
materials

Article

The Influence of the Layer Arrangement on the
Distortional Post-Buckling Behavior of Open
Section Beams

Tomasz Kubiak * , Mariusz Urbaniak and Filip Kazmierczyk
Department of Strength of Materials, Faculty of Mechanical Engineering, Lodz University of Technology,
90-924 Lodz, Poland; mariusz.urbaniak@p.lodz.pl (M.U.); filip.kazmierczyk@dokt.p.lodz.pl (F.K.)
* Correspondence: tomasz.kubiak@p.lodz.pl; Tel.: +48-426-312-214

Received: 29 May 2020; Accepted: 3 July 2020; Published: 6 July 2020
����������
�������

Abstract: The paper deals with the design of the stacking sequence of layers in the laminate
beams with open-cross sections in order to create the desired behavior in the post-buckling range.
Laminate beams with channel and lipped channel cross-sections made of glass fiber reinforced
polymer (GFRP) laminate with different layer arrangements (symmetrical and nonsymmetrical)
have been considered. In case of the nonsymmetrical stacking sequences, hygro-thermally curvature
stable (HTCS) laminates have been taken into account. Pure bending was assumed as the type of
load. In the case of beams with open cross-sections, this load type can cause the lateral-distortional
buckling mode. A parametric study was performed to analyze the influence of layer arrangement
on post-buckling behavior. The finite element method was used to developed numerical models
and conduct simulations. Additionally, the experimental tests of the channel section beams were
performed in order to validate the developed numerical models.

Keywords: laminate tailoring; thin-walled structures; post-buckling behavior; finite element method;
experimental tests

1. Introduction

Thin-walled structures made of laminates provide a lot of flexibility in the design of their
behavior—called laminate tailoring. The most popular is the layer sequence design to obtain predictable
deflection of structures subjected to operating load. Taking into account the typical layer arrangement
(i.e., quasi-orthotropic, symmetrical or antisymmetric cross-ply or angle-ply) only in some mentioned
above cases the elements of laminate stiffness matrix responsible for coupled behavior (e.g., in-plane
with out-of-plane, shear-extension or bending-twisting) leading to the coupled behavior have non-zero
value. Laminates with non-standard (i.e., nonsymmetrical) layer arrangements, which can deflect
during the manufacturing process (e.g., autoclaving), afford the possibility for different coupled
load-deflection behaviors. A solution to this problem is the hygro-thermally curvature stable (HTCS)
laminates. A significant amount of investigations dealing with such laminates (generally, plate) exists
in the international literature. The following can be mentioned. York analyzed the HTCS design
of laminates with non-standard ply angle orientation (+60◦, −60◦, 0◦ and 90◦) [1]. Furthermore,
he analyzed new design methods for tapered laminates under various types of load [2]. Shamsudin
and York [3] provide in-depth analyses of standard laminate stacking sequences in order to obtain
thermally immune structures. York and Lee [4] performed experimental validation of the proposed
numerical model for carbon fiber reinforced polymer (CFRP) laminates with HTCS design. Cui and Li
analyzed laminates with bending-twisting coupled structures with hygro-thermal shear distortion
(HTSD) immunity [5]. It should be noted that the nonsymmetrical layer arrangement in laminates
allows the design of coupling behavior—the literature also deals with this problem, e.g., [6,7].
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The influence of the laminate layer arrangement as well as the non-zero elements of laminate
coupling stiffness matrix on the behavior of thin-walled structures is presented by many scientists.
Debski et al. [8,9] performed compression tests of CFRP C-section columns with different layer
orientation. Teter et al. [10] analyzed the effect of the coupling matrix B from A,B,D (A—extensional
stiffness submatrix, B—coupling stiffness submatrix D—bending stiffness submatrix) laminate stiffness
matrix on the load-carrying capacity of thin walled columns. Rzeczkowski et al. [11] presented an
experimental study of the matrix coupling influence on the delamination of CFRP plates. Kolakowski
and Mania [12] presented an analysis of the influence of the coupling matrix B for fiber-metal laminate
(FML) and columns made of functionally graded material (FGM). They considered the three-mode
interactive buckling approach. Cai et al. [13] performed an experimental study of the influence of the
type of fiber pattern, i.e., unidirectional, woven on coupling coefficients of glass/epoxy composites.
Gao et al. [14] presented the multi-scale method to predict the ABD stiffness matrix in woven composites
based on numerical and experimental tests.

The problem considered in this paper focuses on the post-buckling behavior of thin-walled
beams subjected to pure bending, where in the case of open cross-section beams the distortional
and lateral deflection appears in the post-buckling range. This topic was widely investigated by
Camotim et al. [15–17] with an analysis of the different modes and their interaction on post buckling
behavior. In those papers, different approaches have been employed. Bebiano et al. [15] presented an
application of the latest GBTUL 2.0 (Generalised Beam Theory University of Lisbone, Lisbone, Portugal)
software. The paper presents the possibilities of the mentioned software in the case of buckling and
vibration for thin walled structures. Martins et al. [16] analyzed simply supported steel beams with
lipped channel, Z and hat sections under pure bending, using the direct strength method (DSM). In [17],
the compression of lipped channel section columns is shown in the form of experimental tests and the
DSM design. Similar investigations have been performed by Rasmunsen et al. [18,19], Szymczak and
Kujawa [20–22] and Magnucki and Paczos [23–25].

Considering the above short literature overview, it can be noted that there are no papers dealing
with laminate tailoring for the design of buckling and post-buckling behavior. This was the reason
why the authors decided to perform a parametric study with different layer arrangements, including
non-symmetrical HTCS laminates, in order to check their influence on buckling and post-buckling
behavior. Special attention has been paid to the eventual possibility of the reduction of lateral
deflection in the post-buckling range. The study has been performed by developing the finite element
models, which have been solved using the commercial software ANSYS® version 18.2 [26]. Additionally,
the experimental tests were carried out for a few cases in order to validate the proposed numerical model.

2. Experimental Tests

2.1. Laminate Material Properties Determinations

The material properties of laminate used for beam specimens have been determined in experimental
tests [27]. Young moduli in fiber direction E1 and in transvers to fiber direction E2, Poisson ratio ν12

and ultimate tensile stresses in fiber direction XT and in transvers to fiber direction YT have been
determined according to ASTM D 3039 standard [28]. Kirchhoff modulus G12 and ultimate shear stress
S have been determined in the specimens with layer arrangements ±45◦ in tensile tests according to
ASTM D3518 standard [29]. The ultimate compressive stress in fiber and transvers to fiber direction
XC, YC were determined according to ASTM D3410 standard [30]. It should be noted that the most
difficult to determine is the ultimate compression stress in fiber direction XC, due to the possibility of
buckling. However, comparing obtained value with cases presented in literature [31–33] it was found
that XC/XT ratio for unidirectional GFRP material varies from 0.5 to 1.

For each experimental test six specimens have been prepared and tested. The obtained material
properties with standard deviations (SD) are presented in Table 1.
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Table 1. The material properties laminate under consideration.

E1 E2 G12 ν12 XT YT XC YC S
[GPa] [GPa] [GPa] [-] [MPa] [MPa] [MPa] [MPa] [MPa]

Data 39.0 9.0 2.7 0.28 1250 43 620 140 112
SD 0.4 0.7 0.1 0.003 78 4 62 5 1

2.2. Bending Tests of Channel Section Beams

The experimental four-point bending tests of channel section beams have been performed to
validate the developed numerical models, and choose the most interesting cases for conducting the
parametric study. The scheme of four-point bending tests with cross-section dimension of considered
channel section beam are presented in Figure 1.
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Figure 1. (a) Scheme of four-point bending test performed experimentally. (b) Considered cross-section.

The specimens for experimental tests are made of 8 layers of GFRP pre-preg manufactured using
the autoclaving technique. The specimens had three following layers arrangements: [0/90/0/90]S;
[45/−45/90/0]S; [45/−45/45/−45]S. Nine specimens have been tested—three for each layer layups The
cross-section dimensions of all beams have been measured before the test and presented in Table 2
(used notation correspond to those presented in Figure 1).

Table 2. Cross-section dimension of channel section beams for experimental tests.

Layer Arrangement [0/90/0/90]S [45/−45/90/0]S [45/−45/45/−45]S

Specimen No. B1 B2 T B1 B2 T B1 B2 T
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

1 82.1 41.0 1.18 82.3 41.1 1.15 82.4 41.2 1.15
2 82.1 41.0 1.20 82.3 41.0 1.17 82.3 41.2 1.15
3 82.1 41.0 1.18 82.3 41.1 1.16 82.3 41.4 1.17

average: 82.1 41.00 1.19 82.3 41.1 1.16 82.3 41.3 1.16

The experimental tests were conducted on an Instron universal testing machine modernized by
Zwick-Roel and equipped with specially designed grips [34]. A scheme of the performed bending test
with dimensions describing the span of support and the span of load is shown in Figure 1.

The tests were performed at a constant velocity of the cross-bar equal to 1.5 mm/min. The values
of the loading force applied to the system and the displacement in the points where the load was
applied were obtained directly from the machine sensors. In addition, in order to determine deflection
of the beam in the entire range of load, a Digital Image Correlation (DIC) technique (Aramis system
produced by GOM, Braunschweig, Germany) was used. The data from the DIC were captured with a
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frequency of 1 Hz together with the load transferred directly from the testing machine. The entire test
stand is presented in Figure 2.

The angles of rotation were calculated on the basis of measurements of displacements of two
points located on the rigid aluminum grip (see Figure 2c,d). The out of plane displacement (dZ) was
used to calculate the horizontal angle of rotation. Vertical displacement of the crosshead of the testing
machine was used to calculate the horizontal angle of rotation.
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Based on the collected data, the load vs. angle of rotations Mb (αV) and Mb (αH) were determined.
Additionally, using a 3D optical system, the deflections of the beam were analyzed.

3. Numerical Model

The numerical model has been developed by employing the finite element method in the
commercial software ANSYS® version 18.2 [26]. The tested beams were subjected to pure bending.
The model, i.e., geometry, boundary conditions and the way of load appliance has been assumed as
close as possible to those in the experimental test stand (Figure 2). The geometry of the proposed
numerical model is very close to those presented in [35].

The overall dimensions of the considered beams with the sequence of layer arrangement as well
as the type of load are presented in Figure 3. It should be noted that the composite cross-section
dimensions in numerical model correspond to the mid-plane of each walls of the laminate beam.

In the performed research, thin-walled channel (b3 = 0, see Figure 3) and lip-channel (b3 , 0)
section beams, made of laminate with different layer arrangements have been considered.
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The linear elastic material model has been assumed—all considered materials obey the Hooks’
Law. The material properties of each ply of GFRP laminate are assumed as same as they were
determined in experimental tests and presented in Table 1. It should be added that in case when
all layers have the fiber direction inclined to the beam’s wall edges ± 45◦ the nonlinear even plastic
behavior [35] appear in far post-buckling range—does not have any influence on buckling load and
post-buckling behavior with small deflection. Considering the above, it was decided to not to take it
into the numerical model because it may disturb the analysis of influence of the layer arrangements
with elements of ABD laminate stiffness matrix on buckling load, as well as post-buckling behavior
and post-buckling stiffness.

The real grips (Figure 2b) were made of aluminum block [34], but in the numerical model it was
decided to model it as a thin-walled beam with a rectangular cross-section (Figure 4) made of steel,
with Young modulus E = 200 GPa and Poisson ratio ν12 = 0.3.Materials 2019, 12, x FOR PEER REVIEW 6 of 41 
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All the beams were modelled using four-node shell elements with six degrees of freedom at each
node (Shell 181, where the first shear deformation theory was introduced). The beams corresponding
to the tested specimen are depicted in black in Figure 4b and the parts corresponding to the grips are
depicted in purple in Figure 4b. The ways of discretization (the size of elements) are assumed based on
earlier experiences with similar numerical calculations [35,36].

The load and the support have been introduced on the grips, which are modeled as a thin-walled
structure (see Figure 2b) with rectangular cross-section b1 × b2 and the same thickness t as the composite
beam’s specimen. Having in mind that the real grips are very stiff, additionally in cross-section of
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numerical model where the load was introduced and the structure was supported the diaphragms have
been applied (see Figure 4a). It allowed the avoidance of the occurrence of stress concentrations and
unexpected deformations. The geometry of the developed model is presented in Figure 4a, where the
lines and points taken for the load and boundary condition introduction are depicted. The assumed
boundary condition and the method of load introduction are also presented in the discretized model
(see Figure 4b). The boundary conditions have been set as: (i) displacement set to zero at all nodes
lying on the lower edges of the end cross-section (uy = 0); (ii) displacement in the horizontal plane in
transvers direction to the beam axis at nodes lying in one bottom corner of the end section set to zero
(ux = 0); (iii) displacement towards the beam axis set to zero at node located in the mid-span of the
beam lying on the edge of bottom flange and the web (see Figure 4).

The load in the developed model was set to the nodes lying on load lines presented in Figure 4a.
Additionally, at all the loaded nodes the constant value of vertical displacements (uz = const.) have
been set. The vertical force has been used as a load in case of linear buckling analysis and the vertical
displacements loaded the system in case of nonlinear analysis. Both types of the load have been set to
one node lying along loading lines (Figure 4).

A two-stage solution was considered. Initially the linear buckling analysis was carried out in
order to determine buckling modes with corresponding buckling loads. Obtained buckling modes
have been used as a shape of initial geometrical imperfection. In the next step, the nonlinear analysis
using the Newton–Raphson algorithm was conducted. Only geometrical nonlinearity has been
considered—analysis with large displacement. In order to be able to obtain the ultimate load, the analyses
were performed with displacement control assuming constant vertical displacement applied on load
lines (cf. Figure 4). The force was recalculated from the reactions at node lying on load lines. Knowing
the force and the beam with grip dimension the ultimate bending moment has been determined.
Initial geometrical imperfections correspond to different buckling modes (the lowest buckling mode or
first with the odd number of half-waves) with positive and negative signs of amplitude having been
considered. The nonlinear analyses were conducted with and without a progressive damage algorithm
with the same parameters as in Gliszczynski and Kubiak [37].

The results of all calculations are presented as a shape of buckling mode and graphs representing
the relation between load and deflection. Load is in the form of the bending moment and deflection as the
following angles of rotations: αV—vertical (in plane of load) beam rotation at support, αH—horizontal
(lateral to the load plane) beam rotation.

4. Numerical Model Validation by the Results of the Experimental Tests

The numerical model validation has been done based on results of experimental tests of channel
section beams subjected to pure bending with the following cross-section dimensions (cf. Figure 3):
b1 = 81 mm, b2 = 40 mm, b3 = 0 and two different thicknesses t = 1.16 mm for beams with layer
arrangement [45/−45/90/0]S and [45/−45/45/−45]S and t = 1.2 mm for beams with [0/90/0/90]S lay-ups.

The results of linear buckling analysis (LBA) presenting the buckling modes are shown in Figure 5.
In the case of the layer arrangements [0/90/0/90]S and [45/−45/45/−45]S, the buckling modes correspond
to the lower buckling load are the same (see Figure 5a)—three half-waves of sine on the upper flange.
For the beam with stacking sequence [45/−45/90/0]S, the first buckling mode has only two half-waves
in the longitudinal direction on the upper flange of the beam (cf. Figure 5b). It should be noted that
the second buckling mode for this case of layup is characterized by three half-waves, as in the rest of
the layer arrangements. Differences between the value of the first and second buckling loads are less
than 3% (the second buckling load is 2.8% higher than the first one).
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Analyzing the beams’ deflection observed during experimental tests, especially when the beam
is in the post-buckling range (cf. Figure 6b), it was found that shape of deflection is similar to the
buckling mode with three halfwaves of sine in the upper flange (see Figure 5a) assuming negative
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amplitude of deflection. Taking above into account it was decided to take the buckling mode with
three halfwaves (Figure 5a) as a shape of the initial geometric imperfection. The amplitude of initial
imperfection was considered as 10% of the beam’s wall thickness [36]. The above assumption is also
based on presented in Figure 7 comparison of numerical calculations of beams with different initial
imperfection amplitude (curves denoted as: “FE 0”—no imperfection; “FE −0.01 t”—imperfection
amplitude equal to 1% of the beam’s wall thickness t and negative sign i.e., with direction of deflection
opposite to those presented in Figure 5a; “FE −0.1 t”—imperfection amplitude equal to −10% of t;
“FE −0.5 t”—imperfection amplitude equal to −50% of t) with results of experimental tests (curves
denoted as “Ex1” and “Ex2”). The obtained and presented in Figure 7 results show no significant
influence of initial imperfections of amplitude on the course of load-deflection curves. The charts
of bending moment vs. angle of rotation for amplitude of initial imperfection equal to 1% (not for
case [0/90/0/90]S) and 10%, or even 50%, are identical. Considering the beam with layer arrangement
[45/−45/90/0]S, it can be argued that the models of the beams are too stiff if no initial imperfection or
too small amplitudes of geometric imperfection are assumed (cf. Figure 7a).Materials 2019, 12, x FOR PEER REVIEW 9 of 41 
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Figure 7. The influence of amplitude of initial geometric imperfection on bending moment vs.
angle of rotation αV, curves for beams with layer arrangement: (a) [45/−45/90/0]S; (b) [0/90/0/90]S;
(c) [45/−45/45/−45]S. FE 0—numerical analysis without imperfection, FE −0.01 t—numerical analysis
with the imperfection equal to −1% of thickness, FE −0.1 t—numerical analysis with the imperfection
equal to −10% of thickness, FE −0.5 t—numerical analysis with the imperfection equal to −50% of
thickness, Ex1—experimental results of first specimen, Ex2—experimental results of second specimen.

The comparison of the numerical results with the experimental tests is presented in Figure 8.
The type of nonlinear analysis (NL—geometrically nonlinear analysis with linear material properties,
PD geometrically nonlinear analysis with progressive damage algorithm PD) and initial geometric
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imperfections (the sign of amplitude was considered: positive P—direction the same as in Figure 5a,
or negative N—direction opposite to the one presented in Figure 5a) have been analyzed and compared
with the results of experimental tests.
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Figure 8. Bending moment vs. angles of rotations Mb(αV) and Mb(αH) for all analyzed
cases—comparison of numerical results with experimental ones. (a) Mb(αV) for [45/−45/90/0]S;
(b) Mb(αH) for [45/−45/90/0]S; (c) Mb(αV) for [0/90/0/90]S; (d) Mb(αH) for [0/90/0/90]S; (e) Mb(αV) for
[45/−45/45/−45]S; (f) Mb(αH) for [45/−45/45/−45]S. PD P—progressive damage algorithm analysis
with positive imperfection; PD N—progressive damage algorithm analysis with positive imperfection;
NL P—nonlinear analysis with positive imperfection; NL N - nonlinear analysis with negative
imperfection; Ex1—experimental results of first specimen; Ex2—experimental results of second
specimen; Ex3—experimental results of first specimen.
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Analyzing the course of the load-deflection curves presented in the graph in Figure 8, it can be
argued that numerical and experimental agreement depends on the type of layer arrangement. It is
clear that the numerically obtained bending moment vs. the angle of rotation αV (Figure 8a,c,e) for all
analyzed cases in the pre-buckling state, as well as in close post-buckling range are consistent with the
experimental results. This is also true when the course of bending moment vs. angle of rotation αH is
analyzed for the beam with two types of layer arrangement [45/−45/90/0]S (Figure 8d) and [0/90/0/90]S

(Figure 8f). Only in the case of [45/−45/45/−45]S the numerically obtained post-buckling stiffness in the
lateral direction to the plane of the load (Figure 8b) differ from the results obtained experimentally.

Comparing the different methods of the numerical calculations (including or excluding the
progressive damage algorithm) as well as the sign of amplitude of initial geometric imperfection, it can
be noted that when the amplitude of initial imperfection is the same (positive P) as that presented in
Figure 5a, the beam behavior in the post-buckling range is slightly too stiff. In some cases (cf. green
line in Figure 8a,c), due to convergence difficulties, the solution stops before achieving the assumed
load. Assuming the negative sign of initial imperfection amplitude (cases denoted in Figure 8 as PD_N
and NL_N), it can be noted that the model ND_N gives the closest results to the experimental tests in
comparison to models using the progressive damage algorithm. It should be mentioned that for the
beam with layup denoted as [0/90/0/90]S, the angle of rotation αV corresponds to the highest bending
moment obtained from the numerical calculations and is smaller than that obtained experimentally.
The maximal experimental loads and numerical calculations, however, are very close to one another.

Summing up all of the above, it should be mentioned that the results of the experimental
tests for specimens with the same layers lay-ups are characterized by diverse course of curves
in post-buckling range (especially for case [45/−45/90/0]S). Nevertheless, the proposed numerical
models predict the beam behavior in the full range of the load (except case [45/−45/45/−45]S layer
arrangement—Figure 8a,b), and the obtained results are very similar to those obtained in experimental
tests after using the nonlinear numerical model without the progressive damage algorithm, including
the worst initial geometric imperfection (NL_N). Additionally, it can be noted that the model NL_N
is enough to be employed in the parametric study of layer arrangement influence on buckling load
and the post-buckling beam behavior. The above-mentioned model (without the progressive damage
algorithm) can exclude the influence of damage in the parametric study. However, It should be
noted that in case of [45/−45/45/−45]S layups in far post-buckling range the increase of deflection
(both angles of rotations) with constant load value is observed, what could mean the damages or
material nonlinearities typical for such a layer arrangement. For this case the numerical model with
the progressive damage algorithm (line PD_N in Figure 8a) was better (closer to experimental results)
at describing the real load–deflection relation, but the ultimate load, defined as maximal load obtained
during the four-point bending test, can be well estimated even by employing the model without the
progressive damage algorithm (cf. NL_N curve in Figure 8a).

5. Parametric Study

The parametric study was performed for beams with two cross-sections: C-section (b1 = 81 mm,
b2 = 40 mm and t = 1.16 mm) and lipped channel section (b1 = 81 mm, b2 = 40 mm, b3 = 6 mm and
t = 1.16 mm) with length L = 275 mm. In the case of the lipped channel section, the width of the
stiffeners was assumed in such a way that the lowest buckling mode is distortional [38,39]. The angle
of the fiber direction at each layer has been considered as a variable parameter.

5.1. Layer Arrangements with Their ABD Laminate Stiffness Matrix

From the mechanics of laminates [31], it is known that it is possible to design the layer arrangement
in order to achieve the expected behavior of the components subjected to operating loads. In both
considered sections, it is obvious that parts of thin-walled beam (i.e., web, flanges and stiffeners) are
subjected to different types of load, which also changes as the load increases. In the pre-buckling
range, the web is subjected to in-plane bending, while the flanges are subjected to tension and
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compression. In the post-buckling range, each part is under combined load, namely subjected to
tension and compression as previously and, additionally, to out of plane bending. In order to perform
influence analysis of layer arrangement on post-buckling behavior, the possibility of “tailoring” in
such a structure and load case has been checked. Considering the classical laminate theory, the relation
between internal forces and strains (1) allows to predict the plate behavior under chosen loads.


Nx

Ny

Nxy




Mx

My

Mxy




=




A11 A12 A16

A22 A26

sym. A66




B11 B12 B16

B22 B26

sym. B66




B11 B12 B16

B22 B26

sym. B66




D11 D12 D16

D22 D26

sym. D66








εx

εy

γxy



κx

κy

κxy




(1)

where [31]:
(
Aij, Bij, Dij

)
=

∫ t/2
−t/2 Qi j

(
1, z, z2

)
dz; Qi j depends on material properties of ply and its

orthotropy axes orientation (fibre orientation θ); z—position of ply respect to the midplane of the plate
(beam’s wall); Nx, Ny, Nxy, Mx, My, Mxy—internal forces and moments with indexes correspond to
midplane with assumed xy coordinate system; εx, εy, γxy—strains of the plate (beam’s wall) reduces to
the mid-surface; κx, κy, κxy—middle-surface curvatures.

Couplings between in-plane load and out-of-plane responses, or vice-versa, exist when Bij , 0.
When A16, A26 , 0, in-plane shear with extension coupling exists, and in the case when D16,
D26 , 0 out-of-plane bending and twisting coupling appears. According to the international literature
(e.g., [1–4,40]), the used notations for the ABD laminate stiffness matrix are presented in Table 3. In the
parametric study, the layer arrangements were assumed in such a way as to check all possible cases of
coupling matrix B presented in Table 3.

The cases of layer arrangements considered in the study are presented in Table 4. Some of the
chosen layups belong to the hygro-thermal curvature-stable laminates (HTCS) group—their curvature
is stable in the manufacturing process [1]. Eight and 16-layer laminates have been considered—in all
cases, laminate thickness was the same and equal to 1.16 mm.

The following groups of layups have been considered:

• Laminates with symmetrical layer arrangements—the same three cases as those tested experimentally;
• Arbitrary assumed non-symmetric layer arrangements with given angles of fiber inclinations at

each layer, denoted as N1 and N2;
• Non-symmetrical layer arrangements denoted as θ (angle of layer orientation with straight fibers

in each layer)—the range of θ from −90 to 90 degrees with a 5-degree step was considered.

The variation of ABD laminate stiffness matrix elements for laminates with angle of fiber orientation
presented as a variable θ are presented in Figures 9–15. These curves have been used in order to choose
the angles θ of the layer arrangements with the extremal value of elements in the coupling stiffness
matrix, i.e., which could have the highest influence on coupled deflection.
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Table 3. Notation of ABD matrix components of laminates under consideration.

Subscript Notation ESDU (1994) [40] Description of Load Response Coupling Stiffness Submatrices

AS simple laminate no in-plane coupling

 A11 A12 0
A12 A22 0

0 A26 A66


AF shear-extension coupling

 A11 A12 A16
A12 A22 A26
A16 A26 A66


Bt extension-twisting and shear-bending

 0 0 B16
0 0 B26

B16 B26 0


Bl extension-bending

 B11 0 0
0 B22 0
0 0 0


Blt

extension-bending; extension-twisting;
shearing-bending

 B11 0 B16
0 B22 B26

B16 B26 0


BS extension-bending and shear-twisting

 B11 B12 0
B12 B22 0
0 0 B66


BF all in-plane with out-of-plane coupling

 B11 B12 B16
B12 B22 B26
B16 B26 B66


DS simple laminate no out-of-plane coupling

 D11 D12 0
D12 D22 0

0 0 D66


DF twisting-bending coupling

 D11 D12 D16
D12 D22 D26
D16 D26 D66


Table 4. The layer arrangements of laminates under consideration.

Case ID Number
of Layers Layer Arrangement Laminate

Type [40]
Considered θ

[deg]

S1 8 45/−45/45/−45/−45/45/−45/45 ASB0DF -
S2 8 0/90/0/90/90/0/90/0 AS B0DS -
S3 8 45/−45/90/0/0/90/−45/45 AS B0DF -
N1 8 45/45/45/45/−45/−45/−45/−45 ASBtDS -
N2 8 90/90/90/90/0/0/0/0 ASBlDS -

A1(θ) [41] 8 θ/(θ−90)2/θ/−θ/(90−θ)2/−θ ASBtDS ±22.5
A2(θ) 8 0/90/θ/90−θ/θ−90/−θ/0/90 ASBltDS ±35, ±45, ±55

A2R(θ) 8 90/0/−θ/θ−90/90−θ/θ/90/0 ASBltDS −35, −45, −55
N3(θ) [1] 8 90/0/θ/−θ/0/90/−θ/θ ASBSDF ±30, ±45, ±60
N3R(θ) 8 θ/−θ/90/0/−θ/θ/0/90 ASBSDF −30, −45, −60
N4(θ) 8 45/−45/45/−45/−θ/90−θ/θ/θ−90 ASBFDF 0, 90, ±22.5

N4R(θ) 8 θ−90/θ/90−θ/−θ/−45/45/−45/45 ASBFDF 90, 22.5
N5(θ) 8 45/−45/θ/−θ/θ−90/90−θ/−45/45 ASBltDF ±22.5
N6(θ) 8 45/−45/θ−90/θ/−θ/90−θ/−45/45 ASBtDF ±26.5, ±45, ±63.5

N16(θ) [1] 16 −θ/90/θ/0/0/θ/0/0/90/−θ/0/−θ/θ/0/−θ/θ AFBFDF ±30, ±45, ±60
N16R(θ) 16 θ/−θ/0/θ/−θ/0/−θ/90/0/0/θ/0/0/θ/90/−θ AFBFDF −30, −45, −60
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Figure 10. Elements (a) [A], (b) [B] and (c) [D] of laminate stiffness matrix value for case N3(θ). 

  

Figure 10. Elements (a) [A], (b) [B] and (c) [D] of laminate stiffness matrix value for case N3(θ).

Analyzing how the values of ABD stiffness matrix elements change with the θ angle, it can be
noted that for all considered cases all elements except those with indexes “16” and “26” are symmetric
with respect to vertical axes (θ = 0). Thus, for laminates which have stiffness matrix denoted as ASBSDS,
ASB0DS and ASBlDS (see Table 4), the change of fiber orientation from positive to negative or vice-versa
does not affect laminate behavior. The elements of ABD laminate stiffness matrices with indexes “16”
and “26” are antisymmetric with respect to vertical axes (θ = 0) except for D16 and D26 for layup N4
(cf. Figure 12c).
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Figure 12. Elements (a) [A], (b) [B] and (c) [D] of laminate stiffness matrix value for case N4(θ). 
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Figure 14. Elements (a) [A], (b) [B] and (c) [D] of laminate stiffness matrix value for case N6(θ). 
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Figure 15. Elements (a) [A], (b) [B] and (c) [D] of laminate stiffness matrix value for case N16(θ). 

  

Figure 15. Elements (a) [A], (b) [B] and (c) [D] of laminate stiffness matrix value for case N16(θ).

5.2. Layers Arrangement Influence on Load-Deflection Curves

The relations between bending moment and angles of rotation in two planes: vertical (αV)u and
horizontal (αH)u are presented in Figures 16–21 for channel section beams, and in Figures 22–27 for
lipped section beams.
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section beams with layups denoted as S1, S2, S3, N1, N1R, N2 and N2R.
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Figure 17. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for channel 
section beams with layups denoted as N3(θ) and N3R(θ). 
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section beams with layups denoted as N3(θ) and N3R(θ).



Materials 2020, 13, 3002 16 of 27
Materials 2019, 12, x FOR PEER REVIEW 23 of 41 

 

 

  
(a) (b) 

Figure 18. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for channel 
section beams with layups denoted as N4(θ) and N4R(θ). 

  

Figure 18. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for channel
section beams with layups denoted as N4(θ) and N4R(θ).
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Figure 19. Bending moment vs. angles of rotations in: (a) vertical; and (b) horizontal planes for 
channel section beams with layups denoted as A1(θ), A2(θ) and A2R(θ). 

  

Figure 19. Bending moment vs. angles of rotations in: (a) vertical; and (b) horizontal planes for channel
section beams with layups denoted as A1(θ), A2(θ) and A2R(θ).
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Figure 20. Bending moment vs. angles of rotations in: (a) vertical; and (b) horizontal planes for 
channel section beams with layups denoted as N5(θ) and N6(θ). 

  

Figure 20. Bending moment vs. angles of rotations in: (a) vertical; and (b) horizontal planes for channel
section beams with layups denoted as N5(θ) and N6(θ).
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Figure 21. Bending moment vs. angles of rotations in: (a) vertical; and (b) horizontal planes for 
channel section beams with layups denoted as N16(θ) and N16R(θ). 

  

Figure 21. Bending moment vs. angles of rotations in: (a) vertical; and (b) horizontal planes for channel
section beams with layups denoted as N16(θ) and N16R(θ).

For both analyzed cases of cross-sections, the relation between the curves presented in Figures 16
and 22 are identical, i.e.,:

• The highest stiffness in the pre-buckling range has been observed for beams with layups denoted
as S2, S3, N2 and N2R;

• The highest stiffness in the post-buckling range has been observed for the beam with layup
denoted as S2;

• The lowest stiffness in the pre-buckling and post-buckling ranges has been observed for beams
with layups denoted as N1 and N1R (the courses of curves are identical);

• The highest ultimate bending moment has been detected for beams with layer arrangement
denoted as S2.

The highest stiffness and highest ultimate load with the lowest angle of rotation in both planes
was obtained for S2. This case is also presented in the rest of the graphs as the reference curve,
for ease comparison.

The beams with all considered antisymmetric layer arrangements and nonsymmetric N5(θ) and
N6(θ) for both types of cross-sections have lower stiffness, as well as ultimate load, in the pre-buckling
and post-buckling range, than the beam with symmetric layup S2 (cf. Figures 19, 20, 25 and 26).
Comparing cases A1(θ), A2(θ), A2R(θ), N5(θ) and N6(θ) with S2, it could be noted that:

• The stiffness of the beams made of laminate with nonsymmetric layups is lower than that of
antisymmetric ones;

• The deflection (angle of rotation) in both planes for beams made of antisymmetric and
nonsymmetric laminates is higher than for symmetric ones, which is highly visible for lipped
section beams (Figures 25 and 26);

• All beams with antisymmetric layups have similar pre-buckling and post-buckling stiffness;
• Beams with both cross-section and nonsymmetric layups N5(θ) and N6(θ) have similar stiffness

in the pre-buckling and post-buckling range for θ = ±22.5, ±26.5 and ±63.5;
• The lowest stiffness of all compared beams was observed for those made of laminate denoted as

N6(±45).

For the remaining cases of laminates under consideration, i.e., N3(θ) and, N3R(θ) used for channel
and lipped section beams, two lay-ups N3(±30) gives the same or very similar results as the beam with
layer arrangement S2, while two denoted as N3R(±30) have higher stiffness and higher ultimate load.
All of the above proves that the order of the layers in the case of nonsymmetric layups can improve
beam behavior.
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Figure 23. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for lipped 
section beams with layups denoted as N3(θ) and N3R(θ). 

  

Figure 23. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for lipped
section beams with layups denoted as N3(θ) and N3R(θ).
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Figure 24. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for lipped 
section beams with layups denoted as N4(θ) and N4R(θ). 
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section beams with layups denoted as N4(θ) and N4R(θ).
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Figure 25. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for lipped 
section beams with layups denoted as A1(θ), A2(θ) and A2R(θ). 
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Figure 26. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for lipped 
section beams with layups denoted as N5(θ) and N6(θ). 

  

Figure 26. Bending moment vs. angles of rotation in: (a) vertical; and (b) horizontal planes for lipped
section beams with layups denoted as N5(θ) and N6(θ).
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Analyzing the rest of the cases of lay-ups for channel section beams, it can be noted that all
considered layer arrangements denoted as N4(θ) and N4R(θ) give the worst results (i.e., lower ultimate
load and lower stiffness in the pre-buckling and post-buckling range) than the beam with lay-up S2.
A similar relation can be found when analyzing the results for lipped channel sections (Figure 24)
except two cases of laminates denoted as N4(0) and N4(90). For these two-layer arrangements,
the lipped channel section beam (cf. burgundy and yellow line in Figure 24) has higher stiffness
in the post-buckling range than the beam with layup S2. This can be explained by different beam
behavior—the deflection of the compressed flange differs from other cases (cf. Figure 28) because
the sense of upper flange deflection is opposite to beam deflection due to bending load (Figure 28a).
Additionally, it should be mentioned that, for these cases, the numerical solutions were not completed,
and the ultimate loads were not determined.

Taking into consideration ultimate load and beam stiffness in the pre- and post-buckling ranges, the
best results were obtained when 16-layered laminates N16(θ) and N16R(θ) were adopted. It should be
noted that it was assumed that 8- and 16-layer laminates have the same thickness. The highest stiffness
and highest ultimate bending moment were obtained for layups N16R(30) and N16R(-30) in C-section
beams and for layer arrangements N16(30) and N16(-30) in lipped section beams. The above-mentioned
suggests that the orientation of nonsymmetric laminates is also important, and should be adjusted to
the structure (in this case, the beam’s cross-section) alongside the type of load.

In all considered cases, angle αH is increasing significantly when load is around the buckling load,
which was also noted in [39].
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Figure 28. Lipped channel section beam deflection for: (a) layups N4(0) and N4(90); (b) layups
N4(±22.5); (c) remaining layer arrangements.

The deflection of all considered beams with channel cross-sections corresponding to the ultimate
load looks exactly the same as those presented in Figure 6. To the contrary, the deflection of the lipped
section beam subjected to ultimate or highest load applied is not identical for all cases of laminate
layer arrangement and is presented in Figure 28. The deflection presented in Figure 28a corresponds to
the cases N4(0) and N4(90) (for which the upper flange is deflected upward and lower flange remains
flat), while in Figure 28b corresponds to cases N4(22.5) and N4(-22.5) (it can be seen that both flanges
are deflected inwards to the cross-section), in Figure 28c to remaining layer arrangements (both flanges
are deflected downwards).

5.3. Layers Arrangement Influence on Buckling Load and Ultimate Load

The buckling loads Mcr determined in the linear buckling analysis and ultimate loads Mu from
the nonlinear analysis (cf. Figures 16–27) with corresponding angles of rotation in two planes, vertical
(αV)u and horizontal (αH)u, are presented in Table 5. The extremal values are bolded. It is possible
to see that the sign of angle θ does not influence the value of the critical load for both cross-sections.
Only in the cases of N4(±22.5) and N5(±22.5) there is a slight difference (cf. Figure 29).
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Table 5. Buckling and ultimate loads with corresponding angles of rotation for considered cases.

Case ID θ

C-Section Beam Lipped Section Beam

Mcr Mu (αV)u (αH)u Mcr Mu (αV)u (αH)u
[Nm] [Nm] [deg] [deg] [Nm] [Nm] [deg] [deg]

S1
–

78.4 288.5 2.94 3.63 190.6 352.8 4.01 4.15
S2 60.8 367.2 1.96 2.88 291.4 502.6 3.22 2.96
S3 76.4 358.9 2.12 2.65 248.5 477.9 3.46 3.39

A1(θ) ±22.5 60.8 335.7 2.15 3.07 223.8 449.2 3.37 3.27

A2(θ)
±35 59.7 354.6 2.16 2.89 236.3 487.7 3.94 3.6
±45 59.9 350.8 2.23 2.99 233.1 475.6 3.83 3.58
±55 59.4 354.6 2.16 2.89 238.8 485.6 3.74 3.45

A2R(θ)
±35 59.8 354 2.16 2.96 241.2 482.7 3.55 3.34
±45 59.9 350.1 2.23 3.07 238.3 475.3 3.64 3.46
±55 59.5 354.3 2.16 2.96 243.8 485.2 3.65 3.47

N1

–

58.2 250.7 2.67 3.23 160.3 311.5 3.92 3.89
N1R 58.3 250.8 2.67 3.19 160.3 311.6 3.92 3.86
N2 52.4 329.3 1.87 3.09 239.4 477.9 3.15 2.96

N2R 45.8 319.2 1.81 2.56 216 460.5 3.71 3.05

N3(θ)
±30 66 369.5 1.96 2.96 267.2 512.2 3.15 3.09
±45 66.2 338.8 2.12 2.92 246.8 462.7 3.46 3.43
±60 61.6 320.5 2.26 2.96 240.4 444.1 3.98 3.79

N3R(θ)
±30 65.7 396 2.16 3.15 263.6 512.3 3.15 3.08
±45 66 367 2.32 3 248.6 499.4 4.1 3.89
±60 61.5 341.4 2.42 3.11 246.9 472 4.5 4.22

N4(θ)

0 58.4 357.9 2.28 3.08 234.1 – – –
90 60 361.7 2.39 3.35 225.9 – – –

22.5 71.1 340.3 2.53 3.14 220.4 436 4.01 3.96
−22.5 69.9 336.7 2.61 3.33 219.2 434.4 4.04 3.99

N4R(θ) 90 60.2 307.3 2.05 3.02 218.3 410 3.14 3.38
22.5 70.1 308.8 2.32 3.11 221 405.3 3.46 3.65

N5(θ) ±22.5 76.7 329.9 2.53 3.21 219.4 421.2 3.69 3.74

N6(θ)
±26.5 77.2 322.1 2.53 3.18 215.6 410.2 3.74 3.79
±45 79.1 289.6 2.94 3.6 191 353.8 4.01 4.15
±63.5 77.6 321.1 2.53 3.15 210.6 403.7 3.74 3.82

N16(θ)
±30 71.4 385 1.82 2.76 270.2 548.6 2.87 2.76
±45 73.8 370.6 1.98 2.74 262.8 529.5 3.08 2.9
±60 68.4 361.7 2.02 2.6 260.4 518 3.15 2.95

N16R(θ)
±30 71.2 405.5 2 2.93 265.8 543.6 3.09 2.81
±45 73.7 391.4 2.16 2.92 258.9 522.2 3.46 3.24
±60 68.3 371.4 2.03 2.42 262.8 515.9 3.74 3.52

In the case of channel section beams, the highest buckling load was obtained for the beam
denoted as S1; moreover, values of (αV)u and (αH)u are the highest, which leads to relatively low
ultimate load. The beam with the layer arrangement denoted as N2R generates the lowest critical
load with the corresponding lowest (αV)u. The highest ultimate load is obtained for the N16R(±30)
layer arrangement beam, while the lowest one for the N1 and N1R beams. Similar behavior can be
noticed in the case of lipped beams, the ultimate load is also the lowest for the N1 and N1R layups.
Furthermore, the mentioned beams indicate the lowest critical load. The highest deformations occur in
case N3R(±60), which provides the greatest values of (αV)u and (αH)u. Both angles are the lowest for
beam N16(±30), which has the highest load-carrying capacity. Additionally, it was noted that the angles
of rotation in both planes corresponding to load-carrying capacity Mu, in the case of channel section
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beams for all cases of layer arrangements are in the same relation, i.e., (αH)u > (αV)u. For lipped channel
section beams, the relation between angles of rotation (αH)u > (αV)u depends on layer arrangements
and is fulfilled only for cases S1, N4R, N5 and N6.
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Figure 29. Differences in the course of curves presenting bending moment vs. angle of rotation αV for
positive and negative angles of fiber inclination for layups denoted as N4(±22.5) and N5(±22.5).

6. Discussion of Obtained Results

Based on the results presented in Section 5 several relations can be observed.
In both cases of considered cross-sections, the distortional buckling mode was observed. This type

of buckling mode leads to lateral deflection in the post-buckling range. In order to find the best layups,
i.e., the layup which reduces lateral deflection, the relation between angle of rotation corresponding to
ultimate load (αH)u/(αV)u was analyzed. If the relation (αH)u/(αV)u is greater than 1, it means that
deflection in lateral direction is higher than in the plane of load. It is obvious that the channel section
beams are weaker than lipped section beams; thus, it is only in some layer arrangements of laminate
used in lipped section beams that the angles of rotation have a relation lower than one. The lowest
value of (αH)u/(αV)u equal to 0.822 was obtained in the case of layup denoted as N2R, but both angles
are higher than 3◦ (cf. Table 5). This means that not only this relation but also the angle of rotation
should be checked. Thus, it can be said that the stiffest beam has a lipped cross-section with the layer
arrangement denoted as N16(±30).

In Tables 6 and 7, nondimensional values of stiffness matrices elements ABD are shown for both
beam cross-sections. The nondimensional values of elements of the laminate stiffness matrix were
obtained after the division of each element by the highest positive value from all analyzed cases,
i.e., Aij/(Aij)max, Bij/(Bij)max, Dij/(Dij)max. The maximal values presented in Tables 6 and 7 are bolded
and written in red, and the minimal in blue. The analysis of the values of elements of ABD matrices
shows that:

• The extremal buckling load depends on the extremal values of the A12, A66, D12 and D66 elements.
For channel section beams, the highest buckling load was obtained when the mentioned elements
had the highest values, and the lowest buckling load when they had the lowest. The opposite
was observed for lipped section beams, i.e., the highest buckling load was obtained when the
mentioned elements had the lowest values, and the lowest buckling load for the highest value of
those elements.

• The extremal values of load-carrying capacity for both types of considered cross-sections depend
on the value of A11—if this value is the highest, Mu is the highest and if A11 is the lowest, Mu is
the lowest. Additionally, it was found that the maximal ultimate load was obtained for cases
when the A22 and D22 had the lowest value and the extremal A16 (maximal negative for channel
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section and maximal positive for lipped section beams). It has also been found that the minimal
ultimate load was obtained in the case when A12, A66, D12 and D66 had the maximal values.

• No influence was found in the case of coupling stiffness matrix elements Bij, as well as elements
D16 and D26 on the maximal values of buckling and ultimate bending moment. For the minimal
ultimate load, it was found that elements B16 and B26 have extremal negative values, while in the
case of minimal buckling load no relations were found.

Table 6. Nondimensional value of ABD laminate stiffness matrix for laminates used in channel section
beam for which the extremal buckling and ultimate load were obtained.

Sub-Matrix
Minimal Mcr Maximal Mcr Minimal Mu Maximal Mu

N2R N6(±45) N1, N1R N16R(±30)

A

 0.84 0.24 0
0.97 0

0.25


 0.56 1 0

0.64 0
1


 0.56 1 0

0.64 0
1


 1 0.52 −1

0.54 −0.30
0.53


B

 −1 0 0
1 0

0


 0 0 0.12

0 0.12
0


 0 0 −1

0 −1
0


 −0.07 −0.19 0.06

0.18 0.02
−0.19


D

 0.81 0.24 0
0.87 0

0.25


 0.54 1 0.75

0.58 0.62
1


 0.54 1 0

0.58 0
1


 0.89 0.62 −0.05

0.50 −0.01
0.62


Table 7. Nondimensional value of ABD laminate stiffness matrix for laminates used in lipped section
beam for which the extremal buckling and ultimate load were obtained.

Sub-Matrix
Minimal Mcr Maximal Mcr Minimal Mu Maximal Mu

N1, N1R S2 N1 N16(±30)

A

 0.56 1 0
0.64 0

1


 0.84 0.24 0

0.97 0
0.25


 0.56 1 0

0.64 0
1


 1 0.52 1

0.54 0.30
0.53


B

 0 0 −1
0 −1

0


 0 0 0

0 0
0


 0 0 −1

0 −1
0


 0.07 0.19 0.06

−0.18 0.02
0.19


D

 0.54 1 0
0.58 0

1


 1 0.24 0

0.67 0
0.25


 0.54 1 0

0.58 0
1


 0.89 0.62 0.05

0.50 0.01
0.62


Comparing the above with the considered cases of layer arrangements, it was noted that N16R(±30)

from Table 6 and N16(±30) from Table 7, corresponding to the beams with the highest ultimate load,
are characterized by non-zero values of all elements in the Dij stiffness matrix and the largest percentage
of layers with 0 angle orientation across the thickness of the laminate. In the case of channel section
beams the presence of layers with 45 degree angle (especially at the outer layers) leads to an increase of
the critical load and a decrease of the ultimate load. Such a phenomenon is caused by higher D12 and
D66 stiffness matrix elements (S1, N1, N5(±45), N6(±45)).

Interesting behavior of the lipped section beam was observed for the layer arrangements denoted
as N4(0) and N4(90) (cf. Figures 24a and 28). Due to the fact that in the case of the reverse order of
layers—beams N4R(0) and N4R(90)—such a behavior has not been observed, the influence of the
coupling stiffness matrix on post-buckling behavior is expected. Additionally, it was noted that for
layups N4(90) and N4R(90) the elements of matrices Aij and Dij are identical, while the elements
of matrix Bij have opposite signs. As such, it is suggested to check how the deflection changes
(vertical displacement of node lying in the mid span of the beam on the edge of the upper flange and
stiffener) with load increase for different amplitudes of initial geometric imperfection.

The obtained results for initial imperfection amplitude equaling 10%, 20% and 30% of the wall
thickness are presented in Figure 30. The course of equilibrium paths (bending moment vs. vertical
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displacement of compressed flange—Figure 30a) for different amplitudes of initial imperfection suggest
that for small values of imperfection amplitudes (in this case, 10% and 20% of wall thickness) of
the wall deflection, due to coupled behavior connected with non-zero values of elements in the B
laminate stiffness matrix, is “stronger” than deflection connected with the buckling phenomenon.
Such a behavior is only observed in this case of layer arrangement, which can be explained by the
values of the B12 and B66 elements, which are the highest of all considered layer arrangements—the
nondimensional values of laminate stiffness matrix for case N4(90) are as follows:

A =


0.70 0.62 0

0.81 0
0.62

, B =


0.39 −1 −0.12

0.14 −0.12
−1

, D =


0.77 0.62 0.50

0.62 0.41
0.62

 (2)
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Figure 30. Bending moment vs. (a) angle of rotation and (b) upper flange displacement.

Small differences in the course of curves presenting bending moment vs. angle of rotation αV for
both cases of beam cross-sections (cf. Figure 29) and layups N5(±22.5) need further analysis to explain
why they appear. The analysis has been performed considering the lipped section beam, and the results
are presented in Figure 31. As can be noted, the course of curves for beams N5(-22.5) and N5(22.5)
(cf. Figure 31) depends on beam deflection, which influences its stiffness.

In the case of N5(-22.5), the flange under tension is bent with lower load (change from point B1
to B2) than in case N5(22.5)—points A1 and A2 in Figure 31. This can be possibly explained by the
differences in the sign of the coupling stiffness matrix elements B11, B22, B16 and B26 and the fact that it
is only in this case that the extension-bending, extension-twisting and shearing-bending load response
coupling exist (Blt).
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7. Conclusions

The proposed numerical model has been validated by experimental tests of the channel section
beam made of laminate with symmetrical layer arrangements. The parametric study was performed
by employing the developed model. Channel and lipped section beams made of laminates with
sixty different layer arrangements have been analyzed. Based on the obtained results, the following
conclusion can be drawn:

• The coupling stiffness matrix element Bij, as well as elements D16 and D26, have no influence on
the values of maximal buckling load and ultimate load for analyzed beams subjected to pure
bending. It was found that only in the case of minimal buckling load and minimal ultimate load
elements B16 and B26 have extremal values (cf. Tables 6 and 7).

• The values of the buckling loads for lipped beams are over three-fold greater than for channel
beams. This shows the significant influence of stiffeners on beam behavior. Ultimate load differs
around 30%.

• The highest values of load-carrying capacity were obtained for 16-layer beams, which gives more
flexibility for tailoring—more flexibility of coupling behavior and HTCS laminate design.

• In the case of the considered type of load, the ABD laminate stiffness matrix is not the only factor
to influence the buckling and ultimate loads, but also the considered cross-section.
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Summing up all of the above, it can be added that laminate tailoring depends not only on layer
arrangement but also on the type of structure even if the load is the same. The different influence of
layer arrangements on the behavior of channel and lipped section beams subjected to pure bending
has been found.
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