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Abstract: Autoclaved aerated concrete (AAC) self-insulation block masonry is often used for the 

infill walls in steel and concrete frame structures. To work together with the frame under earthquake 

action, it is essential to understand the seismic behavior of AAC self-insulation block masonry walls. 

In this paper, six AAC self-insulation block masonry walls were experimentally studied under the 

pseudo static test. The load-displacement hysteretic curves were drawn with the test data. The 

failure characteristics, loading capacity, stiffness degeneration, energy dissipation capacity and 

hysteretic behavior are analyzed. The results indicate that the blocks underwent internal failure due 

to the lower strength with a larger size, but the walls had good energy dissipation capacity with a 

rational bearing capacity. Accompanied by the influence of vertical compressive stress on the top 

surface of the walls, the cracking resistance, ultimate bearing capacity, deformability and energy 

dissipation capacity of the walls were affected by the masonry mortar joints. Comparatively, the 

walls with thin-layer mortar joints had better seismic performance than those with insulation mortar 

joints or with vertical joints filled by mineral wool plates. Finally, the shear capacity of the walls 

under seismic load is evaluated referring to the formulas of current design codes for masonry walls. 

Keywords: autoclaved aerated concrete (AAC); self-insulation block; masonry wall; seismic 

behavior; shear capacity; hysteresis behavior 

 

1. Introduction 

Autoclaved aerated concrete (AAC) is a type of green building material to be used for the energy 

conservation and fire-proofing of buildings [1–3]. Because of its features, namely that it is self-

lightweight and has lower modulus of elasticity of the AAC, the steel and reinforced concrete frame 

structures with infill AAC block masonry walls have good earthquake resistance to diagonal 

cracking, corner crushing and severe damage states [4–6]. 

The studies on seismic performance of AAC block masonry walls indicate that a limited in-plane 

displacement capacity of the walls was strongly dependent on the applied vertical load, and a 

residual vertical strength in the order of 40–50% of the initial load-bearing capacity benefited the 

post-earthquake safety [7,8]. The presence of the infill walls clearly produced an additional shear 

demand along the contact length of the reinforced concrete columns; the contact length increased 

from about 30% to more than 50% of the column clear height with the imposed displacement. This 

leads to the significant differences in the distribution of the internal forces between the bare and the 

infilled frames [9]. 



Materials 2020, 13, 2942 2 of 14 

 

To enhance the entirety of the AAC block masonry walls, several measurements were proposed 

and experimentally verified. The fiber mesh plaster layer could improve the serviceability of the infill 

walls at low deformation demand due to the elimination of the visible cracking [10]. With the 

confinement of horizontal and/or vertical reinforcements, the walls exhibited a general improvement 

of the displacement capacity and the reduction of damage subjected to horizontal actions. The 

presence of flat-truss bed-joint reinforcement in horizontal joints allowed an increase in strain and 

dissipative capacity of the wall, and a limitation of the damage in terms of spreading and extent of 

cracks. This provides a substantial improvement in the overall seismic performance of the wall with 

increased maximum deformation capacity and shear strength [11,12]. By placing the glass-fiber mesh 

in the horizontal mortar joints, the walls were improved in seismic performance with better cracking 

resistance, higher capacity resisting horizontal action and displacement, and a damage changing 

from brittle to ductile [13]. Compared with the bare frame, the infilled frames increased respectively 

in the yield load, the maximum load and the ultimate load by 31–159%, 51–156% and 45–123%. In the 

condition of being disconnected or flexibly connected with columns, the infill walls slightly 

influenced the seismic behavior of reinforced concrete frame including the bearing capacity, the 

deformation, the stiffness and the energy dissipation [14]. 

With the development of energy-efficient buildings, an innovative series of high-efficiency 

thermal-insulation materials for enveloping building walls have been created. One of them is the 

AAC self-insulation block. Based on previous studies, the AAC self-insulation block has features of 

much lower thermal conductivity under the premise of ensuring rational mechanical properties [15]. 

Meanwhile, the thermal insulation mortar used for AAC block masonry was also developed [16,17]. 

This provides a favorable construction for the enveloping walls of buildings without any other heat 

preservation. Because they are new products for building construction, there is a lack of study on the 

seismic performance of AAC self-insulation block masonry used for the infill walls. To fill this gap 

and accumulate reliable data for design standard, this paper arranged an experimental study of six 

AAC self-insulation block walls under the pseudo static test. The crack developing and failure 

characteristics were observed, and the load-displacement hysteretic curves were measured. The test 

results are analyzed in detail, and the shear capacity of the walls under seismic load is evaluated 

referring to the formulas of current design codes for masonry walls. 

2. Experimental 

2.1. Properties of AAC Self-insulation Blocks and Mortars 

The self-insulation AAC blocks were made by Henan Xing’an New Building Materials CO., LTD. 

The pulverized coal ash slurry, plaster paste, ordinary silicate cement, aluminum paste and foam 

stabilizer were used as the raw materials. Specific mix proportion was designed based on the 

manufactured technics. The dimension of block was 600 mm long, 300 mm height and 250 mm wide. 

Based on the tests of the blocks [15], the dry density was 558 kg/m3, the compressive strength was 4.1 

MPa, the water absorption was 63.5%, and the thermal conductivity was 0.11 W⁄(m·K). As per the 

specification of China code GB 11968 [1], the block belongs to the superior product with class of 

strength A5.0 and density B06. 

Two kinds of masonry mortar were used for the construction of wall specimens [15]. One was 

the thin-layer mortar for the joints with thickness of 5 mm. It was prepared by the market supplied 

dry-mixed mortar to water with mass proportion of 1:0.48. Another was the insulation mortar for the 

joints with thickness of 10 mm. It was made of the market supplied dry-mixed mortar admixed with 

expanded perlite and vitrified microsphere. The mass proportion of dry-mixed mortar: expanded 

perlite and vitrified microsphere: water was 1:0.15:0.46. The compressive strength of the thin-layer 

mortar and the insulation mortar was 17.1 MPa and 8.7 MPa, respectively. 

The basic mechanical performances of AAC self-insulation block masonry were measured as per 

China code GB/T 50129 [18]. The test methods for the compressive strength and the shear strength 

along joints of the AAC self-insulation block masonry are concretely presented in related researches 

reported previously [15]. The masonry with thin-layer mortar joints had a compressive strength of 
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1.99 MPa and a shear strength along joints of 0.25 MPa. The masonry with insulation mortar joints 

had a compressive strength of 1.84 MPa and a shear strength along joints of 0.37 MPa. 

2.2. Preparation of Wall Specimens 

As presented in Figure 1, six wall specimens were made and tested for proving the seismic 

behaviors. Two of them were built respectively as a group with the self-insulation mortar joints, the 

thin-layer mortar joints and the horizontal thin-layer mortar joints accompanied with vertical mineral 

wool plate joints. The mineral wool plate was mainly produced by molten basalt material. 

 

 

(a) (b) 

Figure 1. Construction of wall specimens: (a) overview; (b) vertical joints filled with mineral wool 

plate. 

Before seismic testing, all specimens were tested to measure the heat transfer coefficient to gather 

the test data. The thermal-insulation test method was reported in previous studies [15,19]. As 

presented in Table 1, the heat transfer coefficient of block masonry is almost the same as previous 

tests. This indicates the steady production quality of the AAC blocks. 

After the testing of heat transfer coefficient, the bottom surface of the wall specimen was bonded 

on steel basement by epoxy resin adhesive in order to carry out the seismic experiment. 

Based on the engineering application of the AAC self-insulation block masonry used for the infill 

walls of frames, two levels of vertical compressive stress at 0.3 MPa and 0.5 MPa were applied on the 

top surface of the walls. This was used to examine the effect of vertical compression on the seismic 

performance of the walls. 

Table 1. Details of the specimens. 

Wall 

Number 

Dimension (mm) 
Joint 

Thickness 

(mm) 

Mineral 

Wool 

Vertical 

Joints 

Vertical 

Compressive 

Stress (MPa) 

Heat 

Transfer 

Coefficient 

[W/(m2·K)] 

Length Height Thickness 

R-1 1220 1245 250 10 no 0.3 0.541 

R-2 1230 1240 250 10 no 0.5 0.522 

M-1 1215 1220 250 5 no 0.3 0.508 

M-2 1220 1230 250 5 no 0.5 0.514 

Z-1 1230 1220 250 5 yes 0.3 0.524 

Z-2 1230 1225 250 5 yes 0.5 0.541 
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2.3. Seismic Test Method 

As per China code JGJ/T101 [20], the testing apparatus is exhibited in Figure 2. The steel 

basement of the specimen was fixed on the foundation by ground anchorages. The horizontal cyclic 

load was exerted by an actuator fixed on the reaction wall, and transferred to the head of specimen 

by a steel hoop. The actuator was made by MTS Co. Ltd., Minneapolis, MN, USA. The vertical load 

was exerted by a hydraulic jack accompanied with a load sensor, and distributed uniformly with a 

steel beam on the top surface of specimen. Rollers were set between the steel beam and the top surface 

of specimen to provide freely horizontal displacement of the head of specimen. The horizontal cyclic 

loads and the vertical load were automatically operated by a computer. 

A group of displacement sensors placed at the sides and the basement of specimen. The data 

were automatically collected by a data acquisition system. Based on the test data, the horizontal 

displacement at the head of the specimen can be computed relatively to the basement. 

 

Figure 2. Scene photos of test devices and wall specimen. 

When ready for the formal test process, the vertical load was exerted continuously to the value 

controlled by the vertical compressive stress presented in Table 1. In the whole process of test, the 

vertical load was maintained as constant. 

After that, the horizontal loading procedure was performed according to the load-displacement 

dual control method as presented in Figure 3. The horizontal load was graded on the wall before 

cracking. The grading was reduced to catch the cracking resistance when the load was close to the 

predictive cracking load. After cracking of the wall, the horizontal load was exerted by the 

displacement. At values of two and three times the cracking displacement, the load was applied for 

two cycles, respectively. Then, until damage was caused, the controlled displacement was four times 

the cracking displacement. When the bearing capacity at push/pull directions reduced to 85% of the 

corresponding ultimate loads, the wall was regarded to be damaged, and the test was over. 

 

Figure 3. Horizontal loading program of pseudo-static test. 
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3. Test Results and Discussion 

3.1. Crack Distribution and Failure Pattern 

Figure 4 presents the crack distribution and failure patterns of the walls. Before cracking, almost 

no residual displacement was exerted after each cycle of the load. The slant crack appeared at about 

60% ultimate load while the displacement on top of the wall was about 2 mm. With the increase of 

load, the residual displacement of the walls after each cycle of load accumulated, and the cracks 

developed to be intersected together. The damage happened with the cracks along the horizontal 

joints. A typical failure pattern with slant-intersected cracks appeared on the walls with thin-layer 

mortar joints, as presented for the walls of M-1 and M-2. This shows more internal damage of the 

AAC blocks. Relatively more vertical cracks appeared on the walls Z-1 and Z-2. This means that a 

larger horizontal tensile stress took place on the walls to break the plastering surface of AAC blocks 

due to the non-bonded vertical joints filled with mineral wool plates. Under higher vertical 

compressive stress of 0.5 MPa, for the instance of R-2 and M-2, the blocks on the push/pull sides of 

the walls were easily broken without confinement. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Failure modes of walls: (a) R-1; (b) R-2; (c) M-1; (d) M-2; (e) Z-1; (f) Z-2. 

3.2. Load-Displacement Hysteretic Curves and Featured Values 

The load-displacement hysteretic curves of specimens are presented in Figure 5. Combined with 

the crack distribution and failure pattern of the walls, the curves exhibit the following features. Before 

cracking, the curves are nearly linear without residual displacement at the end of each cycle, the walls 

worked in an elastic manner with similar stiffness. After cracking, the curves went outward with 

increased hysteresis area, and appeared to be fusiform. With increased horizontal load, the walls 

worked into an elasto-plastic stage with obvious residual displacement and the reduction of stiffness. 

Due to the nonsymmetrical distribution of cracks appearing on the push and pull sides of the walls, 
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the hysteretic curves were different regarding the negative displacement than regarding the positive 

displacement part of the loop. This became more visible on the curves after the ultimate load, for 

instance, for R-2 and M-2, due to the peeling of horizontal mortar joint or the broken of block. With 

the accumulation of plastic displacement, the walls progressed into the damage stage with reduced 

bearing capacity. With the developing of cracks, the envelope area of the hysteretic loop enlarged to 

absorb energy. At the last stage of the displacement control cycle, the hysteretic loop of specimens R-

1 and R-2 moved from an arch shape to an S-shape, or even a Z-shape. 
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Figure 5. Hysteretic curves of wall specimens: (a) R-1; (b) R-2; (c) M-1; (d) M-2; (e) Z-1; (f) Z-2. 
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The envelopes of hysteretic curves of the walls of each group are presented in Figure 6. The slope 

of the curves expresses the stiffness of the walls. Typically, the degradation of stiffness was clearly 

expressed with the increase of displacement. With smaller displacement under the same seismic load, 

greater stiffness of the walls was provided under the higher vertical compressive stress. This fits the 

normal regularity of the wall subjected to seismic loads as stated in specifications and previous 

studies [7,8,18,21]. After the peak-load, a larger displacement existed under the continued seismic 

load. This indicates a good deformability of the walls at damage states. 
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Figure 6. Comparison of envelop curves of the same wall under different vertical loads: (a) walls with 

insulation mortar joints; (b) walls with thin-layer mortar joints; (c) walls with vertical mineral wool 

joints. 

To determine the effect of masonry joints on the stiffness of the walls, the envelopes of hysteretic 

curves of the walls under the same vertical compressive stress are presented in Figure 7. Before 

cracking, the walls had similar stiffness. After cracking, the stiffness changes of the walls M-1 and M-

2 with thin-layer mortar joints were close to those of the walls R-1 and R-2 with self-insulation mortar 

joints. Under the vertical compressive stress 0 = 0.3 MPa, the walls with thin-layer mortar joints had 

higher stiffness and better loading capacity than the walls with self-insulation mortar joints. 

However, under the vertical compressive stress 0 = 0.5 MPa, this relationship changed to some 

extent. Clear changes of stiffness and loading capacity occurred on the walls Z-1 and Z-2 with vertical 

joints filled by mineral wool plates. Smaller stiffness and lower loading capacity of the walls were 

presented due to the unbound vertical joints. 

The tested load and displacement at feature points of the hysteretic curves are listed in Table 2. 

The cracking load and displacement are those corresponding to the initial turning of the envelope 

curves. The ultimate load and displacement are the peak-load at push/pull envelope curve and the 

corresponding displacements. The damage loads are the 85% peak-loads at push/pull directions, and 

the corresponding displacements are the damage displacements. Generally, the walls with thin-layer 

mortar joints had higher cracking resistance about 13.1%, but ultimate capacity of about 4.5% lower 

than the walls with self-insulation mortar joints. The largest displacement at cracking appeared on 

the walls with thin-layer mortar joints, which was about 54.2% higher than that of the walls with self-

insulation mortar joints. However, the best displacement ability was found on the walls with self-

insulation mortar joints after the crack appeared. The cracking resistance and ultimate capacity of the 

walls with vertical joints filled by mineral wool plates were lowest, which were about 80.9% and 

85.1% those of the walls with thin-layer mortar joints. At the same time, the displacement ability was 

also worst compared with the other walls. 

With the increase of vertical compressive stress on top surface of the walls, the bearing capacity 

of the wall tended to be increased, while the displacement trended to be decreased. This is due to the 

friction on cracked sections increasing with higher compression, as seen in previous experimental 

results on AAC block walls [7,8]. 
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Figure 7. Comparison of envelope curves of different walls under the same vertical load: (a) 0 = 0.3 

MPa; (b) 0 = 0.5 MPa. 

Table 2. Tested load and displacement at feature points of hysteretic curves (push and pull). 

Wall 

Number 

Cracking Ultimate Damage 

Load 

(kN) 

Displacement 

(mm) 

Load 

(kN) 

Displacemen

t (mm) 

Load 

(kN) 

Displacement 

(mm) 

R-1 
43 0.82 72 19.41 61 38.91 

43 0.77 87 14.09 74 20.51 

R-2 
50 1.58 98 14.36 83 16.23 

50 2.00 90 8.25 77 26.45 

M-1 
50 1.75 81 10.85 69 21.02 

50 1.36 90 9.27 77 24.67 

M-2 
55 1.10 87 9.42 74 20.89 

55 2.94 70 10.12 60 21.42 

Z-1 
40 2.35 70 13.62 60 18.33 

40 0.83 75 9.52 64 21.16 

Z-2 
45 1.33 57 7.02 48 24.18 

45 1.44 77 7.42 65 19.54 

3.3. Stiffness Degeneration 

The secant stiffness Kn of the wall can be computed as follows [20], 

n n

n

n n

P P
K

  

  

 (1) 

where Pn and Δn are the peak-load and the corresponding displacement at n cycle. 

Hence, the stiffness degeneration curves are given out as presented in Figure 8. The walls with 

self-insulation mortar joints had the largest initial stiffness due to the high modulus of elasticity of 

the mortar compared to the AAC block [15]. A similar trend from fast to slow appeared on the curves. 

The fast degradation related to the appearance, extending and intersected developing of cracks. With 

the steady development of cracks until the ultimate load state, the stiffness degradation became 

slower. After that, the degradation reached a gentle stage. Relatively, due to the integrality of the 

walls weakened by the vertical joints filled by mineral wool plates, the walls had the largest stiffness 

degradation. 
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Figure 8. Stiffness degradation curve of each wall: (a) 0 = 0.3 MPa; (b) 0 = 0.5 MPa. 

3.4. Energy Dissipation 

The energy dissipation of the walls comprehensively reflects the bearing capacity with a rational 

displacement. This is commonly expressed as the envelope area of the hysteretic curves. As presented 

in Figure 9, the energy dissipating factor φ can be computed by Equation (2) [20]. The larger the factor 

φ is, the more energy is absorbed by the walls during the cyclic loading process. This means better 

energy dissipation and seismic resistance. 

(ABC+CDA)

(OBE+ODF)

S

S
   (2) 

The equivalent viscous damping coefficient ξeq is also used to character the energy dissipation 

ability, as expressed by Equation (3). With a larger ξeq, the wall has better energy dissipation. 

eq / 2    (3) 

 

Figure 9. Energy dissipation computation. 

The computing results of the energy dissipation factor φ and the equivalent viscous damping 

coefficient ξeq are presented in Table 3. Comparatively, the walls with thin-layer mortar joints had 

best energy dissipation at cracking and ultimate states with larger values of φ and ξeq. At cracking 

state and ultimate state, the average φ values of the walls with thin-layer mortar joints are 15.3% and 

9.4% higher than those of the walls with insulation mortar joints, while the average ξeq values of the 

former are 16.7% and 10.5% higher than the later. This indicates that there was less confinement of 
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the thin-layer mortar joints on the displacement of the walls. As a result, greater displacement 

occurred due to the smaller modulus of elasticity of the AAC blocks. 

The values of φ and ξeq of the walls with vertical joints filled by mineral wool plates are similar 

to those of the walls with insulation mortar joints, while they are about 10–12% lower than those of 

the walls with thin-layer mortar joints. Meanwhile, higher vertical compressive stress led to a 

reduction of energy dissipation of the walls with vertical joints filled by mineral wool plates. 

Table 3. Energy dissipation factor and equivalent viscous damping coefficient of the walls. 

Wall Number 
Cracking Ultimate 

φ ξeq φ ξeq 

R-1 1.83 0.29 1.73 0.27 

R-2 1.96 0.31 1.87 0.30 

M-1 2.24 0.36 1.80 0.29 

M-2 2.13 0.34 2.14 0.34 

Z-1 2.02 0.32 1.87 0.30 

Z-2 1.86 0.30 1.69 0.27 

4. Prediction of Shear Resistance 

The shear resistance of AAC insulation block walls are compared to the predictive values 

calculated by the formulas specified in current design codes for masonry walls. For convenience of 

explanation, the terms and symbols are unified in this paper. 

The formula specified in China code JGJ/T17 for AAC walls is expressed as [21], 

v 0 w0.75( 0.2 )V f tl   (4) 

where V is the shear resistance of the wall, fv is the shear strength of the masonry along horizontal 

joint, 0 is the vertical compressive stress on the wall, t and lw are the thickness and length of the wall. 

The formula specified in China code GB50011 for concrete block masonry is expressed as [22], 

 v 0 w0.66V f tl   (5) 

0 c0.23-0.065 /f   (6) 

where μ is the factor considering the shear-compression effect on shear resistance, fc is the 

compressive strength of the masonry. 

Based on the specification of Eurocode 6 [23], the shear strength of the AAC wall can be 

calculated by Equation (6), 

v wV f tl  (7) 

Based on the mechanism of the crushing of the diagonal compressive strut, the shear resistance 

of AAC masonry wall specified in TMS 602-11 is calculated as follows [24], 

2
w

c
2 2

w

0.17
3

( )
4

hl
V f t

h l





 
(8) 

where h is the effective height of the wall. 

The comparison of test results in this study with the above equations are presented in Table 4. 

Higher predictive shear resistance of the walls is given by Equation (5). This is due to the different 

failure mechanism between the higher-strength concrete block wall and the lower-strength AAC 

block wall. For the Equations (4) and (7) using the shear strength of AAC block masonry along mortar 
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joint, higher predictive shear resistances of the walls with self-insulation mortar joints, while lower 

predictive shear resistance of the walls with thin-layer mortar joints, are produced. This shows the 

necessity of strength matching between AAC block and mortar. However, Equations (4) and (7) give 

higher predictive shear resistance of the walls with vertical joints filled by mineral wool plates. This 

indicates the adverse effect of vertical joints without bonding together with mortar. The lowest 

predictive values by Equation (8) come from the lower compressive strength of the AAC self-

insulation block, which has a limit of 3.45 MPa, specified in the code TMS 602-11 [24]. The slant 

compression strut was not able to be damaged in the walls of this study. 

Generally, the shear resistance of the walls with thin-layer mortar joints can be conservatively 

predicted by Equations (4) and (7). 

Table 4. Comparison between tested and calculated results of shear resistance of the walls. 

Wall 

Number 

Tested 

(MPa) 

Calculated by Equations (MPa) 

(4) (5) (7) (8) 

R-1 79.5 98.4 157.0 112.8 61.9 

R-2 94.0 108.4 156.9 113.8 61.9 

M-1 85.5 70.6 120.1 75.9 66.0 

M-2 78.5 80.1 119.3 76.3 66.4 

Z-1 72.5 71.5 121.6 76.9 66.2 

Z-2 67.0 80.7 157.1 76.9 66.4 

5. Conclusions 

Based on the pseudo static test results of the six AAC self-insulation block walls, the conclusions 

can be drafted as follows: 

(1) A typical damage pattern with intersected slant cracks was seen on the AAC self-insulation block 

walls under seismic loads. The type of mortar joints had some influence on the slant crack 

distribution. More almost-vertical cracks appeared on the walls with vertical joints filled by 

mineral wool plates. The blocks on push/pull sides of the walls tended to be easily broken under 

higher vertical compressive stress at failure state. 

(2) The walls with thin-layer mortar joints had an entirely better seismic performance. The cracking 

resistance was about 13.1% higher with a displacement that was about 54.2% greater, in spite of 

lower ultimate capacity (about 4.5%) than the walls with self-insulation mortar joints. The 

cracking resistance and ultimate capacity of the walls with vertical joints filled by mineral wool 

plates were lowest with the worst displacement ability, which were about 80.9% and 85.1% of 

those of the walls with thin-layer mortar joints. 

(3) The integrality of the walls was weakened with the vertical joints filled by mineral wool plates. 

This led to the reduction of seismic performance of the walls in stiffness and energy dissipation. 

Compared to the walls with thin-layer mortar joints, the walls with vertical joints filled by 

mineral wool plates underwent a reduction of about 10–12% in terms of the energy dissipation 

factor and the equivalent viscous damping coefficient. 

(4) The vertical compressive stress had a certain impact on the seismic performance of the AAC self-

insulation block walls. Under higher vertical compressive stress, the stiffness of the walls 

increased, and the energy dissipation decreased. 

(5) With rational shear strength of the block masonry along the mortar joint, the shear resistance of 

the AAC self-insulation block masonry walls can be predicted by the formulas specified in China 

code JGJ/T17 and Eurocode 6. 
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