant at 8–18 GHz, while that of rGO–Fe3O4 becomes relatively
stabilized with some fluctuations and increases gradually from 14 GHz to 18 GHz. Eddy current loss is
a key factor for magnetic loss. It is verified as follows Equation (6):

u′′ =
2πu0(u′)

2σd2 f
3

(6)

where µ0 is vacuum permeability, σ is conductivity, d is the thickness. If the eddy current loss is the
main factor, the C0 (C0 = 2πµ0σd2/3) is independent of frequency. The C0 curve is shown in Figure 6f.
C0 for Fe3O4 sharply decrease at from 2 GHz to 8 GHz and remain constant at 8–18 GHz, indicating
that eddy current loss is the key magnetic loss at X and Ku bands. The C0 curve of rGO-Fe3O4 is similar
to that of Fe3O4 except for the increase from 14 GHz to 18 GHz, implying that there is some other
mechanism for rGO–Fe3O4. It is ascribed to the synergistic effect of rGO and Fe3O4 nanoparticles,
which is similar with Shu’s work [29].
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The tanδε and tanδµ of Fe3O4 and rGO-Fe3O4 are calculated to describe the electromagnetic loss
abilities (Figure 7). It is obviously that the plots of tanδε and tanδµ have similar trends with those
of ε” and µ”. The values of tanδε for rGO–Fe3O4 are much higher than that of Fe3O4 especially at
the Ku band because of rGO nanosheets. Besides, the tanδµ value for rGO–Fe3O4 is smaller than
tanδε, implying the dielectric loss is preponderant in the electromagnetic wave absorption, as reported
in other literature [30]. The enhancements of tanδε and tanδµ at high frequencies are favorable for
improving EMW absorbing properties in the high frequency regions.
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The reflection loss (RL) curves of Fe3O4 and rGO-Fe3O4 at varied thickness are presented in Figure 8.
The minimum RL of bare Fe3O4 is −7.7 dB at 5.2 GHz with 6.5 mm. The EMW absorption performance
of rGO nanosheets is also poor due to the absence of the magnetic component [31]. rGO–Fe3O4 displays
the enhanced EMW absorption performance. The minimum RL are −34.4 dB at 1.6 mm and −37.5 dB
at 6.5 mm. The corresponding effective bandwidths (≤−10 dB) are 3.8 GHz and 1.9 GHz. The EMW
absorption properties of rGO–Fe3O4 composites in high frequency and low frequency are higher than
other similar rGO–Fe3O4 materials, which are reported in other works [32,33]. Besides, the maximum
absorption band moves towards the low frequency when absorber thickness increases.
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Zin = Z0

√
µr
εr

tanh
[
j
(

2π f d
c

)
√
µrεr

]
(8)

where c is the speed of light, d is the thickness of the microwave absorbing material, and Z and Z0 are
the input impedance and free space impedance, respectively.

Obviously, rGO-Fe3O4 nanocomposites exhibit good EMW absorption abilities, which can be
attributed to these factors. Firstly, the defects caused by Fe3O4 nanoparticles and residual hydroxy
and carboxyl groups on rGO can act as the dipoles to improve the polarization relaxation. Secondly,
the introduction of magnetic Fe3O4 nanoparticles improves the magnetic loss abilities according to
natural resonance and eddy current effect mechanism. Finally, the abundant heterointerfaces between
graphene and Fe3O4 nanoparticles are conducive to the multiple reflections, scatting, and refraction of
the incident electromagnetic wave, which results in improved electromagnetic attenuation.

4. Conclusions

rGO-Fe3O4 nanocomposites were synthesized by the hydrothermal method. GO was reduced to
rGO and Fe3O4 nanoparticles and simultaneously loaded on rGO nanosheets. The obtained rGO–Fe3O4

nanocomposites possessed optimal RL values of−34.4 dB at 1.6mm. The effective absorption bandwidth
is 3.8 GHz. Another minimum RL value is −37.5 dB at 6.5 mm with an absorption bandwidth of
1.9 GHz. The conductivity loss, polarization loss, eddy current loss, and natural resonation are major
mechanisms in the electromagnetic wave dissipations. It is believed that rGO–Fe3O4 nanocomposites
can be employed as a high-efficiency electromagnetic wave absorbing candidate.
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