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Abstract: Surgery is performed to treat various diseases. During the process, the surgical site is
healed through self-healing after surgery. Post-operative or tissue adhesion caused by unnecessary
contact with the surgical site occurs during the normal healing process. In addition, it has been
frequently found in patients who have undergone surgery, and severe adhesion can cause chronic pain
and various complications. Therefore, anti-adhesion barriers have been developed using multiple
biomaterials to prevent post-operative adhesion. Typically, anti-adhesion barriers are manufactured
and sold in numerous forms, such as gels, solutions, and films, but there are no products that can
completely prevent post-operative adhesion. These products are generally applied over the surgical
site to physically block adhesion to other sites (organs). Many studies have recently been conducted
to increase the anti-adhesion effects through various strategies. This article reviews recent research
trends in anti-adhesion barriers.
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1. Introduction

Many surgeries are performed to treat a variety of diseases. The surgical site can be a small
to large wound, depending on the severity of the disease [1]. When the vascular tissue around the
surgical site is damaged during surgery, vascular endothelial cells, fibroblasts, and myofibroblasts
grow in response to various hormones and cytokines in the blood, generating a fibrous band while
entangling tissues for collagen repair [2–6] (Figure 1). Abdominal adhesion occurs at the surgical site
due to contact with other sites during healing [7] and occurs in more than 90% of patients who undergo
abdominal surgery.

Post-operative adhesions are composed of fibrous scar tissue that connects the surgical site to the
abdomen or other organs [8] (Figure 2). These can cause serious complications, such as abdominal pain,
pelvic pain, infertility, and intestinal obstruction [9–13]. Additionally, postsurgical adhesion to the
vertebral disks can cause paraplegia and severe pain, leading to fatal problems [14–17]. Many medical
staff members and researchers are seeking ways to prevent tissue adhesion after open surgery through
the development of various surgical methods, but it is difficult to completely prevent post-operative
adhesion without the use of anti-adhesion barriers [18–22]. In general, the main target in the prevention
of postoperative adhesion is to block or minimize the tissue ingrowth into anti-adhesion barrier
materials, resulting in minimal connections between the surgical sites and other parts of the organs [2].
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Figure 1. A simple schematic of the post-operative adhesion process.

Figure 2. Various types of post-operative adhesions.

Various anti-adhesion barriers have been evaluated [14,23]. Anti-adhesion barriers generally block
contact between the surgical site and other sites to inhibit fibrous band formation [2,24]. These products
are classified into three forms: gels, solutions, and films [25]. Functional anti-adhesion barriers have
recently been developed by loading drugs that prevent adhesion and have been used to treat surgical
areas to prevent physically unnecessary adhesion [8,26] (Table 1).
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Table 1. Anti-adhesion barriers that have been the subject of recent research.

Biomaterial Form References

2,2,6,6-tetramethylpiperidine-1-loxy (TEMPO)-oxidized nanocellulose Hydrogel [27]
Hyaluronic acid (HA)/ carboxymethyl cellulose (CMC) Hydrogel [28]

HA/CMC/Poly (D, L-lactide-co-glycolide) (PLGA) Hydrogel [29]
furfuryl hyaluronic acid Film [30]

Carboxymethyl chitosan (CMChi), CMC, collagen Film [31]
Chitosan (Chi) Hydrogel [32]

N, O-carboxymethyl chitosan (N, O-Chi)/oxidized regenerated cellulose (ORC) Film [33]
Polyethylene glycol (PEG)/Polylactic acid (PLA) Film [34]

silk fibroin protein (SFP)/ Polyvinyl alcohol (PVA), SFP/PEG, SFP/ polyethylene
oxide (PEO) Film [35]

poly(anhydride-esters)/PEG Hydrogel [36]
poly (lactic-co-glycolic acid)-graft-polyvinylpyrrolidone/polyiodide

(PLGA-g-PVP/I) Film [37]

PLGA/ poly(lactide-co-caprolactone) (PLCA)/poly
(L-phenylalanine-co-p-dioxanone (PDPA) Film [38]

polypropylene (PP)/poly ε-caprolactone (PCL)/ ORC Film [39]
R-CPC copolymer (PCL−polypropylene glycol (PPG)−PEG−PPG−PCL) Hydrogel [40]

PVA Hydrogel [41]
poly(p-dioxanone-co-l-phenylalanine) (PDPA) Film [42]

Many commercial medical products have been developed to prevent post-operative adhesion [43].
Such medical products are manufactured using biomaterials, and most are nontoxic and biodegradable
in the body [44]. The anti-adhesion barriers that have been commercialized thus far are summarized in
Table 2. This review article also presents biomaterials that can be developed into anti-adhesion barriers
and cites various studies on anti-adhesion barriers. Finally, this review article presents the current
trends in anti-adhesion barrier research and discusses future research directions.

Table 2. Various forms of anti-adhesion products.

Biomaterial Product Name Form References

Oxidized regenerated cellulose (ORC) Surgicel® Film [45]
ORC Interceed® Film [46]

Carboxymethyl cellulose (CMC) Seprafilm® Film [47]
Hyaluronic acid (HA)/CMC Sepragel® Solution [48]

HA/CMC Guardix-sol® Hydrogel [49]
HA/CMC SeprasprayTM Powder [50]

HA derivate Incert Film [51]
HA Hyalobarrier® Hydrogel [52]
HA Sepracoat Solution [53]

HA derivate ACP gel Solution [54]
Ferric HA Lubricoat Solution [55]
Ferric HA Intergel® Solution [56]

HA derivate Carbylan-SX Film/spray [57]
Icodextrin Adept® Solution [58]
Dextran Hyskon® Hydrogel [59]
Collagen COVA+TM Hydrogel [60]

Polyethylene glycol (PEG) SprayShieldTM Spray [61]
PEG SprayGelTM Spray [62]
PEG Coseal® Hydrogel [63]

PEG/CMC Oxiplex® Hydrogel [64]
Polylactic acid (PLA)-PEG REPEL-CV Film [65]

PLA SurgiWrap® Film [66]
Polyvinyl alcohol (PVA)/CMC A-part Gel® Hydrogel [67]

Poloxamer/alginate Guardix-SG Hydrogel [68]
Expanded polytetrafluoroethylene (e-PTFE) Gore®Preclude® Film [69]
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2. Polymers as Materials for Anti-Adhesion Barriers

Anti-adhesion barriers are usually developed using biomaterials. Their disadvantages are
thus related to the biomaterials used [70]. Several studies have applied various biomaterials and
technologies to establish anti-adhesion barriers [26,27,37,38,71,72]. These anti-adhesion biomaterials
have excellent biocompatibility and biodegradability [73,74] and can be classified as either natural or
synthetic polymers.

2.1. Natural Polymers

Natural polymers are derived from natural materials and animals (including humans) and exhibit
excellent biocompatibility [75]. Gelatin and polysaccharide-based polymers such as alginate and
hyaluronic acid (HA) are commonly used as anti-adhesion barriers [72,76–78]. The disadvantage of
natural polymers is that it is challenging to maintain them in the body for an extended period due to
their poor physical properties. However, they are easy to process, and FDA approval can be obtained
relatively easily [79]. As such, natural polymer anti-adhesion barriers have been widely developed
(Figure 3).

Figure 3. Structures of natural polymers (the image of the gelatin structure was adopted with
permission [80]).

2.1.1. Carboxymethyl Cellulose (CMC)

Carboxymethyl cellulose (CMC) is synthesized by an alkali-catalyzed reaction between cellulose
and chloroacetic acid [81]. It has the chemical formula C6H7O2(OR1)(OR2)(OR3), where R1, R2, and
R3 are H or C8H16NaO8. It is widely used in biomedical engineering, tissue engineering, and drug
delivery systems [82–85]. Generally, cellulose is insoluble in water, but CMC exists as water-soluble
salts. It has good biocompatibility and biodegradability and can be manufactured and applied as a
hydrogel or film [26,86]. As an anti-adhesion barrier, seprafilm® and intercoat are commercialized
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using CMC [43]. Most CMC-based anti-adhesion barriers have been developed into medical products
that are absorbed into the body within a few days. These CMC-based barriers are manufactured
by electrospinning and solvent casting methods, and anti-adhesion barriers that are more effective
than the current commercial products are being actively developed by loading these barriers with
drugs [26,87].

2.1.2. Hyaluronic Acid (HA)

HA is a natural linear polymer consisting of repeating units of N-acetyl glucosamine and
gluconic acid [88] and has the formula (C14H21NO11)n. It has been widely used in cosmetics and
pharmaceuticals [89]. HA has a good swelling ability and biocompatibility [90,91]. In addition,
using HA is advantageous because its mechanical properties can be controlled through crosslinking
reactions [92]. However, HA is absorbed in the body within 3 days and is then rapidly decomposed,
and therefore, it is difficult to use HA as a single material in anti-adhesion barriers. Guardix-sol®,
a currently commercialized product, is made by blending HA and CMC and can exist in the body for
more than two weeks. This longevity and its anti-adhesion properties have led to Guardix-sol® being
sold as an anti-adhesion barrier for use at surgical sites [49].

2.1.3. Chitosan

Chitosan is a natural amine-containing polysaccharide with various useful biological properties,
including excellent biocompatibility, biodegradation, nontoxicity, hemostatic activity, antibacterial
activity, and free radical-scavenging activity [93,94]. Chitosan also has a longer decomposition time
in the body than other biomaterials, resulting in its application as an anti-adhesion barrier [95–97].
However, chitosan-derived anti-adhesion barriers can be dangerous to patients allergic to chitin, so
they are not applicable for those cases.

2.1.4. Gelatin

Gelatin is a biomaterial that can be obtained from the extracellular matrix (ECM) layers of
animals (including humans) and has excellent biocompatibility [98]. Therefore, it is widely applied
to tissue engineering and medical products. Crosslinking (by agents such as glutaraldehyde (GTA),
carbodiimides, and genipin) can be performed to control its mechanical properties [99]. However,
unreacted crosslinking agents remaining after crosslinking reactions can be toxic, hampering the use
of gelatin-based materials for medical products [100]. Recently, nanotechnology has been applied to
develop effective chemical anti-adhesion barriers using gelatin or drug loading [101–103].

2.1.5. Alginate

Alginate is abundant in seaweed, is a polysaccharide block copolymer in which α-L-guluronic acid
and β-D-mannuronic acid are repeated [104], and has the chemical formula (C6H8O6)n. Linear alginate
is soluble in water and gelated by interactions with ions such as Ca2+ and Ba2+ [105]. These crosslinking
reactions are nontoxic and are advantageous because they can be used to control the mechanical
properties of the polymer [104]. Nanofiber-type anti-adhesion barriers have recently been developed
using electrospinning, and furthermore, effective anti-adhesion barriers have been developed by
loading materials with drugs with anti-adhesion effects [26,106,107].

2.2. Synthetic Polymers

Synthetic polymers that can be applied in the body are generally biocompatible and should be
biodegradable [108]. In addition, the byproducts of decomposition should not cause complications and
be nontoxic. Synthetic polymers biodegrade more slowly than natural polymers [109]. Anti-adhesion
barriers developed with synthetic polymers can, therefore, be expected to exert longer-lasting
anti-adhesion effects than those produced with natural polymers [110]. Synthetic polymers are
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composed of repeating units, allowing the easy control of properties such as the molecular weight,
and they have excellent mechanical properties. In addition, since they are hydrolyzed in the body or
decomposed by enzymes, they are particularly useful polymers as bioimplants. Typical biodegradable
synthetic polymers, the polyester-based polymers, include polylactic acid (PLA), polyglycolic acid
(PGA), and poly ε-caprolactone (PCL) (Figure 4).

Figure 4. Structures of synthetic polymers.

2.2.1. Polylactic Acid (PLA)

Polylactic acid (PLA) is synthesized from the in vivo metabolite’s lactic acid or lactide through
a ring-opening reaction by a chemical catalyst or an enzyme. The chemical formula of PLA is
[–C(CH3)HC(=O)O–]n. As a monomer, lactic acid has D and L optical isomers, and the properties of
PLA can be varied by changing the ratio between the D form and L form [111]. PLA has a high melting
point and excellent strength, but poor processability, poor flexibility, and high cost [38]. A method
for producing lactic acid by fermenting corn was recently developed and has attracted attention due
to its reduced manufacturing cost. Additionally, since PLA is biodegradable, it has been used in the
development of medical materials, such as medical sutures and bioimplants [112].

2.2.2. Polyvinyl Alcohol (PVA)

Polyvinyl alcohol (PVA) has the formula [CH2CH(OH)]n. PVA is a water-soluble, semi-crystalline
polymer that has excellent thermal stability, physical properties, and biocompatibility and is
inexpensive [113,114]. PVA has a strong oxygen barrier due to strong hydrogen bonds, but the
presence of hydroxyl groups makes it very susceptible to moisture, causing swelling and dissolving.
To address this issue, PVA is crosslinked and used as a hydrogel [112]. Dianhydride and dialdehyde are
mainly used as the crosslinking agents, but a hydrogel can be obtained by using UV light or repeated
freezing and thawing [115]. PVA is being studied for use not only in paints, coatings, and adhesives,
but also in biomedical fields, such as in artificial cartilage, eye drops, and contact lenses. It is widely
applied in the development of anti-adhesion barriers by being blended with other synthetic polymers
and natural polymers [116,117].
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2.2.3. Poly ε-Caprolactone (PCL)

Poly ε-caprolactone (PCL) is relatively inexpensively produced compared to other aliphatic
polyesters and is obtained by ring-opening polymerization from ε-caprolactone [118]. The structure
is (C6H10O2)n. PCL has excellent mechanical properties, such as tensile strength, elongation, and
impact strength, and a low melting point [119]. Additionally, PCL has the advantage of a good
compatibility with other polymers and is biodegradable [120]. Since the degradability of PCL by lipase
is affected when it has higher-order structures (represented by parameters such as the crystallinity), the
biodegradation rate of PCL varies with the processing method [121]. PCL does not cause toxicity in vivo
and is a biocompatible material, and it is thus used in medical sutures and as a drug release material
for long-term wound closure [96]. This polymer is mainly prepared as a nanofibrous anti-adhesion
barrier through electrospinning and can be combined with a natural polymer in a core-sheath structure
to enhance the biocompatibility [122].

2.2.4. Polyethylene Glycol (PEG)

Polyethylene glycol (PEG) has the structure H–(OCH2CH2)n–OH. Generally, PEG is called
polyethylene oxide (PEO) or polyoxymethylene (POE), depending on its molecular weight [123].
This polymer has good biocompatibility and is nontoxic [124]. In medical applications, irrigation with
PEG is used for bowel preparation before surgery [125]. In pharmaceutical applications, PEG is used as
an excipient [124]. Therefore, it has been applied as an anti-adhesion barrier in many studies. Currently,
there are no products that can completely prevent tissue attachment at surgical sites. Therefore, many
studies have been conducted to overcome the disadvantages of existing anti-adhesion barriers and
to develop new effective anti-adhesion barriers. These barriers can be classified by their mode of
operation as either a physical or chemical barrier [26,126] (Figure 5). The development of various
manufacturing technologies has enabled the active study of new anti-adhesion barriers that can be
expected to surpass the anti-adhesion barriers currently being commercialized [26].

Figure 5. Physical and chemical anti-adhesion barrier: (a) Cross-linked cartilage acellular-matrix
film [126]; (b) drug-loaded alginate/carboxymethyl cellulose (CMC)/polyethylene oxide (PEO)
anti-adhesion film [26].
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3. Various Strategies of Anti-Adhesion

3.1. Physical Barriers

As a first method to prevent adhesion, there is a method of blocking contact with the surgical
site and surrounding tissue using an anti-adhesion barrier after surgery [127]. Second, there is a
method of suppressing adhesion using drugs based on the mechanism of adhesion [128]. Finally, there
is a method of minimizing adhesion by unnecessary tissue damage by using delicate surgery and
minimally invasive surgery [129]. However, whilst minimally invasive surgical techniques can help
to prevent adhesion to a level that minimizes or prevents exposure to foreign substances and tissue
drying, there is the limitation that adhesion cannot be eliminated. Therefore, to effectively prevent and
eliminate adhesion, the use of an anti-adhesion barrier is inevitable.

Physical barriers prevent unnecessary contact by blocking surgical sites from other organs [7], and
most of the physical barrier medical products are decomposed and absorbed in the body [25]. In order
to prevent adhesion during the wound healing period, which generally has a period of about 7 days, a
physical barrier that can remain undissolved can more effectively prevent adhesion. Physical barriers
are typically hydrogels or films.

Recently, studies have been conducted in which polymer mesh and hydrogel are combined to
enhance the effectiveness of preventing post-operative adhesion (e.g., polypropylene mesh combined
with hydrogel) [130,131].

3.1.1. Hydrogels

Hydrogels have been studied since the 1960s. A hydrogel is a water-soluble polymer network
structure connected in three dimensions by physical and chemical bonds [132]. Hydrogel materials
contain large amounts of water and do not dissolve in aqueous environments. Various hydrogel
characteristics depend on the polymer constituents, and hydrogels can be transformed into multiple
forms due to their ease of processing [133,134].

Hydrogels mainly absorb water via hydrophilic functional groups such as hydroxyl (–OH), amine
(–CNH2), amide (–CONH– and –CONH2), carboxyl (–COOH), and sulfone (–SO3H) groups and by
capillary and osmotic pressures [135–137]. Hydrophilic and hydrophobic hydrogels maintain their
three-dimensional forms without being dissolved in water because the dispersion force in the water
and their cohesiveness are in equilibrium.

Hydrogels are made by techniques such as solvent casting/particulate leaching [138], gas
foaming [139], phase separation [140], melt molding [141], and freeze-drying [142] (Figure 6). Hydrogels
can be manufactured as films, coatings, nanoparticles, etc., and can act as semipermeable membranes
through which fluid can flow in three dimensions. Additionally, hydrogels have been widely used
in laboratories and clinical trials because they have high biocompatibility, which is due to their high
similarity to the ECM when a large amount of water has been absorbed [143].
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Figure 6. Hydrogel fabrication techniques: (a) Solvent-casting/particulate-leaching [138]; (b) gas
foaming [139]; (c) phase separation [140]; (d) melt molding [141]; and (e) freeze drying [142] (images
adopted with permission).

Hydrogels can be chemically or physically crosslinked [144]. Physical methods do not require
a crosslinking agent and can produce hydrogels reversibly, but a nonuniform structure is formed.
Strong physical interactions are formed in glassy nodules, lamellar microcrystals, and double and
triple helices, while hydrogels are formed by weak physical forces, such as ionic bonds, hydrogen
bonds, or the self-assembly forces in block copolymer micelles [145].

Recently, a thermosensitive hydrogel was developed to apply an anti-adhesion barrier, even
in surgery, using the minimally invasive method. Thermosensitive anti-adhesion barriers have the
advantage that they can be applied to surgical sites through injection because they are liquid at room
temperature and gel at body temperature [27,32,146,147].

3.1.2. Films

Nanofibrous films with a uniform pore size, high porosity, and good permeability can effectively
prevent adhesion [148]. Typical techniques for making nanofibrous films are electrospinning,
self-assembling peptide reactions, and phase separation [149–151]. Among them, electrospinning
technology can form exceptionally long fibers and exhibits a high productivity in a short time [152].

Nanofibrous films obtained through electrospinning have a high specific surface area, porosity,
aspect ratio, and flexibility. Additionally, the diameter can be easily adjusted based on various
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conditions. Electrospinning can be applied to multiple polymers, but toxic solvents are sometimes
used, representing a disadvantage. However, electrospinning is the best method for commercially
producing nanofiber films [153–155]. Nanofibrous films can be used in various applications, such as in
stiffeners, high-efficiency filters, functional fibers, and munitions, and in other medical fields. In the
medical field, nanofiber films are used in drug delivery systems, scaffolds for tissue engineering, and
wound dressings [156–158].

In electrospinning, a polymer is radiated to a collector through a nozzle by an electrostatic force
generated by a high voltage of kV or more and is stretched to a diameter of tens to hundreds of
nanometers. When the charge generated on the surface of the polymer solution extruded from the
nozzle becomes larger than the surface tension, a jet is created from the Taylor cone and is drawn
into the microfiber through bending instabilities [159,160]. Nanofibers are influenced by material
factors such as the concentration, structure, elasticity, conductivity, polarity, and surface tension, and
mechanical elements such as the electric field strength, tip-to-collector distance, and flow rate [161,162]
(Figure 7).

Figure 7. Fabrication of nanofibrous films by electrospinning [26].

3.2. Chemical Barriers

Research has been conducted to prevent adhesions by finding the factors contributing to adhesion
based on the adhesion mechanism. Most anti-adhesion drugs interfere with the deposition of fibrin,
but slow wound healing, in addition to having anti-adhesion effects [163–165]. Fibrin is a poorly
soluble glycoprotein that causes blood clotting and is produced by the hydrolysis of fibrinogen by
thrombin. Fibrin intertwines with blood cells to become a blood clot and hemostatic. It is decomposed
through fibrinolysis. If this action does not occur sufficiently, the fibrin matrix forms an adhesion [166].
Three types of drugs are used to prevent adhesions. The first type is anti-inflammatory agents,
which include steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), vitamin E, and low-dose
aspirin [167,168]. Second, the anticoagulants warfarin; coumarin; indirect thrombin inhibitors; and
direct thrombin inhibitors, such as hirudin, bivalirudin, and argatroban, are also used [169,170].
Finally, the fibrinolytic agents streptokinase, urokinase, and tissue plasminogen activator (tPA) are
used [44,171]. All three types of drugs ultimately lead to fibrinolytic capacity (Figure 8).
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Figure 8. The effects of fibrinolytic agents, anti-inflammatory drugs, and anti-coagulants as
anti-adhesion agents.

The physical barrier methods only act on a local site, but loading a drug in a material leads to the
therapeutic expectation of a more effective anti-adhesion effect. However, there is no consensus on the
anti-adhesion effects of drugs, and thus, there is no commercially available drug-loaded anti-adhesion
barrier [163,172].

3.2.1. Anti-Inflammatory Agents

Inflammation is a defense mechanism against tissue damage, injury, infectious agents, and
autoimmune reactions and is an essential part of the autoimmune response. Inflammatory reactions
have effects that include redness, edema, pain, and loss of function [173].

After surgery, blood flow increases at the site of injury, vascular permeability increases, and immune
cell migration occurs. Activated inflammatory cells (neutrophils, eosinophils, mononuclear phagocytes,
and macrophages), which are present at the site, secrete small molecules such as prostaglandins
(PGs) and nitric oxide (NO) and cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor
(TNF). In particular, a specific amount of the free-radical NO is required in the body for signaling,
particularly for thermoregulation, vasodilation, and neuromodulation, and this molecule is produced
by the enzymes endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS),
and inducible nitric oxide synthase (iNOS). If excess NO is produced by iNOS, whose expression is
induced during inflammation, it can cause hypotension due to shock, damage to nerve tissue, and
tissue damage by inflammatory reactions. Therefore, when an anti-inflammatory drug is used, iNOS is
suppressed, resulting in an anti-adhesion effect [174–176].

Studies have been conducted to prove the anti-adhesion effect of loading anti-inflammatory agents,
e.g., NSAIDS such as ibuprofen [177], celecoxib [167], naproxen [178], and aspirin [179]. Research
has also been conducted using natural anti-inflammatory agents, such as green tea extract [180] and
Turkish galls extract [40].

3.2.2. Anticoagulants

Blood coagulation is a biological reaction that occurs to minimize the loss of blood from damaged
blood vessels and a biological defense mechanism that maintains the intrinsic function of blood through
maintaining blood circulation. Maintaining blood circulation is possible through efficient control
of the blood coagulation reaction system and complementary control of the thrombolysis reaction
system [181,182].
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When an atherosclerotic plaque in the blood vessel ruptures, coagulation factor VII is activated
by an exposed tissue factor, and the coagulation system is activated. Thrombin converts fibrinogen
to fibrin and activates several other coagulation factors to promote platelet aggregation [183,184].
Unfractionated heparin and low-molecular-weight heparin, which are actually used as anticoagulants,
activate antithrombin III and indirectly inhibit thrombin’s action [170,185]. Hirudin directly inhibits
thrombin’s action, and warfarin inhibits the production of blood coagulation factors [186].

Although studies have demonstrated anti-adhesive effects of anticoagulants such as hirudin [186],
heparin [187,188], DMSO [189], and thrombolytic protein from cobra venom [190], some studies have
shown that the effects are ambiguous [185]. Therefore, it seems that more research is needed to prove
the anti-adhesion effects of anticoagulants.

3.2.3. Fibrinolytic Agents

Fibrinolytic agents dissolve thrombi and inhibit the formation of excessive thrombi, thereby
maintaining the openness of blood vessels. The most important factor is plasminogen, which is
converted into plasmin by a plasminogen activator (PA) to dissolve fibrin and form a fibrin degradation
product to achieve thrombolysis. Plasmin can dissolve fibrinogen and fibrin, but the reaction is local.
There are two types of Pas: t-PA and u-PA. t-PA is mainly involved in fibrinolysis in circulating blood,
and u-PA binds to receptors and increases the activity of plasminogen [191–193].

Studies have been conducted to prove that N-acetyl-L-cysteine [194], which upregulates peritoneal
fibrinolytic activity or the fibrinolytic agent streptokinase [195], has anti-adhesive effects. However,
fibrinolytic agent use can lead to bleeding complications, and streptokinase has the disadvantage of
inducing severe hypotension symptoms due to allergic reactions [196].

4. Discussion

Postoperative adhesion is a surgical complication that has not been completely overcome until now.
In addition, it has an incidence rate of 90% during recovery after surgery, and most postoperative
adhesion incidences occur due to separation between the surgical site and the anti-adhesion barriers [7].
In severe cases, re-operation is often required to remove adhesions. However, re-operation causes
additional wounds, which usually adds additional factors for adhesion [197,198]. In order to overcome
such limitations, anti-adhesion barriers have been developed from different angles.

In our previous study, for example [107], we prepared alginate/PEO film as an anti-adhesion
barrier through electrospinning. The focus of the study was the fact that alginate has negative charges
due to the presence of carboxyl groups. Therefore, alginate/PEO film has strong negative charge
characteristics, which was confirmed by cell attachment tests. Fibroblast cells were repelled and did
not attach well to the films. Such characteristics are thought to help minimize cell migration into the
scaffold layer, reducing adhesion at the surgical site. In animal studies, alginate/PEO film exhibited
a significant reduction of postoperative adhesion compared to some commercial products [107].
Chang et al. fabricated chitosan/alginate mats via electrospinning [95]. Chitosan/alginate mats are
known to exhibit hemostasis effects due to the presence of chitosan and reduction of protein adsorption
due to the presence of alginate, which was confirmed by in vitro experiments and abdominal rat
models [95]. Wang et al. prepared naproxen nanoparticle-loaded chitosan hydrogel [32]. Naproxen
(Nap) is a non-steroidal anti-inflammatory drug (NSAID) prescribed in oral and suppository routes in
clinics that are widely used to relieve pain and reduce inflammation. Naproxen nanoparticles were
prepared by MPEG-PCL copolymers, which were then loaded into chitosan hydrogel. The structure
was prepared by linking the chitosan hydrogel and naproxen nanoparticle with β- Glycerol phosphate
disodium salt pentahydrate. As a result, naproxen nanoparticle-loaded chitosan hydrogel showed a
similar postoperative adhesion prevention effect to commercial products and also displayed stable
drug release behavior [32].
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A handful of studies have also been conducted to discover more effective alternative anti-adhesion
materials among those that are not as commonly used as others in traditional anti-adhesion studies.
Silk, which consists of two main proteins (sericin and fibroin), is a natural polymer that can be emitted
by spiders and silkworms [199]. One of the main proteins in silk, sericin, is known to trigger an immune
response [200]. Several studies have been conducted to apply silk fibroin protein for the development
of anti-adhesion barriers. Silk fibroin is known for its good biocompatibility, and the main primary
structure consists of (Gly-Ser-Gly-Ala-Gly-Ala)n amino acid sequences [200]. In addition, the high
glycine content contributes to the tensile strength and rigid structure of silk fibroin [201]. Zhu et al.
prepared novel silkworm pupa carboxymethyl chitosan-based structures for anti-adhesion effects, and
evaluated them via a rat cecal abrasion model [202]. Vepari et al. controlled the anti-adhesion effect by
changing the degree of hydrophobicity through PEGylation of the surface of the silk fibroin film [203].
These studies show that raw silk fibroin has potential to be used as a candidate material for producing
an anti-adhesion effect.

Agarose is a polysaccharide, generally derived from red seaweed. It is a liner polymer that consists
of repeating units of disaccharides: D-galactose and 3,6-anhydro-L-galactopyranose. Standard agarose
derived from Gelidium dissolves well in water with a close to boiling temperature and gels at 34–38 ◦C.
For decades, agarose has been widely used as scaffold matrix material in gel electrophoresis, but has not
been actively used for anti-adhesion purposes [204,205]. However, Tang et al. prepared agarose/collagen
(with a ratio of 2:1, 4:3, and 1:1) anti-adhesion sheets, and evaluated the effect of anti-adhesion through
in vitro and in vivo experiments. The sheets were cross-linked using glutaraldehyde for mechanical
strength, and were shown to exhibit good anti-adhesion effects compared to control groups (without
sheets) [206]. Although agarose is widely used in the field of tissue engineering and regenerative
medicine (due to its nontoxicity and good biocompatibility), it has to be stressed that glutaraldehyde,
one of the representative agarose crosslinking agents, needs to be carefully administered, for the
residues left after the crosslinking reaction can cause severe cytotoxicity [207].

Collagen, known to be the most abundant single protein in the animal kingdom, is a major
insoluble fibrous protein of extracellular matrices and connective tissues. The amino acid sequences of
collagen are commonly known as (Gly-Pro-X-Gly-X-Hyp), where X can be any amino acid except Gly,
Pro, and Hyp. Therefore, collagen exhibits excellent biocompatibility and nontoxicity [208]. Cai et al.
were able to enhance the mechanical strength of a chitosan/carboxymethyl cellulose/collagen composite
membrane by a transglutaminase-catalyzed crosslinking reaction, and tested the anti-adhesion effect
by in vitro and in vivo experiments [31]. Dabrowski et al. showed that COVA+TM made of collagen
could effectively prevent postoperative adhesions that may occur after peritoneal surgeries [60].

Dextran is one of the polysaccharides of polymers and consists of complex branched glucan.
Hyskon® solution, a commercialized product, is a drug employed for hysteroscopy and has been
found to have anti-adhesion effects through the control of immune cells [59].

Gore®Preclude® (an expanded polytetrafluoroethylene (ePTFE) membrane) is a medical product
that consists of pure PTFE and is used for cardiac surgery [69]. PTFE is a linear polymer consisting of
fluorine and carbon, and is known to be hydrophobic. ePTFE, which exhibits a unique mechanical
property, can be obtained in the form of a microporous fibrous membrane structure through the
expansion process at a high temperature and high pressure. ePTFE is used in a variety of medical
accessories, including vascular graft, suture, and wound-care products [209]. Lladó et al. selected
Gore®Preclude® as an anti-adhesion barrier to prevent peridural fibrosis in patients with spinal
surgery and confirmed the prevention of adhesion through clinical studies. In spinal surgeries, the
permanent removal of adhesion is thought to be important and ePTFE was thus thought to be a good
candidate material for the procedure [210]. However, ePTFE is a non-biodegradable polymer, and it is
thus difficult to apply it for various surgeries as commonly as other candidate materials [211].
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Polyglycolic acid (PGA) is a biodegradable, thermoplastic polyester. PGA is widely used in
copolymer forms due to its instability during hydrolysis [212]. Poly (lactic-co-glycolic acid) (PLGA)
is a copolymer of PGA and lactic acid, which is one of the most well-known biomaterials [213].
Poly lactic acid or polylactide (PLA) is a thermoplastic and bioplastic polymer, and is mostly obtained
by condensation reactions of lactic acid with a loss of water. PLA has been confirmed to take a full
10 months to completely degrade in physiological environments [111]. Therefore, PGA and PLA
are difficult to use as standalone materials for an anti-adhesion barrier. PLGA is a biodegradable,
aliphatic polyester-based synthetic polymer with good biodegradability and biocompatibility [213].
Niu et al. prepared a PLGA/poly(lactide-co-caprolactone) (PLCA)/poly(L-phenylalanine-co-p
-dioxanone (PDPA) film using an electrospinning and casting method and evaluated the performance of
the bilayer film through an abdominal rabbit model [38]. Polypropylene (PP) is a thermoplastic polymer
and is widely used in various research fields. It can be obtained through chain-growth polymerization
from propylene monomers. In the medical field, propylene is often used as a material for permanent
medical meshes [214]. Sezer et al. prepared an anti-adhesion layer using PP mesh [39]. They prepared
a PP/PCL/oxidized regenerated cellulose (ORC) layer by electrospinning ORC and PCL on top of the
PP mesh. The fabricated PP/PCL/oxidized regenerated cellulose (ORC) layer was evaluated by in vitro
and animal studies and was shown to exhibit a good adhesion prevention effect [39].

Poly(N-isopropylacrylamide) (PNIPAm or PNIPAAm) is a biodegradable, temperature-responsive
polymer. PNIPAm’s degree of hydrophilicity and hydrophobicity is commonly determined based on
its lower critical solution temperature (LCST) [215]. Such a property is widely applied in drug delivery
and tissue engineering studies, as well as in the development of temperature-sensitive injections for
preventing postoperative adhesions [146].

Various biomaterials and manufacturing processes are being tested in the hope of developing
more effective anti-adhesion barriers. However, there are still no completely effective products and/or
modes of action that can totally replace traditional products in the field. From functional points of
view, physical barriers seem to have reached their limits. However, most commercial products are
based on physical barriers, and products that can be classified as chemical barriers are not easily
found. This is because chemical barriers can exert unwanted additional effects, and do not just simply
prevent postoperative adhesions. Therefore, they may cause higher risks of side effects compared to
physical barriers. Therefore, multiple studies are being conducted to effectively combine the physical
barriers and chemical barriers to control the pattern and the amount of drug release. It is necessary to
understand the limitations of the candidate materials for anti-adhesion and to study various aspects of
biomaterials that can match the needs of specific surgical procedures and sites.

5. Conclusions

In modern medicine, open surgery is performed to treat diseases. However, it remains challenging
to completely prevent tissue adhesion after open surgery. The key to preventing post-operative
adhesion is to minimize the tissue ingrowth into the scaffold materials, which can lead to the effective
blocking of the tissue connection. In addition to the material properties, one of the most important
factors to consider in designing anti-adhesion barriers is to let the barriers stably fix on the surgical
site. One way that the factor can be controlled is by controlling the biodegradation properties of the
anti-adhesion barriers. The anti-adhesion barriers are decomposed after a certain period of time in
the body, resulting in a change in the fixation force on the surgical sites. Therefore, many researchers
have sought to develop effective anti-adhesion barriers by mitigating the disadvantages of existing
anti-adhesion barriers and maximizing their advantages by controlling the degradation behaviors of
the barriers. In addition, it is challenging to achieve minimal tissue ingrowth and stable fixation on the
surgical site at the same time. There have been studies conducted in an effort to enhance fixation by
incorporating polymeric mesh structures in the scaffold layer of the anti-adhesion barriers, and this is
another aspect that can be considered in the development of new barrier products in the future as a
possible solution to achieve both of the above [130,131].
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It is necessary to deepen not only our understanding of the properties of materials, but also the
methods of manufacturing used for the fabrication of anti-adhesion barriers. This review presents
the current research trends in the development of anti-adhesion barriers and provides information
required for future studies. It can provide the basis for developing more advanced and more effective
anti-adhesion barriers.
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Abbreviation

Ala Alanine
CMC Carboxymethyl cellulose
Gly Glycine
GTA Glutaraldehyde
IL Interleukin
HA Hyaluronic acid
Hyp Hydroxyprolyl
NO Nitric oxide
NSAID Nonsteroidal anti-inflammatory drug
PCL Poly ε-caprolactone
PEG Polyethylene glycol
PEO Polyethylene oxide
PGA Polyglycolic acid
PGs Prostaglandin
PLA Polylactic acid
PVA Polyvinyl alcohol
POE Polyoxymethylene
PPG polypropylene glycol
Ser Sericine
TNF Tumor necrosis factor
tPA Tissue plasminogen activator
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Tilki, M.; Demirtürk, P.; et al. Abolition of anti-adhesiogenic effect of heparin by protamine sulfate. Int. J. Surg.
2014, 12, 729–733. [CrossRef] [PubMed]

188. Simsek, H.; Durmus, A.S.; Yildiz, H.; Özçelik, M. Surgery-Induced Changes in Erythrocyte and Plasma
Lipid Peroxidation, Enzymatic and Non-Enzymatic Antioxidants of Female Rats: Protective Role of Heparin
and Pentoxifylline. Acta Sci. Veter. 2018, 46, 9. [CrossRef]

189. Gunay, E.; Abuoglu, H.H.; Uzunoglu, H.; Sunamak, O.; Akyuz, C. Efficacy level of dimethyl-sulfoxide
(DMSO) in the prevention of peritoneal adhesions: An experimental rat model. Int. J. Clin. Exp. Med.
2019, 12, 705–711.

http://dx.doi.org/10.1016/S0049-3848(03)00296-2
http://dx.doi.org/10.1016/j.jss.2010.04.043
http://dx.doi.org/10.1007/s00404-010-1423-3
http://dx.doi.org/10.1161/hh0901.090440
http://www.ncbi.nlm.nih.gov/pubmed/11348996
http://dx.doi.org/10.2174/0929867324666170727103357
http://dx.doi.org/10.1016/j.bpa.2015.03.001
http://dx.doi.org/10.1053/j.gastro.2009.02.001
http://dx.doi.org/10.1089/ten.tea.2012.0208
http://dx.doi.org/10.1002/(SICI)1097-4636(199721)38:1&lt;25::AID-JBM4&gt;3.0.CO;2-J
http://dx.doi.org/10.1093/oxfordjournals.humrep.a136177
http://www.ncbi.nlm.nih.gov/pubmed/8582983
http://dx.doi.org/10.1016/j.ijsu.2013.08.014
http://www.ncbi.nlm.nih.gov/pubmed/23994005
http://dx.doi.org/10.1055/s-0038-1652687
http://dx.doi.org/10.1007/s12257-018-0424-0
http://dx.doi.org/10.1042/bj3520277
http://dx.doi.org/10.1371/journal.pone.0158377
http://dx.doi.org/10.3349/ymj.2013.54.6.1491
http://dx.doi.org/10.3109/08941939609021280
http://www.ncbi.nlm.nih.gov/pubmed/8951662
http://dx.doi.org/10.1016/j.ijsu.2014.05.061
http://www.ncbi.nlm.nih.gov/pubmed/24881909
http://dx.doi.org/10.22456/1679-9216.89400


Materials 2020, 13, 3056 25 of 26

190. Chanda, C.; Sarkar, A.; Chakrabarty, D. Thrombolytic protein from cobra venom with anti-adhesive properties.
Arch. Biochem. Biophys. 2016, 590, 20–26. [CrossRef] [PubMed]

191. Chapin, J.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2014, 29, 17–24.
[CrossRef] [PubMed]

192. Hellgren, M. Hemostasis during Normal Pregnancy and Puerperium. Semin. Thromb. Hemost.
2003, 29, 125–130. [CrossRef] [PubMed]

193. Idell, S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit. Care Med.
2003, 31, S213–S220. [CrossRef]

194. Chu, D.I.; Lim, R.; Heydrick, S.; Gainsbury, M.L.; Abdou, R.; D’Addese, L.; Reed, K.L.; Stucchi, A.; Becker, J.M.
N-acetyl-l-cysteine decreases intra-abdominal adhesion formation through the upregulation of peritoneal
fibrinolytic activity and antioxidant defenses. Surgery 2011, 149, 801–812. [CrossRef]

195. Yagmurlu, A.; Barlas, M.; Gursel, I.; Gökçora, I.H. Reduction of Surgery-Induced Peritoneal Adhesions
by Continuous Release of Streptokinase from a Drug Delivery System. Eur. Surg. Res. 2003, 35, 46–49.
[CrossRef] [PubMed]

196. Schweitzer, D.H.; Van Der Wall, E.E.; Bosker, H.A.; Scheffer, E.; Macfarlane, J.D. Serum-Sickness-Like Illness
as a Complication after Streptokinase Therapy for Acute Myocardial Infarction. Cardiology 1991, 78, 68–71.
[CrossRef] [PubMed]

197. Nkere, U.U. Postoperative Adhesion Formation and the Use of Adhesion Preventing Techniques in Cardiac
and General Surgery. ASAIO J. 2000, 46, 654–656. [CrossRef] [PubMed]

198. Aloia, T.A.; Cooper, A.B.; Shi, W.; Vauthey, J.-N.; Lee, J.E. Reoperative Surgery: A Critical Risk Factor for
Complications Inadequately Captured by Operative Reporting and Coding of Lysis of Adhesions. J. Am.
Coll. Surg. 2014, 219, 143–150. [CrossRef]

199. Andersson, M.; Johansson, J.; Rising, A. Silk Spinning in Silkworms and Spiders. Int. J. Mol. Sci. 2016, 17, 1290.
[CrossRef]

200. Dobb, M.G.; Fraser, R.D.B.; Macrae, T.P. The Fine Structure of Silk Fibroin. J. Cell Biol. 1967, 32, 289–295.
[CrossRef]

201. Blackledge, T.A.; Pérez-Rigueiro, J.; Plaza, G.R.; Perea, B.; Navarro, A.; Guinea, G.V.; Elices, M. Sequential
origin in the high performance properties of orb spider dragline silk. Sci. Rep. 2012, 2, 782. [CrossRef]

202. Zhu, L.; Zhang, Y.-Q. Postoperative anti-adhesion ability of a novel carboxymethyl chitosan from silkworm
pupa in a rat cecal abrasion model. Mater. Sci. Eng. C 2016, 61, 387–395. [CrossRef]

203. Vepari, C.P.; Kaplan, D.L. Surface Modification of Silk Fibroin Matrices with Poly (Ethylene Glycol) Useful as
Anti-Adhesion Barriers and Anti-Thrombotic Materials. U.S. Patent 9,427,499, 30 August 2016.

204. Zarrintaj, P.; Manouchehri, S.; Ahamadi, Z.; Saeb, M.R.; Urbanska, A.M.; Kaplan, D.L.; Mozafari, M.
Agarose-based biomaterials for tissue engineering. Carbohydr. Polym. 2018, 187, 66–84. [CrossRef]

205. Koontz, L. Agarose Gel Electrophoresis. In Methods in Enzymology; Elsevier BV: Amsterdam, The Netherlands,
2013; Volume 529, pp. 35–45.

206. Tang, S.; Yang, W.; Mao, X. Agarose/collagen composite scaffold as an anti-adhesive sheet. Biomed. Mater.
2007, 2, S129–S134. [CrossRef]

207. Yalcin, E.; Cavusoglu, K. Glutaraldehyde Cross-Linked Agarose Carriers: Design, Characterization and
Insulin Release Behaviour. Turk. J. Biochem. 2008, 33, 148–153.

208. Armoiry, X.; Viprey, M.; Constant, H.; Aulagner, G.; Roux, A.S.; Huot, L.; Roubertie, F.; Ninet, J.; Henaine, R.
Potential interest of a new absorbable collagen membrane in the prevention of adhesions in paediatric cardiac
surgery: A feasibility study. Arch. Cardiovasc. Dis. 2013, 106, 433–439. [CrossRef] [PubMed]

209. Holman, W.L.; Bourge, R.C.; Zorn, G.L.; Brantley, L.H.; Kirklin, J.K. Use of expanded polytetrafluoroethylene
pericardial substitute with ventricular assist devices. Ann. Thorac. Surg. 1993, 55, 181–183. [CrossRef]

210. Sologaistua, E.; Lladó, A.; Guimerà, J.; Marín, M. Expanded polytetrafluoroethylene membrane for the
prevention of peridural fibrosis after spinal surgery: A clinical study. Eur. Spine J. 1999, 8, 144–150. [CrossRef]

211. Yao, J.S.; Eskandari, M.K. Accidental discovery: The polytetrafluoroethylene graft. Surgery 2012, 151, 126–128.
[CrossRef] [PubMed]

212. Shinozaki, T.; Hayashi, R.; Ebihara, M.; Miyazaki, M.; Tomioka, T. Mucosal Defect Repair with a Polyglycolic
Acid Sheet. Jpn. J. Clin. Oncol. 2012, 43, 33–36. [CrossRef]

http://dx.doi.org/10.1016/j.abb.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26558696
http://dx.doi.org/10.1016/j.blre.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25294122
http://dx.doi.org/10.1055/s-2003-38897
http://www.ncbi.nlm.nih.gov/pubmed/12709915
http://dx.doi.org/10.1097/01.CCM.0000057846.21303.AB
http://dx.doi.org/10.1016/j.surg.2011.02.015
http://dx.doi.org/10.1159/000067035
http://www.ncbi.nlm.nih.gov/pubmed/12566787
http://dx.doi.org/10.1159/000174768
http://www.ncbi.nlm.nih.gov/pubmed/2021968
http://dx.doi.org/10.1097/00002480-200011000-00003
http://www.ncbi.nlm.nih.gov/pubmed/11110260
http://dx.doi.org/10.1016/j.jamcollsurg.2014.03.024
http://dx.doi.org/10.3390/ijms17081290
http://dx.doi.org/10.1083/jcb.32.2.289
http://dx.doi.org/10.1038/srep00782
http://dx.doi.org/10.1016/j.msec.2015.12.080
http://dx.doi.org/10.1016/j.carbpol.2018.01.060
http://dx.doi.org/10.1088/1748-6041/2/3/S09
http://dx.doi.org/10.1016/j.acvd.2013.05.003
http://www.ncbi.nlm.nih.gov/pubmed/23906681
http://dx.doi.org/10.1016/0003-4975(93)90506-D
http://dx.doi.org/10.1007/s005860050145
http://dx.doi.org/10.1016/j.surg.2011.09.036
http://www.ncbi.nlm.nih.gov/pubmed/22088816
http://dx.doi.org/10.1093/jjco/hys186


Materials 2020, 13, 3056 26 of 26

213. Makadia, H.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug
Delivery Carrier. Polymers 2011, 3, 1377–1397. [CrossRef]

214. Xu, G.; Lin, S. Functional Modification of Polypropylene. J. Macromol. Sci. Part C 1994, 34, 555–606. [CrossRef]
215. Burdukova, E.; Li, H.; Ishida, N.; O’Shea, J.-P.; Franks, G.V. Temperature controlled surface hydrophobicity

and interaction forces induced by poly (N-isopropylacrylamide). J. Colloid Interface Sci. 2010, 342, 586–592.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/polym3031377
http://dx.doi.org/10.1080/15321799408014167
http://dx.doi.org/10.1016/j.jcis.2009.10.049
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Polymers as Materials for Anti-Adhesion Barriers 
	Natural Polymers 
	Carboxymethyl Cellulose (CMC) 
	Hyaluronic Acid (HA) 
	Chitosan 
	Gelatin 
	Alginate 

	Synthetic Polymers 
	Polylactic Acid (PLA) 
	Polyvinyl Alcohol (PVA) 
	Poly -Caprolactone (PCL) 
	Polyethylene Glycol (PEG) 


	Various Strategies of Anti-Adhesion 
	Physical Barriers 
	Hydrogels 
	Films 

	Chemical Barriers 
	Anti-Inflammatory Agents 
	Anticoagulants 
	Fibrinolytic Agents 


	Discussion 
	Conclusions 
	References

