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Abstract: This paper focuses on the effects of transverse shear and root rotations in both symmetric
and asymmetrical end-notched flexure (AENF) interlaminar fracture toughness tests. A theoretical
model is developed, whereas the test specimen is subdivided into four regions joined by a rigid
interface. The differential equations for the deflection and rotations of each region are solved within
both the Euler–Bernoulli simple beam theory (SBT) and the more refined Timoshenko beam theory
(TBT). A concise analytical equation is derived for the AENF deflection profile, compliance, and
transverse shearing forces as a function of the specimen geometry, stacking sequence, delamination
length, and fixture span. Modeling results are compared with numerical finite element analyses,
obtaining a very good agreement. Performed analyses suggest that even in the case of symmetrical
and unidirectional laminates considered as pure mode II fracture, a complex compression/tension and
bending moment state is present, as well as a slight contribution of anti-planar shear at the vicinity of
the crack tip.

Keywords: asymmetrical end notch flexure; fracture toughness; laminates; delamination; transversal
shear forces; compliance calibration; analytical modeling; finite element analysis

1. Introduction

The end-notched flexure (ENF) test is a mechanical test in which a partially cracked beam
specimen is loaded in a three-point bending configuration. The test was initially applied by Barrett
and Foschi [1] for testing the mechanical properties of wooden beams. Afterwards, a theoretical
model of the ENF specimen was proposed by Russell and Street [2], who determined the mode
II interlaminar fracture toughness of graphite/epoxy composite specimens. The ENF test method
has become popular to test both standard symmetric unidirectional laminates [3] and non-standard
asymmetrical laminates [4], as well as multidirectional fibrous composite materials [5], adhesive
joints [6], and fibre metal laminates [7,8].

Recently, the ENF test has become a standard method for the determination of mode II fracture
toughness in unidirectional and symmetrical composite laminates [9]. The standard describes
the procedure for the determination of the mode II interlaminar fracture toughness, based on the
experimental compliance–calibration (CC) tests. Within these tests, the dependence between force
and deflection of beam specimens is experimentally determined for a few different initial crack
lengths. Typically, to obtain reasonable results, a three-point CC plot is sufficient [10]. To this aim,
the compliances for 20 and 40 mm delamination lengths are obtained from loading–unloading tests
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within the elastic range of behavior, while the compliance for 30 mm is obtained from a fracture test.
The ENF specimens in CC tests should be loaded to at least half of the critical force Pc for each crack
length. For that reason, the appropriate CC tests have to be preceded by additional preliminary research
to determine the estimated fracture toughness of the material and critical force for corresponding crack
length. Subsequently, from the CC tests, the slope of the compliance versus cubed crack length is
marked by the m parameter and described typically by the linear function determined by regression
analysis. Finally, the critical strain energy release rate GIIC of the material can be obtained based on the
already known m parameter, crack length, and maximum force Pmax (or some different criteria).

In this article, an analytical solution is presented for the specimen compliance as a function of
geometry, stacking sequence, crack length, and applied downward force. The proposed method can be
used for the virtual performing of CC tests, which can be applied for the theoretical verification of
experimentally determined compliance–calibration line.

The paper also addresses the influence of transverse shearing loads and resulting cross-section
rotations on the compliance and internal forces of both symmetric ENF and asymmetric ENF (AENF)
test specimens. The symmetric configuration (ENF) is characterized by equal thicknesses and stiffnesses
of the top and bottom sublaminates; also, the delamination is placed in the neutral plane of the specimen.
If there are exceptions to the typical ENF configuration, then the sample is called AENF, where the
thickness and stiffness of the sublaminates differ, or delamination is not in the laminate’s neutral plane.
Russel and Street [2] originally presented an analytical model of the ENF test based on Euler–Bernoulli
simple beam theory (SBT). However, subsequent studies have proven that the application of the SBT
model resulted in an underestimation of the energy release rate [11]. Carlsson et al. [12] presented an
analysis of the ENF specimen based on the Timoshenko beam theory (TBT) [13], which on the contrary
to the SBT, enables for the kinematic cross-section rotation of the beam, with respect to their neutral
plane and resulted in increased beam compliance. As noted in a critical review by Valvo [14], in the
literature, conflicting reports may be found addressing the effect of shear deformation on the fracture
toughness of the laminates [15–18]. Anyway, shear deformation clearly influences the compliance of
both symmetric and asymmetric ENF test specimens, whereas the energy release rate is influenced
only for asymmetric specimens.

This article presents a complete analytical solution for the deflection and compliance of AENF
and AENF test specimens with arbitrary geometry and material and stacking sequence, crack length,
and fixture span. For comparison, the analytical solutions are presented using both the SBT and the
TBT. Analytical models are validated by performing numerical finite element analyses in ABAQUS
software (2017, Dassault Systèmes Simulia Corp., Johnston, RI, USA), using a built-in model of lamina
based on first-order shear deformation theory (FSDT) [19,20].

The equations linking the deflection of the AENF specimen with the applied downward force,
laminate geometry, and actual crack length, have been derived, for standard symmetrical as well
as asymmetrical multidirectional composites, bi-material beams, and more advanced fibre–metal
laminates. Moreover, thanks to the proposed equations recorded in the mechanical testing central
point, deflection of the specimen can be also used to estimate an actual crack length with an increased
accuracy due to the shearing effect in TBT.

2. Problem Description

The AENF test specimen can be divided into four regions—the cracked 1st and 2nd regions and
non-cracked 3rd and 4th regions (respectively to the left and to the right of the central loading point),
as shown in Figure 1.

The starting point of the theoretical derivations is an assumption of equality of the reaction forces,
RA and RB, which counteract the load applied to the central point of the specimen. From the statics,
the system is in equilibrium, when the sum of acting forces F and moments M is zero:∑

F = RA − P + RB = 0 and
∑

M = RBL−
1
2

PL = 0. (1)
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Then, the transverse shearing forces Q1, Q2, and Q3 acting sublaminates to the left from centrum
are positive:

Q3 = Q1 + Q2 =
1
2

P (2)

where the transverse shearing force Q4 acting to the right from centrum are negative:

Q4 = −Q3 = −
1
2

P. (3)
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Since the AENF specimen has an initial delamination, the shear and bending stiffnesses of the 1st
and 2nd regions of a beam are different from those of the 3rd region. However, the latter are equal to
those of the 4th region.

2.1. The Magnitude of Bending Moment Acting on Non-Cracked Part of the Beam

The overall transverse shearing force is constant between two loading points. Therefore, the actual
value of the bending moment acting in the 3rd region of the AENF test specimen is a function of that
shearing force and abscissa, x, along the beam length, which is equal to:

M3(x) =
P
2

x = Q3x. (4)

Thus, the bending moment in the 3rd part of the AENF specimen, on the cross-section adjacent to the
1st and 2nd regions of the AENF specimen, (at the crack tip) for x = a:

M3 =
P
2

a = Q3a. (5)

The maximum bending moment acting of the specimen occurs for x = L/2:

Mmax =
PL
4

=
Q3L

2
. (6)

Finally, the bending moment acting in the 4th region of the AENF specimen can be described by the
equation:

M4(x) =
PL
4
−

P
2

(
x−

L
2

)
=

P
2
(L− x) = Q3(L− x). (7)

Therefore, the bending moment diagram for the AENF specimen in the 3rd and 4th region is shown in
Figure 2.
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Figure 2. Bending moment diagram in the 3rd and 4th region of the AENF specimen.

2.2. Shearing Forces and Bending Moment Acting on Delaminated Regions of the Specimen

As mentioned before, the delaminated part of the AENF specimen is divided into the 1st and 2nd
regions. To derive the magnitude of shearing forces and bending moments acting on those regions,
an assumption of equal deflections y of the 1st and 2nd regions is imposed, as shown in Figure 3.
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Figure 3. Assumption of equal deflection of sublaminate 1st and 2nd deflections during the AENF test.

From that moment, the adopted theoretical model of the laminate has a significant impact on the
further results of shearing forces. Thus, for further considerations, the model based on SBT, where the
laminate cross-section subjected to bending remains perpendicular to the central plane, as well as more
advanced model based on TBT, including cross-section rotation about central plane of the laminate.

3. Simple Beam Theory Solution

3.1. Deflection of Two Euler–Bernoulli Cantilever Beams Fixed at One End

The deflection of two Euler–Bernoulli’s cantilever beams ySBT
[1]

and ySBT
[2]

as a function of abscissa x
can be written as:

ySBT
[1] (x) =

Q1x3

3E1I1
and ySBT

[2] (x) =
Q2x3

3E2I2
(8)

where the longitudinal extensional stiffness E1 and E2 of the sublaminates 1 and 2 can be calculated
according to Appendix A. The above regions of the beam have the same deflection (ySBT

[1]
= ySBT

[2]
),

for specified abscissa x = a:
Q1a3

3E1I1
=

Q2a3

3E2I2
(9)
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which including Equation (2) into (9), gives:

Q1a3

3E1I1
=

(Q3 −Q1)a3

3E2I2
(10)

after few simply calculations, the relation between shearing forces in sublaminates 1 and 3 are derived:

Q1 = Q3
χSBT

1 + χSBT and Q2 = Q3

(
1−

χSBT

1 + χSBT

)
(11)

where:
χSBT =

E1I1

E2I2
. (12)

Therefore, the known value of shearing force Q3 acting on the 3rd and 4th region may be used to
determine shearing forces Q1 and Q2 acting on the 1st and 2nd regions, and further, for the equations
of bending moments:

M1 = Q1x and M2 = Q2x (13)

where the sum of shearing forces Q1 and Q2 must be equal to the shearing force Q3 at the crack tip,
as shown in Figure 4. Those shearing forces are differentiated by Young modulus and the moment of
inertia of each region and must satisfy the equilibrium for the unite deflection of a whole structure.
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Figure 4. Bending moment diagram of the AENF specimen.

3.2. Deflection Curve of the AENF Specimen

3.2.1. First Integrations of the Differential Equations for Beams Curvatures

The defection y[i] of sublaminate i, for abscissa x is a function of the bending stiffness E[i]I[i] and
bending moment M[i] [13]:

∂2ySBT
[i]

∂x2 E[i]I[i] = −M[i]. (14)

Four differential equations were proposed for four sublaminates:

∂2ySBT
[1]

∂x2 E1I1 = −Q1x (15)

∂2ySBT
[2]

∂x2 E2I2 = −Q2x (16)
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∂2ySBT
[3]

∂x2 E3I3 = −Q3x (17)

∂2ySBT
[4]

∂x2 E3I3 = Q3x−Q3l. (18)

According to the example shown in Timoshenko [13], the above-mentioned equations can be
directly integrated to obtain first-order differential equations:

E1I1

∂ySBT
[1]

∂x
=

∫
E1I1

∂2ySBT
[1]

∂x2 dx = −

∫
Q1xdx = −

Q1x2

2
− c1 (19)

E2I2

∂ySBT
[2]

∂x
=

∫
E2I2

∂2ySBT
[2]

∂x2 dx = −

∫
Q2xdx = −

Q2x2

2
− c2 (20)

E3I3

∂ySBT
[3]

∂x
=

∫
E3I3

∂2ySBT
[3]

∂x2 dx = −

∫
Q3xdx = −

Q3x2

2
− c3 (21)

E3I3

∂ySBT
[4]

∂x
=

∫
E3I3

∂2ySBT
[4]

∂x2 dx =

∫
(Q3x−Q3l)dx =

Q3x2

2
−Q3lx + c4. (22)

3.2.2. First Boundary Conditions: Slopes of the Beams at Singular Points

The next step is to take into account the boundary conditions for the slopes of the three above
functions in the crossing points. Thus, the slope of the beam on the 1st region is the same as the slope
of the 3rd region at the point a, denoting the crack tip. Therefore, when the variable x is equal to crack
length, a, the following equation is proposed:

∂ySBT
[1]

∂x
(a) =

∂ySBT
[3]

∂x
(a) (23)

−
Q1a2

2E1I1
−

c1

E1I1
= −

Q3a2

2E3I3
−

c3

E3I3
(24)

which gives:

c3 =
E3I3Q1a2

2E1I1
+

E3I3c1

E1I1
−

Q3a2

2
. (25)

Similarly, the slope of the 3rd region is equal to the 4th region in the central loading point of the
ENF specimen. Therefore, the variable x is substituted by L/2:

∂ySBT
[3]

∂x
(L/2) =

∂ySBT
[4]

∂x
(L/2) (26)

which is:

−
Q3(L/2)2

2E3I3
−

c3

E3I3
=

Q3(L/2)2

2E3I3
−

Q3l(L/2)
E3I3

+
c4

E3I3
(27)

and after some calculation, that gives:

c4 = −
4c1E3I3 − L2Q3E1I1 + 2Q1E3I3a2

− 2Q3E1I1a2

4E1I1
. (28)
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3.2.3. Second Integration of the Beams Slope’s Equations.

Substituting integration constants c3 and c4 according to Equations (21) and (22), and then
integrating, we get:

ySBT
[1] (x) =

∫ ∂ySBT
[1]

∂x
dx =

∫ (
−

Q1x2

2E1I1
−

c1

E1I1

)
dx = −

Q1x3 + 6c1x
6E1I1

+ d1 (29)

ySBT
[2] (x) =

∫ ∂ySBT
[2]

∂x
dx =

∫ (
−

Q2x2

2E2I2
−

c2

E2I2

)
dx = −

Q2x3 + 6c2x
6E2I2

+ d2 (30)

ySBT
[3]

(x) =
∫ ∂ySBT

[3]
∂x dx=

∫ (
−

Q3x2

2E3I3
−

c3
E3I3

)
dx

=
∫ − Q3x2

2E3I3
−

E3I3Q1a2

2E1I1
+

E3I3c1
E1I1

−
Q3a2

2
E3I3

dx

= 3Q3a2x−Q3x3

6E3I3
−

3Q1E3I3a2x+6c1E3I3x
6E1I1E3I3

+ d3

(31)

ySBT
[4]

(x) =
∫ ∂ySBT

[4]
∂x dx=

∫ (
Q3x2

2 −Q3lx + c4

)
dx= 3Q3L2x−6Q3Lx2+6Q3a2x+2Q3x3

12E3I3
−

6Q1E3I3a2x+12c1E3I3x
12E1I1E3I3

+ d4.
(32)

3.2.4. Second Boundary Conditions: Beam Deflections at Specimen Ends

The deflection at beam ends in the AENF test are zero, which enables specifying the following
boundary conditions, for x = 0:

ySBT
[1] (0) = −

Q1(0)
3 + 6c1(0)

6E1I1
+ d1 = 0 (33)

which gives:
d1 = 0 (34)

Similarly, for second beam end, for x = L:

ySBT
[4] (L) =

3Q3L3
− 6Q3L3 + 6Q3a2L + 2Q3L3

12E3I3
−

6Q1E3I3a2L + 12c1E3I3L
12E1I1E3I3

+ d4 = 0 (35)

which gives:

d4 =
Q3L3

− 6Q3a2L
12E3I3

+
6Q1E3I3a2L + 12c1E3I3L

12E1I1E3I3
. (36)

3.2.5. Third Boundary Conditions: Beam Deflections at Singular Points

Finally, the deflection curve of the 1st and 2nd regions at length a must be equal, which gives the
following equation:

ySBT
[1] (a) = ySBT

[3] (a) (37)

−
Q1a3 + 6c1a

6E1I1
+ d1 =

3Q3a3
−Q3a3

6E3I3
−

3Q1E3I3a3 + 6c1E3I3a
6E1I1E3I3

+ d3 (38)

which gives:

d3 =
3Q1E3I3a3 + 6c1E3I3a

6E1I1E3I3
−

Q1a3 + 6c1a
6E1I1

−
Q3a3

3E3I3
=

Q1E3I3a3
−Q3E1I1a3

3E1I1E3I3
. (39)
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Similarly, deflection of the 3rd and 4th regions at the half length of the span L/2 must be equal:

ySBT
[3] (L/2) = ySBT

[4] (L/2) (40)

which is:
3Q3a2(L/2)−Q3(L/2)3

6E3I3
−

3Q1E3I3a2(L/2)+6c1E3I3(L/2)
6E1I1E3I3

+Q1E3I3a3
−Q3E1I1a3

3E1I1E3I3

=
3Q3L2(L/2)−6Q3L(L/2)2+6Q3a2(L/2)+2Q3(L/2)3

12E3I3

−
6Q1S3a2(L/2)+12c1E3I3(L/2)

12E1I1E3I3
+Q3L3

−6Q3a2L
12E3I3

+ 6Q1S3a2L+12c1E3I3L
12E1I1E3I3

(41)

which after some calculations, gives the simplest form of integration constant c1, as a function of
material constants and specimen geometry:

c1 = −
3L3Q3E1I1 − 8Q1E3I3a3 + 8Q3E1I1a3 + 12LQ1E3I3a2

− 12LQ3E1I1a2

24LE3I3
. (42)

Finally, integration constants can be simplified into:

c3 = −
3L3Q3E1I1 − 8Q1E3I3a3 + 8Q3E1I1a3

24LE1I1
(43)

c4 =
9L3Q3E1I1 − 8Q1E3I3a3 + 8Q3E1I1a3

24LE1I1
(44)

d3 =
Q1E3I3a3

−Q3E1I1a3

3E1I1E3I3
(45)

d4 = −
L3Q3E1I1 − 8Q1E3I3a3 + 8Q3E1I1a3

24E1I1E3I3
. (46)

3.3. Final Form of the Equation for AENF Deflection Curve by Euler–Bernoulli Beam Theory

Finally, four equations for AENF specimen deflections are derived:

ySBT
[1] =

3L3Q3E1I1x− 8Q1E3I3a3x + 8Q3E1I1a3x + 12LQ1E3I3a2x− 12LQ3E1I1a2x− 4LQ1E3I3x3

24LE1I1E3I3
(47)

ySBT
[2] =

3L3Q3E2I2x− 8Q2E3I3a3x + 8Q3E2I2a3x + 12LQ2E3I3a2x− 12LQ3E2I2a2x− 4LQ2E3I3x3

24LE2I2E3I3
(48)

ySBT
[3] =

8LQ1E3I3a3
− 8LQ3E1I1a3

− 4LQ3E1I1x3 + 3L3Q3E1I1x− 8Q1E3I3a3x + 8Q3E1I1a3x
24LE1I1E3I3

(49)

ySBT
[4] = −

(L− x)
(
L3Q3E1I1 − 8Q1E3I3a3 + 8Q3E1I1a3 + 4LQ3E1I1x2

− 8L2Q3E1I1x
)

24LE1I1E3I3
. (50)

3.4. Crack Length as a Function of AENF Specimen Deflection

Equation (50) describes deflection of the beam in the 4th region as a function of abscissa x.
Therefore, the crack length a can be determined as a function of material properties, specimen geometry,
laminate configuration, and its deflection δ measured in central point δ = ySBT

[4]
(L/2), where:

a =
3

√
LE1I1(Q3L3 − 9Q3L2x + 12Q3Lx2 − 4Q3x3 + 24E3I3δ)

(8Q1E3I3 − 8Q3E1I1)(L− x)
(51)
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which, for the half length of the specimen x = L/2 is:

a =
3

√
24E1I1E3I3δ− LQ3E1I1

4Q1E3I3 − 4Q3E1I1
. (52)

The specimen compliance is:

C =
δ
P
=

δ
−2Q3

=
−

(L−x)(L3Q3E1I1−8Q1E3I3a3+8Q3E1I1a3+4LQ3E1I1x2
−8L2Q3E1I1x)

24LE1I1E3I3

−2Q3
(53)

which is for the half specimen length, abscissa x = L/2:

C(L/2) = −
L3Q3E1I1 + 4Q1E3I3a3

− 4Q3E1I1a3

48Q3E1I1E3I3
. (54)

During the tests, the maximum compliance of the specimen occurs when a = L/2, while minimum
when a = 0:

C(L/2)
max = −

L3Q1E3I3 + L3Q3E1I1

96Q3E1I1E3I3
and C(L/2)

min = −
L3

48E3I3
. (55)

The negative sign indicates that the positive downward force causes negative beam deflection.
The multiplication of compliance and downward force turn out into the well-known equation for beam
deflection in a three-point bending test:

δ =
PL3

48E3I3
. (56)

4. Timoshenko Beam Theory Solution

4.1. Deflection of Two Timoshenko Cantilever Beams Fixed at One End

The deflections of two shear-deformable Timoshenko [13] cantilever beams can be written as:

yTBT
[1] =

Q1a3

3D1
+

Q1a
C1

and yTBT
[2] =

Q2a3

3D2
+

Q2a
C2

(57)

where capital letters Ci and Di respectively are the shear stiffness and bending stiffness of the i-th
sublaminate. For homogeneous sublaminates, Ci =

5
6 GiAi and Di = EiIi, where Gi and Ei are the

material shear modulus and Young modulus, Ai and Ii are the cross-section area and second moment
of area, and 5/6 is the shear factor for a rectangular cross-section [21,22]. In general, such stiffnesses
have to be calculated according to Classical Laminated Plate Theory [21], as specified in Appendix A.

The beam in the 1st and 2nd regions has the same deflection yTBT
[1]

= yTBT
[2]

, for the specified abscissa
x = a:

Q1a3

3D1
+

Q1a
C1

=
Q2a3

3D2
+

Q2a
C2

. (58)

Including Equation (2) and after a few simple calculations, the relation between the shear forces
in the 1st, 2nd, and 3rd regions are derived:

Q1 = Q3
χ

1 + χ
=

χ
1 + χ

P
2

and Q2 = Q3
1

1 + χ
=

1
1 + χ

P
2

(59)

where:

χTBT =

(
a2

3D2
+

1
C2

)
/
(

a2

3D1
+

1
C1

)
. (60)
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Therefore, the known value of shearing force Q3 acting on the 3rd region may be used to determine
shearing forces Q1 and Q2 acting on the 1st and 2nd regions, and next, the equations for bending
moments acting on these sublaminates:

M1(x) = Q1x =
χTBT

1 + χTBT
P
2

x and M2(x) = Q2x =
1

1 + χTBT
P
2

x. (61)

4.2. Deflection Curve of the AENF Specimen

4.2.1. First Integrations of the Differential Equations for Beams Curvatures

According to the Timoshenko beam theory [13], the curvature of the i-th sublaminate, κ[i] is the
derivative of the corresponding cross-section angle of rotation, φ[i]:

κ[i](x) =
dφ[i]

dx
. (62)

The bending moment is proportional to the curvature through the bending stiffness. Hence,

Mi(x) = Diκ[i](x) = Di
dφ[i]

dx
. (63)

Summarizing the above analyses, four differential equations are obtained for the four regions into
which the AENF specimen is subdivided.

dφ[1]

dx
=

M1(x)
D1

=
Q1

D1
x (64)

dφ[2]

dx
=

M2(x)
D2

=
Q2

D2
x (65)

dφ[3]

dx
=

M3(x)
D3

=
Q3

D3
x (66)

dφ[4]

dx
=

M4(x)
D4

=
Q3

D3
(L− x) (67)

where the bending stiffness of a laminated beam in the 3rd and 4th regions is equal (D4 = D3).
Now, the above-mentioned equations can be directly integrated to obtain the cross-section

rotations:

φ[1](x) =
∫

Q1

D1
xdx =

Q1

2D1
x2 + c1 (68)

φ[2](x) =
∫

Q2

D2
xdx =

Q2

2D2
x2 + c2 (69)

φ[3](x) =
∫

Q3

D3
xdx =

Q3

2D3
x2 + c3 (70)

φ[4](x) =
∫

Q3

D3
(L− x)dx =

Q3

D3
x(L−

1
2

x) + c4. (71)

4.2.2. First Boundary Condition: Cross-Section Rotations of the Beams at Singular Points

The next step is to take into account the boundary conditions for the cross-section rotations at the
joining points. Thus,

φ[1](a) = φ[2](a) and φ[2](a) = φ[3](a) and φ[3]

(L
2

)
= φ[4]

(L
2

)
(72)
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which give:
Q1a2

2D1
+ c1 =

Q2a2

2D2
+ c2 (73)

Q2a2

2D2
+ c2 =

Q3a2

2D3
+ c3 (74)

Q3L2

8D3
+ c3 =

3Q3L2

8D3
+ c4. (75)

Hence,

c2 = c1 +
Q1a2

2D1
−

Q2a2

2D2
(76)

c3 = c1 +
Q1a2

2D1
−

Q3a2

2D3
(77)

c4 = c1 +
Q1a2

2D1
−

Q3a2

2D3
−

Q3L2

4D3
. (78)

4.2.3. Second Integration of the Beams Equations

For the i-th sublaminate modeled as a Timoshenko beam, the shear angle of cross-sections is

γi(x) = φi(x) +
dyi

dx
=

Qi

Ci
. (79)

Hence, the deflection can be obtained by integrating the following equations

dyTBT
i

dx
=

Qi

Ci
−φi(x). (80)

By substituting the previous expressions, we get equations for four laminate regions:

yTBT
[1] (x) =

∫ [
Q1

C1
−φ1(x)

]
dx =

∫ [
Q1

C1
−

(
Q1

2D1
x2 + c1

)]
dx = −

Q1

6D1
x3 +

Q1

C1
x− c1x + d1 (81)

yTBT
[2] (x) =

∫ [Q2

C2
−φ2(x)

]
dx =

∫ [Q2

C2
−

( Q2

2D2
x2 + c2

)]
dx = −

Q2

6D2
x3 +

Q2

C2
x− c2x + d2 (82)

yTBT
[3] (x) =

∫ [
Q3

C3
−φ3(x)

]
dx =

∫ [
Q3

C3
−

(
Q3

2D3
x2 + c3

)]
dx = −

Q3

6D3
x3 +

Q3

C3
x− c3x + d3 (83)

yTBT
[4]

(x) =
∫ [Q4

C4
−φ4(x)

]
dx =

∫ [
−

Q3
C3
−

(Q3
D3

Lx− Q3
2D3

x2 + c4
)]

dx = Q3
6D3

x3
−

Q3
2D3

Lx2
−

Q3
C3

x− c4x + d4.
(84)

4.2.4. Second Boundary Conditions: Beam Deflections at Specimen Ends

The deflection at beam ends in the AENF test are zero, which enables specifying the following
boundary conditions, for x = 0:

yTBT
[1] (0) = −

Q1

6D1
03 +

Q1

C1
0− c10 + d1 = 0 and yTBT

[2] (0) = −
Q2

6D2
03 +

Q2

C2
0− c20 + d2 = 0 (85)

which gives:
d1 = 0 and d2 = 0 (86)
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Similarly, for the second beam end, for x = L:

yTBT
[4] (L) =

Q3

6D3
L3
−

Q3

2D3
LL2
−

Q3

C3
L− c4L + d4 = 0 (87)

which gives:

d4 =
Q3

3D3
L3 +

Q3

C3
L + c4L. (88)

4.2.5. Third Boundary Conditions: Beam Deflections at Singular Points

Finally, the deflection of sublaminates at joining cross-sections must be equal:

yTBT
[1] (a) = yTBT

[2] (a) and yTBT
[2] (a) = yTBT

[3] (a) and yTBT
[3]

(L
2

)
= yTBT

[4]

(L
2

)
(89)

By substituting the previous expressions, we get

−
Q1

6D1
a3 +

Q1

C1
a− c1a + d1 = −

Q2

6D2
a3 +

Q2

C2
a− c2a + d2 (90)

−
Q2

6D2
a3 +

Q2

C2
a− c2a + d2 = −

Q3

6D3
a3 +

Q3

C3
a− c3a + d3 (91)

−
Q3L3

48D3
+

Q3L
2C3
−

1
2

c3L + d3 =
Q3L3

48D3
−

Q3L3

8D3
−

Q3L
2C3
−

1
2

c4L + d4. (92)

By recalling the previous expressions and solving, we obtain:

d2 = Q2
6D2

a3
−

Q1
6D1

a3 + Q1
C1

a− Q2
C2

a− c1a + c2a

= Q2
6D2

a3
−

Q1
6D1

a3+Q1
C1

a− Q2
C2

a− c1a+(c1 +
Q1a2

2D1
−

Q2a2

2D2
)a

= P
2

a
1+χ

[
χ
(

a2

3D1
+ 1

C1

)
−

(
a2

3D2
+ 1

C2

)]
= P

2
a

1+χ

 a2
3D2

+ 1
C2

a2
3D1

+ 1
C1

(
a2

3D1
+ 1

C1

)
−

(
a2

3D2
+ 1

C2

) = 0

(93)

which we already had obtained; actually, the above equation is redundant having posed yTBT
[1]

= yTBT
[2]

.

d3 = Q3
6D3

a3
−

Q2
6D2

a3 + Q2
C2

a− Q3
C3

a−c2a + c3a

= Q3
6D3

a3
−

Q2
6D2

a3+Q2
C2

a− Q3
C3

a−
(
c1 +

Q1a2

2D1
−

Q2a2

2D2

)
a

+
(
c1 +

Q1a2

2D1
−

Q3a2

2D3

)
a= Q2a

(
a2

3D2
+ 1

C2

)
−Q3a

(
a2

3D3
+ 1

C3

)
= P

2 a
[

1
1+χ

(
a2

3D2
+ 1

C2

)
−

(
a2

3D3
+ 1

C3

)]
= P

2 a

 1
1

a2
3D1

+ 1
C1

+ 1
a2

3D2
+ 1

C2

−
a2

3D3
−

1
C3


(94)

and

d4 = −Q3L3

48D3
+ Q3L

2C3
−

1
2 c3L + d3 −

Q3L3

48D3
+Q3L3

8D3
+ Q3L

2C3
+ 1

2 c4L= Q3L3

12D3
+ Q3L

C3
−

1
2

(
c1 +

Q1a2

2D1
−

Q3a2

2D3

)
L

+ 1
2

(
c1 +

Q1a2

2D1
−

Q3a2

2D3
−

Q3L2

4D3

)
L+d3 =−Q3L3

24D3
+ Q3L

C3
+ d3 =P

2

 a
1

a2
3D1

+ 1
C1

+ 1
a2

3D2
+ 1

C2

−
L3+8a3

24D3
+ L−a

C3

.
(95)
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By recalling the previous expressions of c4 and d4,

c1 = Q3a2

2D3
−

Q3L2

12D3
−

Q3
C3
−

Q1a2

2D1
+ d4

L

= P
2L

[
12La2

−3L3
−8a3

24D3
−

χ
1+χ

La2

2D1
+ 1

1+χa
(

a2

3D2
+ 1

C2

)
−

a
C3

] (96)

c2 = P
2L

[
12La2

−3L3
−8a3

24D3
−

χ
1+χ

La2

2D1
+ 1

1+χa
(

a2

3D2
+ 1

C2

)
−

a
C3

]
+Q1a2

2D1
−

Q2a2

2D2

= P
2L

[
12La2

−3L3
−8a3

24D3
+ a

1+χ

(
a2

3D2
−

La
2D2

+ 1
C2

)
−

a
C3

] (97)

c3 = P
2L

[
12La2

−3L3
−8a3

24D3
−

χ
1+χ

La2

2D1
+ 1

1+χa
(

a2

3D2
+ 1

C2

)
−

a
C3

]
+Q1a2

2D1
−

Q3a2

2D3

= P
2L

[
−

3L3+8a3

24D3
+ a

1+χ

(
a2

3D2
+ 1

C2

)
−

a
C3

] (98)

c4 = P
2L

[
12La2

−3L3
−8a3

24D3
−

χ
1+χ

La2

2D1
+ 1

1+χa
(

a2

3D2
+ 1

C2

)
−

a
C3

]
+Q1a2

2D1
−

Q3a2

2D3
−

Q3L2

4D3

= P
2L

[
−

9L3+8a3

24D3
+ a

1+χ

(
a2

3D2
+ 1

C2

)
−

a
C3

]
.

(99)

4.2.6. Final Form of the Equation for AENF Deflection Curve by Timoshenko Beam Theory

Including integration constants into Equations (81)–(84), the final equation for the AENF specimen
deflection profile has been obtained. The equations are presented in short 1-line form (to be directly
copied into the calculation software) below:

yTBT
[1]

(x) =

(P · x · (a/C3+ (3 · L3
− 12 · L · a2 + 8 · a3)/(24 ·D3)−(a · (1/C2 + a2/(3 ·D2)))/(χTBT + 1)

+(L · χTBT
· a2)/(2 ·D1 · (χTBT + 1))))/(2 · L) + (P · χTBT

· x)/(2 ·C1 · (χTBT + 1))
−(P · χTBT

· x3)/(12 ·D1 · (χTBT + 1))

(100)

yTBT
[2]

(x) =

(P · x · (a/C3+ (3 · L3
− 12 · L · a2 + 8 · a3)/(23 ·D3)−(a · (1/C2 + a2/(3 ·D2)−(L · a)/(2

·D2)))/(χTBT + 1)))/(2 · L)−(P · x3)/(12 ·D2 · (χTBT + 1))+(P · x)/(2
·C2 · (χTBT + 1))

(101)

yTBT
[3]

(x) =

(P · x)/(2 ·C3) −(P · x3)/(12 ·D3)−(P · a · (1/C3−(1/C2 + a2/(3 ·D2))/(χTBT + 1)
+a2/(3 ·D3)))/2+(P · x · (a/C3+(3 · L3 + 8 · a3)/(24 ·D3)−(a · (1/C2

+a2/(3 ·D2)))/(χTBT + 1)))/(2 · L)

(102)

yTBT
[4]

(x) =

(P · ((L− a)/C3−(L3 + 8 · a3)/(24 ·D3)+a/(1/(1/(C1 + a2/(3 ·D1))+1/(1/(C2 + a2/(3·
D2)))))/2+(P · x3)/(12 ·D3)−(P · x)/(2 ·C3) − (L · P · x2)/(4 ·D3)+(P · x · (a/C3 + (9·
L3 + 8 · a3)/(24 ·D3)−(a · (1/C2 + a2/(3 ·D2)))/(χTBT + 1)))/(2 · L).

(103)

Below in Figure 5, an example of the AENF specimen deflection curve is presented derived from
the above four equations.
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The specimen compliance is:

C =
δ
P
=

L3
− 4a3

48D3
+

1
4

a
1 + χ

(
a2

3D2
+

1
C2

)
+

L− a
4C3

. (105)



Materials 2020, 13, 3046 14 of 27

Materials 2020, 13, x FOR PEER REVIEW 12 of 26 

 

(𝑃 ⋅ 𝑥)/(2 ⋅ 𝐶ଷ) − (𝑃 ⋅ 𝑥ଷ)/(12 ⋅ 𝐷ଷ) − (𝑃 ⋅ 𝑎 ⋅ (1/𝐶ଷ − (1/𝐶ଶ + 𝑎ଶ/(3 ⋅ 𝐷ଶ))/(𝜒்஻் + 1) + 𝑎ଶ/(3⋅ 𝐷ଷ)))/2 + (𝑃 ⋅ 𝑥 ⋅ (𝑎/𝐶ଷ + (3 ⋅ 𝐿ଷ + 8 ⋅ 𝑎ଷ)/(24 ⋅ 𝐷ଷ) − (𝑎 ⋅ (1/𝐶ଶ + 𝑎ଶ/(3⋅ 𝐷ଶ)))/(𝜒்஻் + 1)))/(2 ⋅ 𝐿) 𝑦[ସ]்஻்(𝑥) = (𝑃 ⋅ ((𝐿 − 𝑎)/𝐶ଷ − (𝐿ଷ + 8 ⋅ 𝑎ଷ)/(24 ⋅ 𝐷ଷ) + 𝑎/(1/(1/𝐶ଵ + 𝑎ଶ/(3 ⋅ 𝐷ଵ)) + 1/(1/𝐶ଶ + 𝑎ଶ/(3 ⋅𝐷ଶ)))))/2 + (𝑃 ⋅ 𝑥ଷ)/(12 ⋅ 𝐷ଷ) − (𝑃 ⋅ 𝑥)/(2 ⋅ 𝐶ଷ) − (𝐿 ⋅ 𝑃 ⋅ 𝑥ଶ)/(4 ⋅ 𝐷ଷ) + (𝑃 ⋅ 𝑥 ⋅ (𝑎/𝐶ଷ + (9 ⋅𝐿ଷ + 8 ⋅ 𝑎ଷ)/(24 ⋅ 𝐷ଷ) − (𝑎 ⋅ (1/𝐶ଶ + 𝑎ଶ/(3 ⋅ 𝐷ଶ)))/(𝜒்஻் + 1)))/(2 ⋅ 𝐿). 

(103) 

Below in Figure 5, an example of the AENF specimen deflection curve is presented derived 
from the above four equations. 

 

Figure 5. Deflection curves for the four regions of the loaded AENF specimen. 

The deflection under the load application point turns out to be 𝛿 = 𝑦[ସ]்஻் ቀ௅ଶቁ = ொయସ଼஽య 𝐿ଷ − ொయ଼஽య 𝐿ଷ − ொయ௅ଶ஼య − ௖ర௅ଶ + 𝑑ସ = ௉௅యସ଼஽య − ௉௔యଵଶ஽య + ௉ସ ௔ଵାఞ ቀ ௔మଷ஽మ + ଵ஼మቁ + ௉ସ ௅ି௔஼య =௉ସ ቂ௅యିସ௔యଵଶ஽య + ௔ଵାఞ ቀ ௔మଷ஽మ + ଵ஼మቁ + ௅ି௔஼య ቃ. (104) 

The specimen compliance is: 𝐶 = ఋ௉ = ௅యିସ௔యସ଼஽య + ଵସ ௔ଵାఞ ቀ ௔మଷ஽మ + ଵ஼మቁ + ௅ି௔ସ஼య . (105) 
For a symmetric and homogeneous specimen, 𝜒 = 1, 𝐶ଶ = ହ଺ 𝐺𝐵ℎ, 𝐷ଶ = ଵଵଶ 𝐸𝐵ℎଷ, 𝐶ଷ = 2𝐶ଶ, and 𝐷ଷ = 8𝐷ଶ, (106) 

where h is the specimen half thickness, G is a transversal shearing modulus, and B is the specimen 
width. Thus, the compliance becomes: 𝐶 = 𝛿𝑃 = 𝐿ଷ384𝐷ଶ + 𝑎ଷ32𝐷ଶ + 𝐿8𝐶ଶ = 𝐿ଷ + 12𝑎ଷ32𝐸𝐵ℎଷ + 3𝐿20𝐺𝐵ℎ = 2𝑙ଷ + 3𝑎ଷ8𝐸𝐵ℎଷ + 3𝑙10𝐺𝐵ℎ (107) 

where 𝑙 = 𝐿/2 is the specimen half length. This expression is consistent with the well-known 
expression in the literature [14].  

For 𝑎 = 0, we obtain the well-known expression of a beam deflection in a three-point bending 
test: 𝛿 = ௉௅యସ଼஽య + ௉௅ସ஼య. (108) 

If the specimen compliance 𝐶௘௫௣ is measured by an experiment, we know 𝐶௘௫௣ = 𝛿௘௫௣/𝑃௘௫௣. 
Thus, the crack length can be estimated by solving the following cubic equation: ଵଷ ቀ ଵଵାఞ ଵ஽మ − ଵ஽యቁ 𝑎ଷ + ቀ ଵଵାఞ ଵ஼మ − ଵ஼యቁ 𝑎 + 12 ௅య஽య + ௅஼య − 4𝐶௘௫௣ = 0. (109) 

Values can be obtained numerically [23] or by using the analytical formulas [24]. The presented 
methodology can be used to estimate the actual crack length as a function of specimen compliance. 
Such analytical equations are needed in particular for the determination of a posteriori crack length 
during fatigue mode II tests, since the macroscopic observations are difficult and burdened with a 
significant error due to the formation micro cracks near the major crack tip [25–28].  

-2-1.5-1
-0.50
0.51

0 10 20 30 40 50 60 70 80 90 100
Be

am
 d

ef
le

ct
io

n,
 y

 [m
m

]

Abscissa, x [mm]

TBT-y1TBT-y2TBT-y3SBT-y1SBT-y2SBT-y3
TBT-y[1]TBT-y[3]TBT-y[4]SBT-y[1]SBT-y[3]SBT-y[4]

Figure 5. Deflection curves for the four regions of the loaded AENF specimen.

For a symmetric and homogeneous specimen,

χ = 1, C2 =
5
6

GBh, D2 =
1

12
EBh3, C3 = 2C2, and D3 = 8D2, (106)

where h is the specimen half thickness, G is a transversal shearing modulus, and B is the specimen
width. Thus, the compliance becomes:
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(107)

where l = L/2 is the specimen half length. This expression is consistent with the well-known expression
in the literature [14].

For a = 0, we obtain the well-known expression of a beam deflection in a three-point bending test:

δ =
PL3

48D3
+

PL
4C3

. (108)

If the specimen compliance Cexp is measured by an experiment, we know Cexp = δexp/Pexp. Thus,
the crack length can be estimated by solving the following cubic equation:

1
3

(
1

1 + χ
1

D2
−

1
D3

)
a3 +

(
1

1 + χ
1

C2
−

1
C3

)
a + 12

L3

D3
+

L
C3
− 4Cexp = 0. (109)

Values can be obtained numerically [23] or by using the analytical formulas [24]. The presented
methodology can be used to estimate the actual crack length as a function of specimen compliance.
Such analytical equations are needed in particular for the determination of a posteriori crack length
during fatigue mode II tests, since the macroscopic observations are difficult and burdened with a
significant error due to the formation micro cracks near the major crack tip [25–28].

5. Experimental and Numerical Validation

5.1. Methodology

A series of experimental tests on AENF specimens were performed. During the displacement
controlled tests, deflection of the central point was recorded as a function of downward force Pd
acting on the central point of the specimen. Subsequently, the specimen compliance was determined
for different layup configurations. Experimental tests were performed on a Shimadzu ASX Plus
(Kyoto, Japan) with a load capacity of 20 kN. The specimen’s geometry has been the same in both
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experimental and numerical tests. All of the manufactured specimens have been cut from the larger
delaminated plate, where the final width B of the specimens has been measured by caliper and was
equal to B = 23.5 mm in all of the cases. A fixture span L = 100 mm was used during the tests with a
displacement rate of 0.5 mm/min.

The analytical solutions derived in previous sections SBT and TBT were used to determine the
deflection curves of centrally loaded AENF specimens, which were then compared with a numerical
model in ABAQUS/Standard software. Four cases of glass fibre-reinforced laminates have been
modeled. In numerical simulations, a standard and directly available in ABAQUS, model of lamina
in plane-stress was used, based on FSDT. A continuum of shell elements was used with only three
integration points through the thickness. The interface between the top and bottom sublaminate was
modeled by cohesive elements with a thickness of 0.01 mm. The properties of cohesive elements for
the GFRP interface in direction 0◦//0◦ can be found in reference [8]. A rectangular mesh with a size of
1 mm was applied into the model, while in the crack tip area, the mesh size was refined into 0.5 mm,
as shown in Figure 6. Four laminates have been considered—one symmetrical and three asymmetrical
with different asymmetry ratios η = t2/t1, where t1 and t2 are the thickness of sublaminate 1 and
sublaminate 2, respectively.
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Figure 6. Four cases of numerically simulated laminates for comparison with analytical solution.

The numerical simulations have been performed on GFRP laminates with unidirectional orientation.
The following material properties have been employed: longitudinal Young modulus E[i] = Ex =

47,057 MPa; perpendicular Young modulus Ey = 14,920 MPa; transversal shear modulus in plane
xy, Gxy = 5233 MPa; transversal shear modulus in plane xz, G[i] = Gxz = 5233 MPa; transversal shear
modulus in plane yz, Gyz = 4000 MPa; Poisson ratio in plane xy, νxy = 0.27. In the simulations,
the symmetric and asymmetric specimens with delamination length a = 30 mm have been loaded by
downward force Pd = 300 N. The boundary conditions as well as types of finite elements applied in
numerical model are presented in Figure 7.Materials 2020, 13, x FOR PEER REVIEW 14 of 26 
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5.2. Deflection Profiles of the ENF and AENF Specimen

The results obtained by using the SBT model, the TBT, the numerical finite element model
(FSDT), as well as the experimentally determined value of the beam deflection (at the central point,
for x = 50 mm) are presented in Figure 8.Materials 2020, 13, x FOR PEER REVIEW 15 of 26 
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The experimentally determined during CC tests deflection δEXP of analyzed laminates as well as
numerical δFEA and analytical modeling δTBT and δSBT results for different crack lengths are presented
in Table 1.
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Table 1. Results of the AENF specimen deflection at mid-span during loading.

Crack Length [mm] 15 30 45 15 30 45 15 30 45 15 30 45

Layup η = 1 η = 1.85 η = 2.35 η = 3.97

δEXP (mm) 0.515 0.668 1.079 0.554 0.690 1.025 0.518 0.619 0.853 0.519 0.569 0.686

δSBT (mm) 0.506 0.643 1.017 0.540 0.647 0.936 0.516 0.597 0.815 0.517 0.562 0.684
δTBT (mm) 0.520 0.657 1.031 0.554 0.662 0.952 0.530 0.612 0.831 0.532 0.577 0.700
δFEA (mm) 0.532 0.671 1.045 0.569 0.698 0.965 0.547 0.647 0.854 0.550 0.606 0.723

The results of the theoretically performed compliance–calibration tests based on the derived TBT
model are presented in Figures 9 and 10.
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As can be observed in Figures 8–10, as well as in Table 1, a very good matching of results is
obtained between the analytical and numerical models, and the experimental tests. In all cases,
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deflection profiles obtained by the SBT model exhibited slightly lower deflections than the modeled
by the TBT. These differences are clearly caused by the inclusion of shear deformability. The FSDT
solution obtained by Finite Element Analysis yielded deflection curves with a shape almost perfectly
matched the analytical solutions. The reason for some very small mismatch between their deflections
could be the slight interpenetration of finite elements of rigid support and elastic composite elements
in numerical model. In addition, regarding the theoretically performed compliance–calibration tests,
the derived TBT model for Asymmetrical End Notch Flexure was marked by very good accuracy, while
an even better fit with experimental tests has been obtained than by finite element numerical analyses,
which are burdened with contact imperfections between nodes of rigid fixture support and elastic
deformed AENF laminated specimen.

6. Influence of Cross-Section Rotation on the Internal Forces in AENF

6.1. Parametric Study-Simple vs. Timoshenko Beam Theory

In this section, the influence of applied theories on the magnitude of loads acting on the AENF
specimen as a function of crack length was analyzed. The SBT and TBT models, as well as the numerical
model FSDT were used for the determination of shearing forces Q1 and Q2 acting in the 1st and 2nd
region of AENF specimen. The comparison is shown in Figure 11.
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Figure 11. Transversal shearing forces ratio χ in the delaminated part of the AENF specimen.

In the presented solution for the determination of transversal shearing forces based on SBT,
the parameter χSBT may be determined according to Equation (12). As can be seen in the
above-mentioned equation and Figure 9, such parameter is crack length independent, and its magnitude
is controlled only by the stiffness ratio between the 1st and 2nd region of the AENF specimen. A different
situation occurs for parameter χTBT derived from TBT and described by Equation (60). The influence
of the shearing force ratio parameters χSBT and χTBT on the magnitudes of transversal shearing forces
Q1 and Q2 acting on the 1st and 2nd regions of the AENF specimen is shown in Figure 12.
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Figure 12. Magnitudes of transversal shearing forces in the delaminated part of the AENF specimen.

It may be observed in Figure 11 that the χ parameter is crack-length dependent, when cross-section
rotation is kinematically allowed. For short cracks, the transition of transversal shearing force Q from
the 3rd region of the AENF (undelaminated part of the beam) into two delaminated 1st and 2nd beams
are rather smooth and more uniformly distributed than when using in SBT solution. On the contrary,
the application of SBT yields sudden shearing force jumps in the vicinity of the crack tip. However,
it can be also clearly seen from Figure 12 that the transversal shearing forces calculated by TBT tends
to the values determined by SBT with the increase of crack length a. Thus, for relatively long cracks
(a > 10 mm), the values of shearing forces calculated by SBT and TBT yield similar results. The above
observation indicates that blocking (SBT) or enabling (TBT) rotations of the laminate cross-section are
crucial for the shearing forces magnitude near the crack tip, especially for the short cracks (a < 10 mm).

6.2. Three-Dimensional Finite Element Analysis Modeling of AENF

In this section, the numerical simulation results of the three-point bending test performed on
AENF specimens are presented. In the below figures, the internal forces in the sublaminate at the top
of delamination have been presented on the left, while the sublaminate at the bottom of delamination
is shown on the right.

As can be observed in Figure 13, the normal forces in the longitudinal direction Nx are present only
in the non-cracked region of the AENF specimen. In addition, the effect of fixture indenter is visible
in the central point of the span, causing additional tension in the bottom sublaminate. A similar but
two-dimensional analytically derived evolution of internal forces in the top and lower sublaminates
was presented by Jumel et al. [29] for the symmetric ENF made of isotropic homogenous adherents.
Jumel et al. [29] and Budzik et al. [30] observed that the internal forces are changing from a pure
bending moment in the delaminated part of the specimen into complex tension, compression, and
bending in the bonded region.
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Conversely to the longitudinal normal forces Nx, the normal forces in the perpendicular direction
Ny are rather small and have not exceeded 20 N (Figure 14). However, their distribution is more
non-uniform, exhibiting significant fluctuations especially on the edge at the vicinity of the crack tip
(for x = 30 mm), as well as in the regions of the specimen in contact with the fixture support and
central indenter. It should be noted that in the top adherent, the globally compression forces induced
by the central indenter evolve into the tension in the delaminated part, which is close to the crack tip.
Such effect seems to be rather independent of the unidirectional laminate configuration, exhibiting
similar behavior for symmetrical (η = 1) and asymmetrical laminates (η > 1).
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In Figure 15, the magnitude of in-plane shear membrane forces Nxy per unit width in the global
xy plane of the top and bottom beam was shown. As can Nxy be observed, the shear forces in the
loaded AENF specimen are asymmetric with respect to the two directions. A similar asymmetrical
distribution of in-plane shearing forces over the interface of the undelaminated region was observed by
Szekrenyes [31] in a carbon/epoxy multidirectional delaminated plate. As concluded by Szekrenyes [31],
the fluctuations related to the interfacial shear stresses resulted in a significant mode III contribution
in the energy release rate distributions at the crack tip. However, as may be seen in Figure 14,
the anti-planar shear (mode III) contribution concentrated at the AENF undelaminated edge over the
crack tip is present also in the unidirectional laminates, even in the case of symmetrical configuration.
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The transversal shearing forces in the top and bottom sublaminate determined by Finite Element
Analysis are presented in Figure 16 in the transversal-longitudinal plane (Qxz) and in Figure 17 for the
transversal-perpendicular plane (Qyz). The effect of indenter is clearly visible in the top sublaminate and
according to the SBT and TBT [13], it vanishes directly below the central loading point (for x = 50 mm)
in three-point bending configuration. According to Jumel et al. [29], the large shear forces gradient in
the front of the crack may be associated with the conversion of the internal force from the pure bending
moment in the delaminated regions of the specimen (sublaminate 1 and 2) into combined bending with
tensile and compression stresses in the undelaminated part of the beam (vicinity of the crack tip in
sublaminate 3). As performed in current research, a 3D numerical analysis revealed also the edge effect
in the transversal shearing force distribution (Figure 16), suggesting that the increase of the shearing
force at the delaminated edge may be caused by the anticlastic curvature of the deformed AENF beam.
In the case of symmetrical configuration (ENF), the distribution of transversal shearing forces at the
crack tip area was rather similar in sublaminate on the top and at the bottom of the delamination plane.
However, in the case of asymmetric configurations (AENF), the transversal shear forces suddenly
increase and decrease just ahead of the crack tip in the top and bottom laminate respectively, which
may affect also the mode mixity at the crack tip in the AENF unidirectional specimens [29,30].
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The transversal shearing forces in the transversal–perpendicular plane (Qyz) were about four
times lower than those for the longitudinal direction. However, also in this case, some inhomogeneous
distribution may be observed especially near the crack tip area (Figure 17). A comparison of the
transversal shearing forces distribution over the specimen span determined by the TBT analytical
model as well as finite element analysis is presented in Figure 18.
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Figure 18. Transversal shear force Qxz distribution by analytical Timoshenko beam theory (TBT) and
numerical first-order shear deformation theory (FSDT) model.

As can be observed in Figure 18, a good agreement has been obtained between the results of
analytical modeling (TBT) and FSDT. However, the numerical analyses ensure more refined force field
in the AENF specimen, especially near the crack tip as well as loading and support points.
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7. Conclusions

Presented analytical solutions enable the straightforward determination of the AENF specimen
compliance as a function of crack length, specimen geometry, and applied downward force using the
Euler–Bernoulli simple beam theory as well as the more refined Timoshenko beam theory, including
deformation due to shearing. A very good convergence of results has been obtained comparing
deflection profiles of the analytical and numerical modeled AENF beams. In addition, experimental
tests including deflection of the central point of the beam have agreed with the theoretical predictions.

The rotation of cross-section during AENF tests influences specimen compliance and increases the
accuracy of the theoretical model when compared to the experimental tests. In addition, the inclusion
of cross-section rotation with respect to the laminate neutral plane changes the nature of shear force
transition from the undelaminated part of the beam (sublaminate 3 and 4) into the cracked parts, which
are more uniformly distributed in TBT, especially for relatively short cracks. Performed numerical
analyses have proven that the AENF specimen is subjected to the complex compression/tension and
bending moment loadings, ahead of the crack tip in the undelaminated part of the beam. Such an
advanced loading state changes into pure bending moment loading in the delaminated part of the
AENF specimens. The analyses of in-plane shearing forces of symmetric ENF and asymmetric AENF
have revealed that the three-point bending test on delaminated beams generates some anti-planar
shear contribution, especially in the edge of the crack tip.
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Appendix A Sublaminate Equivalent Stiffness

According to Classical Laminated Plate Theory, the asymmetrical laminated beam can be treated as
homogeneous when its equivalent stiffnesses are known. A detailed schematization for the calculation
of equivalent stiffness according to the laminate coordinates zi is described in [21].

A =
n∑

i=1

E(i)
x (zi − zi−1) (A1)

B =
1
2

n∑
i=1

E(i)
x

(
z2

i − z2
i−1

)
(A2)

C =
5
6

n∑
i=1

G(i)
zx (zi − zi−1) (A3)

D =
1
3

n∑
i=1

E(i)
x

(
z3

i − z3
i−1

)
(A4)

The general equations to calculating longitudinal, transversal extension elastic modulus E as well
as shearing modulus G, for sublaminates to SBT with arbitrary stacking sequence are described as
follows [8]:

E(x) =
n∑

i=1

[
E(material i)
(x)

(zi − zi−1)
]
/(zn − z0) (A5)



Materials 2020, 13, 3046 26 of 27

G(x) =
n∑

i=1

[
G(material i)
(x)

(zi − zi−1)
]
/(zn − z0) (A6)

ν(x) =
n∑

i=1

[
ν
(material i)
(x)

(zi − zi−1)
]
/(zn − z0). (A7)
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7. Dadej, K.; Bieniaś, J.; Valvo, P.S. Experimental Testing and Analytical Modeling of Asymmetric End-Notched
Flexure Tests on Glass-Fiber Metal Laminates. Metals 2020, 10, 56. [CrossRef]

8. Bienias, J.; Dadej, K.; Surowska, B. Interlaminar fracture toughness of glass and carbon reinforced
multidirectional fiber metal laminates. Eng. Fract. Mech. 2017, 175, 127–145. [CrossRef]

9. ASTM D7905/D7905M-19. Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness
of Unidirectional Fiber-Reinforced Polymer Matrix Composites; ASTM International: West Conshohocken, NY,
USA, 2019. [CrossRef]

10. Davidson, B.D.; Teller, S.S. Recommendations for an ASTM Standardized Test for Determining GIIc of
Unidirectional Laminated Polymeric Matrix Composites. J. ASTM Int. 2010, 7, 1–11. [CrossRef]

11. Gillespie, J.M., Jr.; Carlsson, L.A.; Pipes, R.B. Finite element analysis of the end notched flexure specimen for
measuring mode II fracture toughness. Compos. Sci. Technol. 1986, 27, 177–197. [CrossRef]

12. Carlsson, L.A.; Gillespie, J.W., Jr.; Pipes, R.B. On the analysis and design of end notched flexure (ENF) for
mode II testing. J. Compos. Mater. 1986, 20, 594–604. [CrossRef]

13. Timoshenko, S.P. Strength of Materials, Vol. 1: Elementary Theory and Problems, 3rd ed.; D. Van Nostrand:
New York, NY, USA, 1955.

14. Valvo, P.S. The effects of shear on Mode II delamination: A critical review. Fract. Struct. Integr. 2018, 44,
123–139. [CrossRef]

15. Li, S.; Wang, J.; Thouless, M.D. The effects of shear on delamination in layered materials. J. Mech. Phys. Solids
2004, 52, 193–214. [CrossRef]

16. Andrews, M.G.; Massabò, R. The effects of shear and near tip deformations on energy release rate and mode
mixity of edge-cracked orthotropic layers. Eng. Fract. Mech. 2007, 74, 2700–2720. [CrossRef]

17. Wang, J.; Qiao, P. Mechanics of Bimaterial Interface: Shear Deformable Split Bilayer Beam Theory and
Fracture. J. Appl. Mech. 2005, 72, 674–682. [CrossRef]

18. Bennati, S.; Fisicaro, P.; Valvo, P.S. An enhanced beam-theory model of the mixed-mode bending (MMB)
test—Part II: Applications and results. Meccanica 2013, 48, 465–484. [CrossRef]

19. Reissner, E. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 1945,
12, 69–72.

20. Mindlin, R.D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl.
Mech. 1951, 18, 31–38.

21. Jones, R.M. Mechanics of Composite Materials, 2nd ed.; Taylor & Francis: Philadelphia, PA, USA, 1999.

http://dx.doi.org/10.1016/0013-7944(77)90029-7
http://dx.doi.org/10.1520/STP36314S
http://dx.doi.org/10.1016/S0013-7944(98)00017-4
http://dx.doi.org/10.1016/j.compscitech.2003.12.001
http://dx.doi.org/10.1016/j.ijfatigue.2020.105586
http://dx.doi.org/10.3390/met10010056
http://dx.doi.org/10.1016/j.engfracmech.2017.02.007
http://dx.doi.org/10.1520/D7905_D7905M-19
http://dx.doi.org/10.1520/JAI102619
http://dx.doi.org/10.1016/0266-3538(86)90031-X
http://dx.doi.org/10.1177/002199838602000606
http://dx.doi.org/10.3221/IGF-ESIS.44.10
http://dx.doi.org/10.1016/S0022-5096(03)00070-X
http://dx.doi.org/10.1016/j.engfracmech.2007.01.013
http://dx.doi.org/10.1115/1.1978920
http://dx.doi.org/10.1007/s11012-012-9682-7


Materials 2020, 13, 3046 27 of 27

22. Valvo, P.S. On the calculation of energy release rate and mode mixity in delaminated laminated beams. Eng.
Fract. Mech. 2016, 165, 114–139. [CrossRef]

23. Cubic Formula. Available online: https://mathworld.wolfram.com/CubicFormula.html (accessed on
7 July 2020).

24. MATLAB, R2017a, Symbolic Math Toolbox; The MathWorks I.: Natick, MA, USA, 2019; Available online:
https://www.mathworks.com/help/symbolic/ (accessed on 7 July 2020).

25. Brunner, A.J.; Stelzer, S.; Pinter, G.; Terrasi, G.P. Mode II fatigue delamination resistance of advanced-reinforced
polymer-matrix laminates: Towards the development of a standarized test procedure. Int. J. Fatigue 2013, 50,
57–62. [CrossRef]

26. Blackman, B.R.K.; Brunner, A.J.; Williams, J.G. Mode II fracture testing of composites: A new look at an old
problem. Eng. Fract. Mech. 2006, 73, 2443–2455. [CrossRef]

27. Bienias, J.; Dadej, K. Fatigue delamination growth of carbon and glass reinforced fiber metal laminates in
fracture mode II. Int. J. Fatigue 2020, 130, 105267. [CrossRef]

28. Blackman, B.R.K.; Kinloch, A.J.; Paraschi, M. The determination of the mode II adhesive fracture resistance,
GIIC, of structural adhesive joints: An effective crack length approach. Eng. Fract. Mech. 2005, 72, 877–897.
[CrossRef]

29. Jumel, J.; Budzik, M.K.; Ben Salem, N.; Shanahan, M.E.R. Instrumented End Notched Flexure—Crack
propagation and process zone monitoring. Part I: Modelling and analysis. Int. J. Solid Struct. 2013, 50,
297–309. [CrossRef]

30. Budzik, M.K.; Jumel, J.; Ben Salem, N.; Shanahan, M.E.R. Instrumented end notched flexure—Crack
propagation and process zone monitoring Part II: Data reduction and experimental. Int. J. solid Struct. 2013,
50, 310–319. [CrossRef]

31. Szekrenyes, A. Interlaminar stresses and energy release rates in delaminated orthotropic composite plates.
Int. J. Solid Struct. 2012, 49, 2460–2470. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.engfracmech.2016.08.010
https://mathworld.wolfram.com/CubicFormula.html
https://www.mathworks.com/help/symbolic/
http://dx.doi.org/10.1016/j.ijfatigue.2012.02.021
http://dx.doi.org/10.1016/j.engfracmech.2006.05.022
http://dx.doi.org/10.1016/j.ijfatigue.2019.105267
http://dx.doi.org/10.1016/j.engfracmech.2004.08.007
http://dx.doi.org/10.1016/j.ijsolstr.2012.08.028
http://dx.doi.org/10.1016/j.ijsolstr.2012.08.030
http://dx.doi.org/10.1016/j.ijsolstr.2012.05.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Description 
	The Magnitude of Bending Moment Acting on Non-Cracked Part of the Beam 
	Shearing Forces and Bending Moment Acting on Delaminated Regions of the Specimen 

	Simple Beam Theory Solution 
	Deflection of Two Euler–Bernoulli Cantilever Beams Fixed at One End 
	Deflection Curve of the AENF Specimen 
	First Integrations of the Differential Equations for Beams Curvatures 
	First Boundary Conditions: Slopes of the Beams at Singular Points 
	Second Integration of the Beams Slope’s Equations. 
	Second Boundary Conditions: Beam Deflections at Specimen Ends 
	Third Boundary Conditions: Beam Deflections at Singular Points 

	Final Form of the Equation for AENF Deflection Curve by Euler–Bernoulli Beam Theory 
	Crack Length as a Function of AENF Specimen Deflection 

	Timoshenko Beam Theory Solution 
	Deflection of Two Timoshenko Cantilever Beams Fixed at One End 
	Deflection Curve of the AENF Specimen 
	First Integrations of the Differential Equations for Beams Curvatures 
	First Boundary Condition: Cross-Section Rotations of the Beams at Singular Points 
	Second Integration of the Beams Equations 
	Second Boundary Conditions: Beam Deflections at Specimen Ends 
	Third Boundary Conditions: Beam Deflections at Singular Points 
	Final Form of the Equation for AENF Deflection Curve by Timoshenko Beam Theory 


	Experimental and Numerical Validation 
	Methodology 
	Deflection Profiles of the ENF and AENF Specimen 

	Influence of Cross-Section Rotation on the Internal Forces in AENF 
	Parametric Study-Simple vs. Timoshenko Beam Theory 
	Three-Dimensional Finite Element Analysis Modeling of AENF 

	Conclusions 
	Sublaminate Equivalent Stiffness 
	References

