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Abstract: The dynamic mechanical behaviors of Hydroxyl-terminated polybutadiene (HTPB)
propellant was studied by a split Hopkinson pressure bar apparatus (SHPB) at strain rates ranging
from 103 to 104 s−1. The obtained stress–strain curves indicated that the mechanical features,
such as ultimate stress and strain energy, were strongly dependent on the strain rate. The real time
deformation and fracture evolution of HTPB propellant were captured by a high-speed digital camera
accompanied with an SHPB setup. Furthermore, microscopic observation for the post-test specimen
was conducted to explore the different damage mechanisms under various conditions of impact
loading. The dominated damage characteristics of HTPB propellant were changed from debonding
and matrix tearing to multiple cracking modes of ammonium perchlorate (AP) particles, along with
the increase of the strain rate. For the first time, the influence of AP particle density on the dynamic
response of HTPB propellant was studied by analyzing the strain-rate sensitivity (SRS) index of HTPB
propellant with two different filler content (80 wt.% and 85 wt.%), which deduced from a power
function of ultimate stress and strain energy density. The result of this study is of significance for
evaluating the structural integrity and security of HTPB propellant.

Keywords: hydroxyl-terminated polybutadiene propellant; split Hopkinson pressure bar; strain rate
sensitivity; damage mechanisms

1. Introduction

As an important type of solid propellant, Hydroxyl-terminated polybutadiene (HTPB) propellant
has been universally equipped in solid rocket motors (SRMs) for both military and civil use,
because of its outstanding advantages, such as high energy level, good processability and excellent
mechanical properties [1–3]. In terms of material composition, HTPB propellant is a typical highly filled
heterogeneous polymer composite, including ammonium perchlorate (AP) and aluminum particles as
solid fillers, HTPB as a binder and other additives [4].

HTPB propellant, served as energy sources in a missile, is more vulnerable than the other
components of a missile system under severe impulsive loadings [5–11]. Specifically, the solid
propellant grain is usually exposed to different forms of impact loadings, such as accidental dropping,
launch overload and fragment impact under attack, which correspond with strain rates spanning
from 103 s−1 to 104 s−1 [12]. These types of impact loading can cause severe failure and even lead to
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unwilling initiation of the solid propellant, which constitutes a great menace for the survivability and
reliability of missile weapons [13–16]. Therefore, it is of great importance to study the characteristics of
the mechanical performance and failure mode of HTPB propellant under impact loadings. Moreover,
these studies can provide the supporting data for numerical simulations, which is beneficial to assess
the safety and structural integrity of HTPB propellant.

Recently, numerous studies have focused on the quasi-static and dynamic behaviors of solid
propellants at different strain rates. For example, Wang et al. conducted a series of compressive tests of
HTPB propellant over a wide range of strain rates (from 1.7 × 10−4 to 2500 s−1) [17]. They believed
that the stress is linearly related to the logarithm of strain rate when the strain rate ranged from
1.7 × 10−4 to 1 s−1, whereas the relation turns to act as an exponential function while the strain rate
ranged from 1 to 2500 s−1. Wang et al. also examined the rate dependence on the yield stress of
composite modified double base (CMDB) propellant with a similar method. They indicated that the
yield stress increases bilinearly with the logarithm of strain rate ranging from 1.7 × 10−4 to 4000 s−1.
The transition of rate dependence on both HTPB propellant and CMDB propellant can be ascribed to
the different molecular motion unit under low and high strain rate loading [18]. Sun et al. investigated
the compressive behaviors of a CMDB propellant at strain rates ranging from 10−4 s−1 to 103 s−1 [19].
The curves of stress–strain showed linear viscoelastic, yielding and strain hardening or strain softening
successively. Chen et al. studied the dynamic compressive damage mechanisms of HTPB propellant
at strain rates ranging from 700 to 1900 s−1, using a split Hopkinson pressure bar apparatus (SHPB)
apparatus [20]. The scanning electron microscopy (SEM) observation exhibited three damage modes
of HTPB propellant under high-speed compressive loading, transgranular fracture, increasing porosity
and matrix tearing. Ho et al. examined the damage mechanisms of three typical propellants that
imposed a high strain rate loading (ca.1000 s−1), involving a “brittle-ductile” procedure when increasing
the temperature [21]. Drodge et al. quantified the impact damage of the RDX-HTPB composites at a
strain rate of 1000 s−1, by measuring four damage metrics, the compressive strength, the modulus,
the thermal conductivity and the porosity [22]. Zhang et al. obtained the high strain rate (up to
4500 s−1) compressive stress–strain curves for a novel NEPE propellant over a temperature range from
−40 ◦C to +40 ◦C, using a modified SHPB device [23]. Sunny conducted a modified SHPB testing
on an HTPB polymer and its composite for comparison [24], the strain rate dependence indicated a
remarkable transition at 2100 s−1.

Although there are studies on the dynamic compression tests of HTPB propellant that refer to strain
rates ranging from 10−4 to 103 s−1, information on the impact response and damage mechanisms of
HTPB propellant at strain rates in the order of 104 s−1 is still limited and for which strain rates correspond
to dynamic circumstances of high-speed impact, such as accidental dropping, launch overload and
fragment impact. Furthermore, HTPB propellant is a typical highly filled heterogeneous composite,
and the filler particle density has an appreciable effect on the dynamic mechanical properties and
damage characteristics of HTPB propellant. However, the influence of particle density on the dynamic
compressive response of HTPB propellant is largely unexplored, according to the existing literature.

In this work, an SHPB apparatus was applied to obtain the dynamic compressive response of
HTPB propellant with strain rates spanning from 780 to 8960 s−1 at room temperature. Another goal
of this work is to introduce an empirical formula to quantitatively analyze the strain-rate sensitivity
index of ultimate stress and strain energy density of HTPB propellant by fitting the mechanical data.
SEM images of the post-test specimen were conducted to explore the different damage characteristics
after dynamic loading. Furthermore, the mechanical properties of HTPB propellants with two different
filler contents (80 wt.% and 85 wt.%) were compared to analyze the influence of AP particle density on
high-speed impact response of HTPB propellant for the first time.
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2. Experimental Methodology

2.1. Material and Specimen Preparation

The investigated HTPB propellant specimen was fabricated by a typical slurry casting method,
including with HTPB as polymer binder, AP and aluminum particles as solid fillers, DOA as a
plasticizer and other additives (including Ferrocene derivatives and lead based oxides as combustion
catalyst, stannous octanoate as curing catalyst, 2, 4-Toluene diisocyanate as curing agent and so
on). Herein, the number average molecular weight of HTPB binder is approximately 3500–4800,
the hydroxyl value and average hydroxyl functionality of HTPB is 0.50–0.80 mmol/g and 2.18,
respectively. The AP particles are irregular crystals with sizes ranging from 80 to 150 µm,
while aluminum particles are spherical-shaped grains with a size distribution from 12 to 18 µm
in a normal form, which can be attributed to the preparation process, and 15 µm is the mean
size. Generally, HTPB propellants embedding 80 to 85 wt.% of filler density are more widely accepted
for the well-balanced, good performance of fabrication and high energy level. The constitution of two
HTPB propellants with 80 and 85 wt.% filler content is listed in Table 1, which is denoted as H-80W
and H-85W, respectively.

Table 1. Formulation of two Hydroxyl-terminated polybutadiene (HTPB) propellants with 80 wt.%
and 85 wt.% filler density.

Formulation HTPB AP Al DOA Other Additives

H-80W 12 65 15 4 4
H-85W 9 70 15 3 3

Components of HTPB propellant were blended in a kneading machine for 2 h in a slurry form,
then the slurry was poured into the prepared molds. After being cured in an oven at temperatures of
50 ◦C for 6 days, the obtained HTPB propellant was machined into cylinders with two dimensions,
as shown in Figure 1. The specimen in Figure 1a has a geometry size of 9 mm diameter and 9 mm
length, which is used for low-strain-rate loading (780 to 1980 s−1 in this study). The other has a
geometry size of 9 mm diameter and 6 mm length, which is used for high-strain-rate loading (2450 to
8960 s−1 in this study), because a higher length-to-diameter ratio is beneficial for the reduction of stress
wave attenuation in the high strain-rate loading [25]. After machining, both two sizes of samples were
kept in an oven at 50 ◦C for more than 24 h to eliminate the residual stress.
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2.2. Dynamic Compressive Mechanical Testing

Since Kolsky developed the SHPB technology for the dynamic mechanical test [26], the SHPB tests
have been extensively applied to study the mechanical properties of various materials under strain rates
ranging from 102 to 105 s−1, such as metals, rocks, composite materials and solid propellant [27–36].
In this paper, an SHPB device was equipped to perform the impact loading experiment on the HTPB
propellant. The photograph of the SHPB apparatus fitted with a high-speed digital camera was
depicted in Figure 2a, and the schematic of the SHPB device is depicted in Figure 2b.
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Figure 2. (a) A photograph of the split Hopkinson pressure bar device fitted with a high-speed digital
camera. (b) Scheme of the split Hopkinson pressure bar device.

During the test, the sample was located between the transmitted bar and the incident bar. Initially,
the compressed air pulsed the striker bar, which was fired by a gas gun, then the striker bar impacted
the incident bar with a specific velocity, V, generating a compressive stress pulse on one end face
of the incident bar, then the stress pulse propagated through the incident bar. The strain gauges
recorded the stress pulse, which was mounted on the incident bar. When the stress wave arrived at the
boundary between the sample and the incident bar, part of the pulse traveled through the transmitted
bar, while the remaining part was reflected back to the incident bar. All types of strain signals were
recorded and magnified by the strain gauges and strain amplifier, respectively. Thanks to the pulse
shaper technology, which can minimize the oscillations and achieve a dynamic stress equilibrium.
A film of lubricant between the bars and sample was utilized to reduce the interfacial friction. Based on
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the strain signals recorded by strain gauges, the relationship with the strain rate, strain, and stress of
sample, can be expressed by using Equation (1) [37–40].

.
εengi. = −

2CB
ls
εr

εengi. = −
CB
ls

∫ t
0 εrdt

σengi. = EB ·
AB
As
εt

(1)

where CB, AB, and EB are the wave velocity, cross sectional area and Young’s modulus of the bars,
respectively. The wave velocity of the bars can be expressed as, CB =

√
E/ρ, in which ρ is the bar’s

mass density. ls and As are the length and cross sectional area of the sample before the test. εr and
εt are the recorded strain signals of the incident bar and transmitted bar, respectively. Based on the
hypothesis of a constant volume of sample during the whole deformation, the true strain εtrue and
true stress σtrue can be associated with engineering strain εengi and engineering stress σengi by using
Equation (2) [41,42].  εtrue = ln(1 + εengi.

)
σtrue = σengi.(1 + εengi.)

(2)

Figure 3 illustrates the original signals of incident, reflected, and transmitted waves in an SHPB
test on H-80W at a strain rate of 2460 s−1. The pulse duration can be determined as 200 µs from Figure 3.
Thanks to the filtration of pulse shaper, the high frequency components can be distinctly identified
from the incident signal, which is essential to minimize the experimental error. The rectangular
shaped region of the reflected signal corresponds to a constant amplitude, indicating that the sample
experienced a constant engineering strain rate deformation under dynamic stress equilibrium. For the
SHPB tests in this study, at least three samples were tested by repeating each strain rate of loading,
to ensure that the obtained stress–strain curves were reliable. Meanwhile, the real time procedure of
deformation in an SHPB test is synchronously recorded by a high-speed digital camera. A post-test
SEM was applied to investigate the microscopic features of impact-induced damage.

Materials 2020, 13, x FOR PEER REVIEW 5 of 17 

 

.

.
0

.

2 B
engi r

s

t
B

engi r

s

B
engi B t

s

C

l

C
dt

l

A
E

A

 

 

 







 



 




－

 
(1) 

where CB, AB, and EB are the wave velocity, cross sectional area and Young’s modulus of the bars, 

respectively. The wave velocity of the bars can be expressed as, CB  √𝐸/𝜌, in which ρ is the bar’s 

mass density. ls and As are the length and cross sectional area of the sample before the test. εr and εt 

are the recorded strain signals of the incident bar and transmitted bar, respectively. Based on the 

hypothesis of a constant volume of sample during the whole deformation, the true strain εtrue and 

true stress σtrue can be associated with engineering strain εengi and engineering stress σengi by using 

Equation (2) [41,42]. 











engi.engi.true

engi.true





1

)ln(1
 

(2) 

Figure 3 illustrates the original signals of incident, reflected, and transmitted waves in an SHPB 

test on H-80W at a strain rate of 2460 s−1. The pulse duration can be determined as 200 μs from Figure 

3. Thanks to the filtration of pulse shaper, the high frequency components can be distinctly identified 

from the incident signal, which is essential to minimize the experimental error. The rectangular 

shaped region of the reflected signal corresponds to a constant amplitude, indicating that the sample 

experienced a constant engineering strain rate deformation under dynamic stress equilibrium. For 

the SHPB tests in this study, at least three samples were tested by repeating each strain rate of loading, 

to ensure that the obtained stress–strain curves were reliable. Meanwhile, the real time procedure of 

deformation in an SHPB test is synchronously recorded by a high-speed digital camera. A post-test 

SEM was applied to investigate the microscopic features of impact-induced damage. 

 

Figure 3. Original signals of incident, reflected, and transmitted waves recorded by the strain gauges. 

3. Results and Discussion 

3.1. Dynamic Stress–Strain Characteristics and Fracture Behavior 

Herein, H-80W was chosen as the representative for dynamic experiments at various strain rates. 

H-85W was introduced to study the influence of AP particle density on the dependence of strain rate, 

Figure 3. Original signals of incident, reflected, and transmitted waves recorded by the strain gauges.

3. Results and Discussion

3.1. Dynamic Stress–Strain Characteristics and Fracture Behavior

Herein, H-80W was chosen as the representative for dynamic experiments at various strain rates.
H-85W was introduced to study the influence of AP particle density on the dependence of strain rate,
by comparing with H-80W. Figure 4 shows the true stress–strain curve of H-80W under a strain rate of
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2460 s−1. From Figure 4, a nonlinear elastic deformation behavior is displayed, without an obvious
yielding, the true stress keeps rising to a peak value of 14.8 MPa (ultimate stress) at a strain of 0.42 and
a time of about 200 µs, the time of which is equal to the pulse duration for the current SHPB test.
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Figure 5. Deformation processes of H-80W recorded by a high-speed digital camera under a strain rate
of 2460 s−1. The green numbers in the images correspond to the numbers marked in Figure 4.

In this SHPB test, the strain energy density represented by the area below the stress–strain curve
can be determined as 4.75 MJ/m3, which indicates the total energy consumption of H-80W at a strain
rate of 2460 s−1. The real time deformation photographs of H-80W were recorded by a high-speed
digital camera, and the green numbers in the stress–strain curve correspond to the numbers marked
in the high-speed photographs in Figure 5. As shown in image No. 1 in Figure 5, a cylinder-shaped
sample was initially located in the middle of two bars. From images No. 2 to No. 4 image in Figure 5,
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a generally homogeneous deformation of H-80W occurs, which corresponds to a stress equilibrium
in the sample during test. The status of homogeneous deformation continues until a strain of 0.15,
of which the stress is 10 MPa. From image No. 5 (strain of 0.2 and stress of 12 MPa), a barreling behavior
takes place. It means that the one-dimensional deformation of the specimen tends to be disturbed by
the interfacial friction effect. However, for this test, the influence of interfacial friction on the stress
state can be minimized, because the grease was used as lubricant and the inhomogeneous deformation
of the specimen is not pronounced. At the final part of the stress–strain curve, the unloading procedure
initiates before the specimen was imposed to totally fracture, indicating that the strain energy density
of 4.75 MJ/m3 is insufficient to destroy H-80W.

As Figure 5 depicted, no macroscopic damage or cracking was observed under a strain rate
of 2460 s−1. In order to examine the damage characteristics of H-80W at a microscopic level,
SEM observation was employed to study the impact face of the post-test sample, and the direction
of impact loading is perpendicular to the photograph. From Figure 6a, AP particles were uniformly
dispersed in the binder matrix and the AP particle-binder interfaces can be clearly observed in an
untested sample. As well, the distribution of spherical aluminum particles also can be found with a
dimension in the order of several microns. The debonding behavior of the particle-binder interface
induced by impact loading can be revealed in Figure 6b. A small amount of polymer binder was
found remaining on the surface of the AP particle from Figure 6c, meanwhile, the damage or fracture
of the AP particle can hardly be noticed. From Figure 6d, the extended strip-shape polymer binder
implies that severe tearing of the binder matrix occurred under impact loading. It can be concluded
that the dominating damage mechanism of H-80W is debonding and matrix tearing at a strain rate of
2460 s−1 and room temperature. The reason is that at a strain rate of 2460 s−1, micro cracks initiate
and propagate in the binder itself, rather than propagate to the stiffer AP particles, resulting in the
phenomenon of debonding and matrix tearing. During the test of 2460 s−1, no macroscopic fracture
occurs because of the input energy is insufficient. For characterizing the complete fracture process of
H-80W by SHPB, a higher strain rate is needed (increasing the loading speed). A representative true
stress–strain plot up to fracture was acquired under a strain rate of 6100 s−1, as depicted in Figure 7.
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Figure 6. SEM micrographs of the non-fractured H-80W after split Hopkinson pressure bar apparatus
(SHPB) testing at room temperature under a strain rate of 2460 s−1: (a) ammonium perchlorate (AP)
particles embedding within the HTPB matrices as well as the distinct interfaces of the particle-binder
in an untested specimen; (b) debonding of the particle–binder interface induced by impact loading;
(c) the unbroken AP particle with covering residual binder polymer; (d) the strip-shape polymer caused
by severe binder matrix tearing.
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Figure 7. True stress-strain curve of H-80W under a strain rate of 6100 s−1, causing a final fracture,
the green numbers in the curve correspond to the numbers marked in the images recorded by a
high-speed digital camera in Figure 8.

Figure 7 illustrates the true stress-strain curve of H-80W under a strain rate of 6100 s−1, causing
a final fracture. Compared with the curve of strain rate 2460 s−1, the curve of strain rate 6100 s−1

exhibits much higher flow stress, ultimate stress and strain energy density. The propellant exhibits
strong nonlinear mechanical behaviors under a strain rate of 6100 s−1, without an obvious yielding.
The ultimate stress and strain energy density in this test can be identified as 19 MPa and 16.43 MJ/m3,
respectively, and the strain associated with ultimate stress is 1.0. At the final part of the curve, the stress
falls sharply, corresponding to the loss of capacity of loading induced by the final fracture. In addition,
compared with the curve of Figure 4, the curve of Figure 7 exhibits an obvious plateau stress region,
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which means a region with a rapid increase of strain but a moderate rise in stress. As Figure 7 depicted,
the plateau stress is almost consistent with 17 MPa at a strain ranging from 0.4 to 0.8. It is well
documented that the plateau stress region of particle-filling composites (such as HTPB propellant) can
be attributed to a multiple damage mechanism under dynamic loading, including particle dewetting,
craze propagation and particle cracking [36].

Similar to the study of lower strain rate testing, Figure 7 showed the stress–strain evolution with
green spots corresponding to the high-speed images, as shown in Figure 8. A nearly homogeneous
uniaxial compressive procedure over the whole loading history can be observed under a strain rate
of 6100 s−1, which produced a large deformation. As the strain increased, the crack initiated and
the fractured debris were squeezed out from the two bars according to images No. 7 and No. 8,
which implies the final collapse of the specimen. The post-test SEM was employed to investigate the
damage mechanisms at a strain rate of 6100 s−1. The SEM recordings are revealed in Figure 9, and the
direction of impact loading is perpendicular to the images.
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Figure 7.
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Figure 9. SEM micrographs of the fractured H-80W after SHPB testing at room temperature under a
strain rate of 6100 s−1: (a) cracking of AP particle and pieces of broken AP spreading on the fracture
surface; (b) individual cracking AP particle without direct contact with other particles; (c) the multiple
porosity and binder matrix tearing induced by high-speed impact loading; (d) cracking propagating
through binder matrix into AP particles; (e) cracking propagating through the AP particle-binder
interface into the AP particles; (f) cracking propagating through the adjacent AP particles.

The analysis of microscopic morphology on the fractured sample indicated that the damage
of H-80W is more serious at a strain rate of 6100 s−1 than that of 2460 s−1 because the increase of
strain rate can cause a higher loading level and a higher input strain energy. Obviously, the specimen
underwent total collapse, which can be proven by the cracking of the AP particle, and the broken AP
debris scattering over the vision, as pointed out by yellow arrows in Figure 9a. The fracture surface of
AP particles exhibits a characteristic feature of rapid crack propagation, which behaves in a brittle
manner according to Figure 9a. In addition, higher applied stress, caused by high strain rate loading,
can be transferred from HTPB matrices to the AP particles, even leads to cracking of individual AP
particles without direct contact with other particles, because it is easier for cracks to initiate, nucleate
and propagate in the AP particles when increasing strain rate, as presented in Figure 9b [43]. The dark
regions in Figure 9c represent the porosity of the specimens induced by high-speed impact, forming a
lot of voids in the specimen, as pointed by yellow arrows. Meanwhile, the phenomenon of the binder
matrix tearing can also be found in Figure 9c. The multiple cracking mechanism of the specimen
can be explored by analyzing the modes of crack initiation and propagation. Three typical crack
propagating paths can be revealed in detail. Firstly, cracking through the binder matrix into the AP
particle, inducing a final transcrystalline damage, as shown by the red arrow in Figure 9d. Secondly,
cracking through the AP particle-binder interface into the AP particle, as shown by the yellow arrow in
Figure 9e. Thirdly, cracking through the adjacent AP particles (see Figure 9f). In summary, the multiple
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cracking paths indicate a multiple damage mechanism, which can be due to the larger damage energy
of HTPB propellant under higher strain rate. By comparing the complete stress–strain curves and SEM
records of HTPB propellant under two representative strain rate loadings, 2460 s−1 (without inducing
fracture) and 6100 s−1 (inducing fracture), a complete damage morphology and mechanical response
can be obtained.

3.2. Strain-Rate Dependence on the Dynamic Mechanical Response

To explore the strain-rate dependency on the mechanical properties of HTPB propellant,
various strain rates of dynamic tests were conducted on H-80W by SHPB, as shown in Figure 10.
The ultimate stress (from 11 MPa to nearly 24 MPa) and the associated strain (from 0.3 to 1.1) can be
determined from these stress–strain plots directly. From Figure 10, as strain rate increases, the final
strain, ultimate stress and strain energy density of H-80W increase significantly, which can be attributed
to the higher applied stress and larger energy consumption of a specimen under higher rate loading.
Meanwhile, the activation energy of a molecular segment movement can be promoted as increasing the
strain rate, which leads to a rising of ultimate stress. As shown in Figure 10, the stress–strain curves
of H-80W at strain rates ranging from 780 to 8900 s−1 exhibit a similar feature, which can be defined
as three regions in sequence: initially linear elastic, followed by strain hardening, and finally stress
failure. The similar features of the curve indicated that the binder matrix exerts a dominant effect on
the dynamic mechanical response of the HTPB propellant.
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In order to study the effect of solid particle density on the dynamic response of HTPB propellant,
another HTPB propellant with particle content of 85 wt.% (H-85W) was subjected to SHPB tests at
strain rates ranging from 1250 to 8150 s−1, as shown in Figure 11. For the high rate loading using
the SHPB technique, the strain rates are mainly controlled by the velocity of a striker bar. It is rather
difficult to repeat the strain rates in every test exactly. Note that the deviation of the counterpart strain
rate in Figures 10 and 11 is 10% around, for example, 8960 and 8150 s−1, which has a limited effect
on the stress–strain performance [44]. From Figure 11, there is somewhat of a difference between the
stress–strain plot of 8150 s−1 and the other plots, which can be attributed to the extensive cracking
of AP particles under high-speed loading. By comparing the mechanical properties of H-80W and
H-85W, the final strain, ultimate stress and strain energy density of H-80W display greater values than
H-85W at strain rates ranging from 1250 to 8150 s−1. The main reason is that the weak point in the
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propellant lies in the interface of the particle-binder, which is more dominant in H-85W because of the
larger AP particle density [45].
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In order to assess the effect of strain rate on the stress of materials, the strain-rate sensitivity (SRS)
index, m, is introduced and can be expressed as below by Equation (3):

m =
ln(σ/σ0)

ln(
.
ε/

.
ε

0
)

(3)

in which,
.
ε is strain rate; σ is stress, σ0 and

.
ε0 are reference stress and reference strain rate, respectively.

Equation (3) can be simplified to Equation (4), a well-known empirical power law function to represent
the strain rate dependency on the stress of various materials, which can be defined as the Backofen
formula [46,47].

σ = Kσ ·
.
ε

m (4)

Herein, Kσ is an intrinsic parameter of material, which is related to factors such as strain,
temperature and microstructure of material. This power law relation is also available to represent the
strain rate dependency on strain energy density, given by Equation (5):

U = Ku ·
.
ε

m (5)

Herein, U is strain energy density;
.
ε is strain rate; Ku is an intrinsic parameter of material related

to strain energy density and m is the SRS index.
To quantitatively compare the influence of strain rate on the mechanical properties of H-80W and

H-85W, ultimate stress and strain energy density are plotted as a function of strain rate respectively,
presented as Figure 12a,b. For the H-80W, the rate-dependent relations of ultimate stress, σm and
the input of strain energy density, U are given by: σm = 1.04933

.
ε0.34 and U = 0.00135

.
ε1.06 by fitting

the power law function, respectively (see Figure 12a). For the H-85W, the rate-dependent relations
of ultimate stress and the input of strain energy density can be expressed as, σm = 0.61128

.
ε0.39 and

U = 0.00015
.
ε1.30 by fitting the power law function, respectively (see Figure 12b). Both fitted curves

show an obvious increasing tendency with strain rate, while the amplitude of increase is different.
To compare the different strain rate dependence of H-80W and H-85W in more detail, the material
parameter, K, and SRS index, m, have been listed in Table 2.
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Table 2. Parameters of strain rate dependence on ultimate stress and strain energy density described
by a power function in Equations (4) and (5) for H-80W and H-85W.

Sample Ultimate Stress (σ) Strain Energy Density (U)

Kσ m Ku m

H-80W 1.04933 0.34 0.00135 1.06
H-85W 0.61128 0.39 0.00015 1.30

In the power law relation of Equation (4), the data of Kσ represents the parameter value of HTPB
propellant at low strain rate (provided that strain rate

.
ε is 1s−1). For the ultimate stress, the parameter,

Kσ of H-85W (0.61128) is much lower than that of H-80W (1.04933). It implies the decreased load-bearing
capacity of H-85W at a low strain rate level related to H-80W, because a higher content of AP particles
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is harmful to the load-bearing capacity of the propellant at low strain rate. Whereas, for the parameter,
m of H-85W (0.39) is higher than that of H-80W (0.34). It indicated a faster increased ultimate stress
with increasing strain rate for H-85W, which can be attributed to the greater load-bearing capacity of
H-85W than H-80W under high strain-rate loading, because of the skeleton effect of the AP particle.
Furthermore, the cracking of AP particles also leads to a more rapid growth in strain energy density
with the increase of strain rate, which can be proven by a higher m value for the strain energy density
of H-85W (1.30) than that of H-80W (1.06). Based on the study of the rate-dependence of H-80W and
H-85W, it can be concluded that, compared with H-80W, H-85W exhibits lower ultimate stress and
strain energy density, while the strain-rate sensitivity of ultimate stress and strain energy density are
higher for H-85W. The reason can be attributed to the more severe fracture process (including multiple
cracking modes of AP particles) for H-85W under high strain-rate loading, because of the higher AP
particle density and lower binder content for H-85W than H-80W.

As presented in Figure 13, the stress–strain data of other reported HTPB based materials were
also fitted by Equation (4), to obtain a series of power functions related to the rate-dependence of
ultimate stress, which verifies the validity of the simple empirical formula in dynamic loadings [20,48].
As shown in Figure 13, compared with the other works, the experimental strain rate range referred to in
this study is much wider, which means that a more complete mechanical response of HTPB propellant
can be obtained during high-speed impact loading.
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other reported HTPB based materials.

4. Conclusions

The dynamic mechanical properties and damage mechanism of HTPB propellant was determined
by an SHPB setup synchronizing with a high-speed camera. The detailed conclusions can be drawn
as follows.

For the HTPB propellant with embedding 80 wt.% particle content (H-80W), the profiles of the
true stress–strain plots with strain rates spanning from 780 to 8960 s−1 at room temperature are similar,
which indicated an identical deformation process. Final strain, ultimate stress and strain energy density
of HTPB propellant all show an evident increasing tendency with strain rate. In addition, SEM was
applied to study the microscopic damage mechanisms of the specimen at two representative strain
rates, 2460 s−1 (no-fracture) and 6100 s−1 (fractured). The dominating damage mechanism of HTPB
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propellant at strain rate of 2460 s−1 is debonding and matrix tearing, whereas in the case of 6100 s−1,
a more serious fracture with multiple cracking modes of AP particles was induced.

Furthermore, the influence of AP particle density on the dynamic response of HTPB propellant
was also investigated. The difference of the strain–stress data between H-80W (80 wt.%) and H-85W
(85 wt.%) was quantitatively compared, not only based on the ultimate stress and strain energy density,
but also the material parameter (K) and strain-rate sensitivity index (m) fitted by a power law function.
In comparison with H-80W, H-85W exhibits a reduced ultimate stress and strain energy density, because
of the lower binder content for H-85W. However, H-85W reveals a higher rate-dependence on ultimate
stress and strain energy density than H-80W, which can be attributed to the greater load-bearing
capacity of H-85W under high strain-rate loading, because of the skeleton effect of the AP particle.
In conclusion, the dynamic mechanical response and the multiple damage mechanisms deduced by
this study can produce a fundamental scientific interest for developing a new HTPB propellant with
good structural integrity and safety.
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