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Abstract: The elastic range in loading–unloading processes is often reduced with a Bauschinger effect.
This material property may have a high impact on residual stresses and, as a result, on the performance
of autofrettaged cylinders under service conditions. The objective of the present paper is to demonstrate
this impact using a material model that accounts for the response of typical high-strength steel.
The solution is semi-analytic and, therefore, can be used for fast and accurate analysis of the process
of autofrettage. A numerical example illustrates the general solution. This example shows that the
Bauschinger effect has a significant impact on the residual circumferential stress in the vicinity of the
inner radius of the cylinder. This stress is the most significant quantity of autofrettaged cylinders.
Therefore, the main result obtained suggests that even a moderate Bauschinger effect should be taken
into account in analyses of the process of autofrettage.
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1. Introduction

The elastic range in loading–unloading processes is often reduced with a Bauschinger effect.
This material property has a substantial impact on the distribution of stresses in autofrettaged cylinders.
Many types of high-strength steel show little or no forward hardening but a strong Bauschinger
effect [1–4]. Most of the available solutions for such materials do not require the yield locus but
only two points of this locus [5–8]. Analysis of the autofrettage of open-ended cylinders made of
high-strength steel under plane stress conditions needs a more general model that predicts the perfectly
plastic behavior of the material at loading and accounts for the Bauschinger effect at unloading. Such a
material model has been proposed in [9]. This model is adopted in the present paper.

The autofrettage technology induces a favorable residual stress field for increasing the load
capacity of high-pressure vessels. Several processes are used to autofrettage cylindrical pressure vessels
and disks, such as hydrostatic, swage, rotational, and thermal autofrettage [10–13]. The constitutive
equations adopted may significantly affect theoretical predictions of residual stress fields after the
autofrettage process. Therefore, the theory of autofrettage has been intensively discussed in the literature.
It is sufficient to mention pioneering works [10,14] and a very recent comprehensive review [15].
None of the solutions included in this review accounts for the specific features of the Bauschinger effect
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in high-strength steels. An influence of plastic anisotropy on the distribution of residual stresses and
strains in open-ended, autofrettaged cylinders has been investigated in [16]. Experimental studies
for materials that reveal the Bauschinger effect have been reported in [17–19]. The objective of the
present research is rather to develop a simple theory of autofrettage of open-ended cylinders made
of high-strength steel based on the model [9]. In particular, a semi-analytic solution for the stage
of loading is available in [20]. The stress solution for the stage of unloading requires solving an
ordinary differential equation and transcendental equations numerically. It is shown that the impact of
the Bauschinger effect on the distribution of the residual circumferential stress in the vicinity of the
inner radius of the cylinder is significant. This stress is the most significant quantity of autofrettaged
cylinders. Therefore, the main result obtained suggests that even a moderate Bauschinger effect should
be taken into account in analyses of the process of autofrettage.

2. Statement of the Problem and Basic Equations

Consider a long open-ended cylinder of initial yield stress σ0, Young’s modulus E, Poisson’s
ratio υ, outer radius b0, and inner radius a0. The cylinder is subject to uniform pressure p0 over its
inner radius, followed by unloading. The pressure is sufficient to yield the material to an intermediate

radius r( f )
p at loading and r(r)p in reversed flow. The outer radius of the cylinder is stress-free. Figure 1

illustrates the boundary value problem. It is natural to use the cylindrical coordinate system (r, θ, z),
as shown in this figure. The solution is independent of θ, and the principal stress trajectories coincide
with the coordinate curves of this coordinate system. The normal stresses referred to the cylindrical
coordinate system, which are the principal stresses, are denoted as σr, σθ and σz. Moreover, it is
assumed that the state of stress is plane stress such that σz = 0.
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Figure 1. Illustration of the boundary value problem: (a) loading; (b) unloading. 

A general feature of the class of materials considered in the present paper is that there is little 

or no forward hardening, but a significant Bauschinger effect. This feature of constitutive material 

behavior is illustrated in Figure 2 for one-dimensional loading. Forward deformation is represented 

by the line OAB, where OA corresponds to elastic deformation and AB to elastic/plastic 

deformation. Line BD represents the elastic unloading in materials with no Bauschinger effect. In 
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Figure 1. Illustration of the boundary value problem: (a) loading; (b) unloading.

A general feature of the class of materials considered in the present paper is that there is little
or no forward hardening, but a significant Bauschinger effect. This feature of constitutive material
behavior is illustrated in Figure 2 for one-dimensional loading. Forward deformation is represented
by the line OAB, where OA corresponds to elastic deformation and AB to elastic/plastic deformation.
Line BD represents the elastic unloading in materials with no Bauschinger effect. In this case, the elastic
range is R0. Line BC represents the elastic unloading in materials that reveal a Bauschinger effect.
In this case, the elastic range becomes Rr where Rr < R0.
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Figure 2. Geometric illustration of the Bauschinger effect considered in the present paper.

Taking into account the discussion above, the constitutive equations at loading constitute
Hooke’s law, a yield criterion of perfect plasticity under plane stress conditions and its associated
flow rule. In particular, the von Mises yield criterion under plane stress conditions takes the form

σ2
r + σ2

θ − σθσr = σ2
0. (1)

Let εp
r , εp

θ
and εp

z be the plastic strain components referred to the cylindrical coordinate system.
Then, the plastic flow rule is

.
ε

p
r = λ(σr − σ),

.
ε

p
θ
= λ(σθ − σ),

.
ε

p
z = −λσ. (2)

Here, σ is the hydrostatic stress, σ = (σr + σθ)/3, λ is a non-negative multiplier, and the
superimposed dot denotes the derivative with respect to a time-like parameter, t. The elastic strain
components, εe

r, εe
θ

and εe
z, are connected to the stress components as

εe
r =

σr − νσθ
E

, εe
θ =

σθ − νσr

E
, εe

z = −
ν(σr + σθ)

E
. (3)

The components of the total strain tensor are

εr = εe
r + ε

p
r , εθ = εe

θ + ε
p
θ

and εz = εe
z + ε

p
z . (4)

It is assumed that the forward plastic strain components affect the reversed yield criterion.
In particular, according to Prager’s law [21], the reversed yield criterion under plane stress conditions is

3
2

[(
σr − σ−Cεp

r

)2
+

(
σθ − σ−Cεp

θ

)2
+

(
σ+ Cεp

z

)2
]
= σ2

0 (5)

where C is a material constant. The plastic flow rule associated with the yield criterion (5) is

.
ε

p
r = λ1

(
σr − σ−Cεp f

r

)
,

.
ε

p
θ
= λ1

(
σθ − σ−Cεp f

θ

)
,

.
ε

p
z = −λ1

(
σ+ Cεp f

z

)
. (6)

Here, and in the solution for the stage of unloading, the superscript f denotes the forward strain.
The constitutive equations above should be supplemented with the only non-trivial

equilibrium equation:
∂σr

∂r
+
σr − σθ

r
= 0. (7)

It is convenient to use the following dimensionless quantities:

a =
a0

b0
, ρ =

r
b0

, k =
σ0

E
, p =

p0

σ0
. (8)
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In particular, Equation (7) becomes

∂σr

∂ρ
+
σr − σθ
ρ

= 0. (9)

The boundary conditions at the stage of forward loading are

σr

σ0
= −p for ρ = a (10)

and
σr

σ0
= 0 for ρ = 1. (11)

The boundary conditions at the stage of unloading are

∆σr

σ0
= p f for ρ = a (12)

and
∆σr

σ0
= 0 for ρ = 1. (13)

Here ∆σr is the increment of the radial stress in the course of unloading and p f is the value of p at
the end of loading.

The material model above has been proposed in [9].

3. Solution at Loading

A solution at loading has been proposed in [20]. This solution is outlined in this section to supply
the equations that are necessary for determining the distribution of residual stresses after unloading.
In what follows, p f will denote the value of p at the end of loading.

The general stress solution in the elastic region is well known [10]. This solution, satisfying the
boundary condition (11), is represented as

σr

σ0
= A

(
1
ρ2 − 1

)
and

σθ
σ0

= −A
(

1
ρ2 + 1

)
. (14)

Here A is a function of p. The strain solution is immediate from (1), (3), (8), and (14). As a result,

εe
r

k
= A

[
(1 + ν)

ρ2 − 1 + ν

]
,
εe
θ

k
= −A

[
(1 + ν)

ρ2 + 1− ν
]
,
εe

z
k

= 2νA. (15)

The yield criterion (1) is satisfied by the following standard substitution:

σr

σ0
= −

2 sinψ
√

3
and

σθ
σ0

= −
sinψ
√

3
− cosψ. (16)

Here, ψ is a new unknown function of ρ. Equations (9) and (16) combine to give

2ρ cosψ
∂ψ

∂ρ
=
√

3 cosψ− sinψ. (17)

The distribution of the principal stresses is given by (14) in the range ρc ≤ ρ ≤ 1 and by (16) in the
range a ≤ ρ ≤ ρc. Here, ρc is the dimensionless radius of the elastic/plastic interface. Then, using (16),
one can rewrite the boundary condition (10) as

2
√

3
sinψa = p (18)
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where ψa is the value of ψ at ρ = a. The solution of Equation (17) satisfying the boundary condition
(18) is

ρ = a exp
[ √

3
2

(ψ−ψa)

]√
sin(ψa −π/3)
sin(ψ−π/3)

. (19)

Equations (16) and (19) supply the dependence of the stress components on the dimensionless
radius in parametric form.

It is seen from (18) that p f ≤
√

3/2 and ψa is a monotonic function of p in the range 0 ≤ p ≤ p f .
Therefore, it is possible to assume with no loss of generality that t ≡ ψa (t has been introduced after
Equation (2)). It is seen from (4) that

.
εθ =

.
ε

e
θ +

.
ε

p
θ

. The dependence of
.
εθ on ψ in the plastic region is

given by
.
εθ
k =

.
εc
k exp

[√
3(ψc −ψ)

]
+

cosψa
√

3(
√

3 cosψa−sinψa)
×

ψ∫
ψc

[(1−2ν)(
√

3 sin 2µ−cos 2µ)−2(2−ν)]
cosµ exp

[√
3(µ−ψ)

]
dµ.

(20)

Here, µ is a dummy variable of integration and
.
εc is the value of

.
εθ at ρ = ρc. The quantities

.
εc,

ψc, and ρc are functions of ψa. Choose an arbitrary value of ρ in the range a ≤ ρ < ρc. This value of
ρ will denoted as ρi. At ρ = ρi, ψ is a function of ψa, as follows from (19). One can eliminate ψ in
(20) using this function. Then, the right-hand side of (20) becomes a function of ψa,

.
εθ/k = Eθ(ψa).

The resulting equation can be immediately integrated to give the value of the total circumferential
strain at ρ = ρi at the end of loading as

εθ
k

=

ψ f∫
ψi

Eθ(ψa)dψa +
ε
(i)
θ

k
. (21)

Here, ψi is the value of ψa, at which ρc = ρi, ψ f is determined from (18) at p = p f , and ε(i)
θ

is the
elastic circumferential strain at the elastic/plastic boundary at the instant when ρc = ρi. The value of
ε
(i)
θ

is found from (15). The elastic portion of the circumferential strain is determined from (3) and (16).
Having found the elastic portion, the plastic portion of the circumferential strain is immediate from (4)
and (21).

The plastic portions of the radial and axial strains can be found in a similar manner. In particular,

.
ε

p
r =

.
ε

p
θ

sin(ψ−π/6)
cosψ

and
.
ε

p
z = −

.
ε

p
θ

sin(ψ+ π/6)
cosψ

. (22)

Since εp
r = ε

p
z = 0 at ψa = ψi, one can rewrite (22) as

ε
p
r =

ψ f∫
ψi

.
ε

p
θ

sin(ψ−π/6)
cosψ

dψa and εp
z = −

ψ f∫
ψi

.
ε

p
θ

sin(ψ+ π/6)
cosψ

dψa. (23)

These equations supply the forward plastic strains ε
p
r and ε

p
z at ρ = ρi and ψa = ψ f .

Using integration by parts, one transforms the equations in (23) to

ε
p
r =

sin(ψ f−π/6)
cosψ f

ε
p
θ

∣∣∣
ψa=ψ f

−

√
3

2

ψ f∫
ψi

ε
p
θ

cos2 ψ
dψ
dψa

dψa,

ε
p
z = −

sin(ψ f +π/6)
cosψ f

ε
p
θ

∣∣∣
ψa=ψ f

+
√

3
2

ψ f∫
ψi

ε
p
θ

cos2 ψ
dψ
dψa

dψa.

(24)
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It has been taken into account here that εp
θ
= 0 at ψa = ψi. At ρ = ρi, one can eliminate ψ in

the integrands in (24) using (19). The plastic portion of the circumferential strain is immediate from
(21) and Hooke’s law. It remains to determine the derivative dψ/dψa at ρ = ρi. Since d

(
ρ2

i

)
/dψa = 0,

it follows from (19) that

dψ
dψa

=
sin(ψ−π/3)

[√
3 sin(ψa −π/3) − cos(ψa −π/3)

]
sin(ψa −π/3)

[√
3 sin(ψ−π/3) − cos(ψ−π/3)

] . (25)

Using (19) and (25), one can express the derivative dψ/dψa as a function of ψa. Then, the integrals
in (24) can be evaluated.

A full description of this method of solution, including the system of equations for determining
.
εc,

ψc, ψa, ρc, and A as functions of p, is provided in [20]. In what follows, it is assumed that the solution
at loading is available, including the plastic strains involved in (5) and (6).

It is worthy of note that all strains are proportional to k. This is seen from (15), (21), and (24).
Therefore, the value of k is immaterial for theoretical solutions. In particular, assume that the solution
for a cylinder of a given material is available. Then, simple scaling of this solution provides the
solutions for similar cylinders of material with the same Poisson’s ratio but any value of k. For this
reason, the solution in the next section will be derived in terms of ξr = εr/k, ξθ = εθ/k and ξz = εz/k
instead of the strain components.

4. Stress Solution at Unloading

Using the general stress solution given in [10], one can determine the increments of the principal
stresses in the following form:

∆σr

σ0
=

∆A
ρ2 + ∆B and

∆σθ
σ0

= −
∆A
ρ2 + ∆B (26)

where ∆A and ∆B are new constants of integration. It follows from (12), (13) and (26) that

∆A =
p f a2

1− a2 and ∆B =
p f a2

a2 − 1
. (27)

Substituting (27) into (26) gives

∆σr

σ0
=

p f a2
(
1− ρ2

)
(1− a2)ρ2 and

∆σθ
σ0

= −
p f a2

(
1 + ρ2

)
(1− a2)ρ2 . (28)

The yield criterion (5) can be rewritten as
(
2σ f

r −σ
f
θ

)
σ0

+
(2∆σr−∆σ

θ)
σ0

− 3cξp f
r


2

+


(
2σ f
θ
−σ

f
r

)
σ0

+
(2∆σ

θ
−∆σr)
σ0

− 3cξp f
θ


2

+
(
σ

f
r +σ

f
θ

)
σ0

+
(∆σr+∆σ

θ)
σ0

+ 3cξp f
z


2

≤ 6

(29)

where c = C/E. The solution (28) is valid if this inequality is not violated in the range a ≤ ρ ≤ 1.
The solution at loading and (28) show that it is sufficient to check (29) at ρ = a. It is evident from (10)
and (12) that

σr + ∆σr = 0 (30)
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at ρ = a. Using (16), (18) and (28) one can get

σθ + ∆σθ
σ0

=

√
1−

3
4

p2
f −

(
3− a2

)
2(1− a2)

p f = q f . (31)

Substituting (30) and (31) into (29) one arrives at

q2
f − 3cq fξ

p f
θ

+
3
2

c2
[(
ξ

p f
r

)2
+

(
ξ

p f
θ

)2
+

(
ξ

p f
z

)2]
≤ 1. (32)

The forward plastic strains are understood to be calculated atρ = a. The equationξp f
r +ξ

p f
θ
+ξ

p f
z =

0 that follows from the equation ε
p f
r + ε

p f
θ

+ ε
p f
z = 0 has been used to derive (32). The equation

ε
p f
r + ε

p f
θ

+ ε
p f
z = 0 follows immediately from (2).

Equations (31) and (32) combine to supply the equation for determining the maximum possible
value of p f at which the process of unloading is purely elastic. This value of p f is denoted as pe

f . It is

worthy of note that the values of ξp f
r , ξp f

θ
and ξp f

z involved in (32) depend on p f .
In what follows, it is assumed that p f > pe

f . Therefore, a reversed plastic region occurs in the

course of unloading. The radius of this region is denoted as r(r)p (Figure 1) and its dimensionless

representation as ρs = r(r)p /b0. The solution (26) is valid in the region ρs ≤ ρ ≤ 1. However, ∆A and ∆B
are not determined from (27). The yield criterion (5) is valid in the region a ≤ ρ ≤ ρs. This criterion is
satisfied by the substitution

Tr

σ0
=

2 sinγ
√

3
and

Tθ
σ0

=
sinγ
√

3
+ cosγ (33)

where
Tr

σ0
=
σr

σ0
− cξp f

r + cξp f
z and

Tθ
σ0

=
σθ
σ0
− cξp f

θ
+ cξp f

z . (34)

Furthermore, γ is a new unknown function of ρ. Since ψ is a known monotonic function of ρ in
the region a ≤ ρ ≤ ρs, Equation (9) can be rewritten as

∂σr

∂ψ

∂ψ

∂ρ
+
σr − σθ
ρ

= 0. (35)

One can eliminate the derivative ∂ψ/∂ρ in this equation using (17). Then, Equation (35) becomes

∂σr

∂ψ
+

2(σr − σθ) cosψ(√
3 cosψ− sinψ

) = 0. (36)

Using (33) and (34), Equation (36) can be transformed into

cosγ
∂γ

∂ψ
−

(
sinγ−

√
3 cosγ

)
cosψ(

sinψ−
√

3 cosψ
) +

√
3c
2

∂
(
ξ

p f
r − ξ

p f
z

)
∂ψ

−

√
3c cosψ

(
ξ

p f
r − ξ

p f
θ

)(
sinψ−

√
3 cosψ

) = 0. (37)

Since σr = 0 at ρ = a at the end of unloading, it follows from (33) and (34) that the boundary
condition to Equation (37) is

γ = γa for ψ = ψa (38)

where γa is determined from

sinγa =

√
3c
2

(
ξ

p f
z − ξ

p f
r

)
. (39)
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The forward plastic strains involved in the definitions of ξp f
z and ξp f

r are understood to be calculated
at ρ = a. Equation (37) should be solved numerically. It is worthy of note that the dependence of
the third and fourth terms of this equation on ψ is known from the solution at loading described in
the previous section. Therefore, the solution of Equation (37) satisfying the boundary condition (38)
supplies the dependence of γ on ψ in the range a ≤ ρ ≤ ρs.

The solution of (26) must satisfy the boundary condition (13). Therefore, ∆A = −∆B and
Equation (26) becomes

∆σr

σ0
= ∆A

(
1
ρ2 − 1

)
and

∆σθ
σ0

= −∆A
(

1
ρ2 + 1

)
. (40)

This solution is valid in the region ρs ≤ ρ ≤ 1. The distribution of the residual stresses in the
region ρs ≤ ρ ≤ ρc is determined from (16) and (40) as

σres
r
σ0

= ∆A
(

1
ρ2 − 1

)
−

2 sinψ
√

3
and

σres
θ

σ0
= −∆A

(
1
ρ2 + 1

)
−

sinψ
√

3
− cosψ. (41)

Here, one can eliminate ρ (or ψ) using (19). Both σres
r and σres

θ
must be continuous across the

elastic/plastic boundary ρ = ρs. Then, it follows from (33), (34) and (41) that

2 sinγs
√

3
+ c

(
ξ

p f
r − ξ

p f
z

)
= ∆A

(
1
ρ2

s
− 1

)
−

2 sinψs
√

3
,

sinγs
√

3
+ cosγs + c

(
ξ

p f
θ
− ξ

p f
z

)
= −∆A

(
1
ρ2

s
+ 1

)
−

sinψs
√

3
− cosψs.

(42)

The forward plastic strains involved in the definitions of ξp f
z , ξp f

θ
and ξp f

r are understood to be
calculated at ρ = ρs. Additionally, ψs and γs are the values of ψ and γ at ρ = ρs, respectively. One can
eliminate ∆A between the equations in (42) to arrive at[

2 sinψs
√

3
+

2 sinγs
√

3
+ c

(
ξ

p f
r − ξ

p f
z

)](
1 + ρ2

s

)
+[

sinψs
√

3
+ cosψs +

sinγs
√

3
+ cosγs + c

(
ξ

p f
θ
− ξ

p f
z

)](
1− ρ2

s

)
= 0.

(43)

It follows from (19) that

ρs = a exp
[ √

3
2

(ψs −ψa)

]√
sin(ψa −π/3)
sin(ψs −π/3)

. (44)

Using (44), one can eliminate ρs in (43). The solution of Equation (37) supplies the dependence of
γs on ψs. As a result, Equation (43) contains one unknown ψs. This resulting equation should be solved
for ψs numerically. Then, γs is found from the solution of Equation (37) and ρs from (44). The value of
∆A can be determined from any equation in (42). For example,

∆A =

[
2 sinψs
√

3
+

2 sinγs
√

3
+ c

(
ξ

p f
r − ξ

p f
z

)]
ρ2

s(
1− ρ2

s

) . (45)

This equation should be used for eliminating ∆A in (41).
The distribution of the residual stresses in the region ρc ≤ ρ ≤ 1 is determined from (14) and

(40) as
σres

r
σ0

= (A + ∆A)

(
1
ρ2 − 1

)
and

σres
θ

σ0
= −(A + ∆A)

(
1
ρ2 + 1

)
. (46)

As before, ∆A in this equation should be eliminated by means of Equation (45).
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The distribution of the residual stresses in the region a ≤ ρ ≤ ρs is determined as follows. One can
transform Equations (33) and (34) to

σres
r
σ0

=
2 sinγ
√

3
+ c

(
ξ

p f
r − ξ

p f
z

)
and

σres
θ

σ0
=

sinγ
√

3
+ cosγ+ c

(
ξ

p f
θ
− ξ

p f
z

)
. (47)

In these equations, γ is a known function of ψ due to the solution of Equation (37). Then, (19) and
(47) supply the dependence of the residual stresses on ρ in parametric form, with ρ being the parameter.

The solution found is illustrated in Figures 3 and 4 for an a = 0.4 cylinder and several values of c.
It has been assumed that ν = 0.3. The special case, c = 0, corresponds to the material that reveals no
Bauschinger effect. The stage of loading ends when ρc = 0.8. The corresponding value of the internal
pressure is p f = 0.97 (approximately). Figure 3 displays the variation of the residual radial stress
with the dimensionless radius. The effect of the c—value is not so significant. This is not surprising
because the value of this stress at ρ = a and ρ = 1 is controlled by the boundary conditions. Figure 5
shows the variation in the residual circumferential stress with the dimensionless radius. The effect
of the c—value on this stress is significant in the vicinity of the inner radius where the magnitude of
the circumferential stress is the most significant quantity in autofrettage technologies. It is seen from
Figure 3 that an increase in the Bauschinger effect leads to a decrease in the value of

∣∣∣σres
θ

∣∣∣ at the inner
radius of the cylinder, which has a negative impact on its performance under service conditions.
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Figure 5. Distribution of the residual circumferential stress near the inner radius of an a = 0.3 cylinder.

To reveal an effect of a on the distribution of the residual stresses, the solution for an a = 0.3
cylinder has been found assuming that p f = 0.97. The effect of c—value on the distribution of the
residual radial stress is even smaller than that shown in Figure 3. Therefore, the distribution of this
stress at a = 0.3 is not illustrated. It is seen from Figure 4 that the effect of c—value on the distribution
of the residual circumferential stress is negligible in the range ρs ≤ ρ ≤ 1. Therefore, Figure 4 shows
the distribution of the residual circumferential stress near the inner radius of an a = 0.3 cylinder. It is
seen from this figure that the Bauschinger effect has a significant impact on this stress near the inner
radius. Comparison of the distributions of the residual circumferential stress near the inner radius for
the a = 0.4 and a = 0.3 cylinders (Figures 4 and 5) shows that the magnitude of this stress at ρ = a is
sensitive to both a and c at the same value of p f . It is worthy of note that there is no need to solve the
boundary value problem at unloading to find the value of σres

θ
at ρ = a.

It follows from (11) and (13) that σres
r = 0 at ρ = a. Then, the yield criterion (5) at ρ = a becomes

3
2

(σres
θ

3σ0
+ cξp f

r

)2

+

(2σres
θ

3σ0
− cξp f

θ

)2

+

(
σres
θ

3σ0
+ cξp f

z

)2 = 1. (48)

The forward plastic strains involved in the definitions of ξp f
z , ξp f

θ
and ξp f

r are understood to be
calculated at ρ = a. Equation (48) is a quadratic equation for σres

θ
/σ0. The solution of this equation,

which is in agreement with the physical meaning of σres
θ

, is

σres
θ

σ0
=

3cξp f
θ
−

√
3c2

(
ξ

p f
θ

)2
− 6c2

[(
ξ

p f
r

)2
+

(
ξ

p f
z

)2]
+ 4

2
. (49)

The equation ξp f
r + ξ

p f
θ

+ ξ
p f
z = 0, which follows from the equation εp f

r + ε
p f
θ

+ ε
p f
z = 0, has been

used to derive (49). Using (49), the residual circumferential stress has been calculated at ρ = a to show
the sensitivity of this stress to both a and c. Figure 6 illustrates this solution.
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5. Conclusions

A new theory of the autofrettage process of a long open-ended cylinder has been developed.
The theory accounts for the Bauschinger effect according to the material model proposed in [9].
This model takes into account some typical features in the behavior of high-strength steel.

The solution is semi-analytic. If the solution at the end of loading is available, then numerical
techniques are only necessary to solve the ordinary differential Equation (37) and several
transcendental equations. Therefore, the solution can be used as a benchmark problem for verifying
numerical codes, which is a necessary step before using such codes [22,23].

It has been shown that the impact of the Bauschinger effect on the distribution of the residual
stresses outside the reversed plastic region is not significant, but is quite substantial, on the magnitude
of the residual circumferential stress near the inner radius of the cylinder (Figures 4 and 5). The latter
is very important for autofrettage technologies. Therefore, it is essential to account for the Bauschinger
effect in analyses of the autofrettage process, even if this effect is not so significant.

The possibility of finding rather a simple solution, which is very important for structural design,
arises from using the model illustrated in Figure 2. This model is a result of the approximation of
standard mechanical tests [1–4,24]. Therefore, its justification from the viewpoint of material scientists
is desirable. From this point of view, the Bauschinger effect is generally explained by internal stresses
that assist the motion of dislocations in the reverse direction. The dislocation pile-up and tangle are the
main sources of such internal stresses. Another approach is to interpret the Bauschinger effect by the
composite model in which the inhomogeneous internal stress state is attributed to a modulus difference
effect within the microstructure [25]. The latter fits better to explain the phenomenon of insignificant
work hardening and yet a significant Bauschinger effect that occurs in high-strength steels.

The method of solution used in the present paper can be extended to other autofrettage technologies
such as rotational and thermal autofrettage [12,13]. In particular, the corresponding solutions at loading
are already available [26,27]. The combination of these solutions and the method developed will be the
subject of a subsequent investigation.
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