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Abstract: This paper presents the results of the minor destructive testing of mortars in masonry
structures of four buildings erected at the turn of the 19th and 20th centuries. The buildings were
erected in the historical centre of Cracow. The objective of testing was to determine mortar compressive
strength in masonry joints. The in situ tests were carried out with the use of a penetrometer RSM-15
with the standardised impact energy equalling 4.55 nm. Laboratory tests on mortar specimens
taken from the structures were also performed. The double punch test method was used in the
laboratory tests. On account of the specificity of the tested historical mortars, the typical procedures
used in penetrometer and double punch tests were modified. For penetrometer tests, a new feature
called “a surface disturbance zone” was introduced. Additionally, a procedure for determining a
surface disturbance zone range was included. As confirmed in the paper, the consideration of the
surface disturbance zone in the analysis of test results is crucial for the correct evaluation of mortar
compressive strength. The thicknesses of bed joints in the tested historical masonry considerably
exceeded the requirements included in the standard EN 1996-1-1. Thus, the thickness of the mortar
specimens taken from historical masonry for the double punch tests clearly exceeded the thickness of
specimens extracted from the typical structures erected nowadays. This article provides a method
of considering a specimen thickness parameter in the analysis of double punch test results. The in
situ test results with the use of penetrometer and double punch methods confirmed that the mortar
strength in tested historical buildings ranged from 1.4 to 2.9 MPa. Mortar compressive strength
values determined by both applied methods were similar.

Keywords: mortar compressive strength; penetrometer test; double punch test; minor destructive
testing; brick masonry

1. Introduction

The basic structural elements of historical masonry buildings are walls and pillars subject to
compression. The determination of the masonry mechanical parameters, such as compressive strength
and Young’s modulus, is crucial in the analysis of these types of structures. Currently, various testing
methods are applied in order to evaluate these parameters.

The best results are provided by in situ tests or by tests carried out on masonry specimens cut
from the structure [1–8]. The masonry specimens’ dimensions and quantities should be sufficiently
large in order to be representative of the structure [1–4]. Due to conservation reasons, satisfying this
condition in every case is not possible because cutting out masonry specimens is connected with
damaging historical structures. Furthermore, the process of cutting specimens out from walls erected
on weak lime mortars may result in the splitting of specimens, making them useless in strength tests.
Therefore, other methods of evaluating masonry compressive strength are applied as well.
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A popular method of in situ masonry testing is a structural investigation with the use of flat-jacks.
They are used to estimate the level of compressive stress in the structure and Young’s modulus of
the masonry [5–8]. Nevertheless, the possibility of determining the masonry compressive strength
is limited due to the damage to the fragment of the wall between the flat-jacks that usually appears
during the test.

Brick masonry compressive strength is frequently estimated from formulas based on the strength
of bricks and mortar [9,10]. The compressive strength of bricks may be obtained from laboratory tests
conducted on bricks extracted from the structures. Such tests are usually performed on whole or
half bricks. In order to minimise damage to historical structures, tests are also conducted on smaller
brick specimens [11–13]. It is far more difficult to determine mortar strength in the masonry joints.
On account of the dimensions of bed joints, it is not possible to cut out mortar specimens of dimensions
required by EN 1015-11 [14], and due to this fact, it is not possible to carry out standard destructive
tests on 4 × 4 × 16 cm3 mortar specimens. For this reason, minor destructive methods are used for the
evaluation of mortar strength in historical brick walls. These methods are based on tests carried out on
small specimens cut out from masonry bed joints or by in situ tests [15–33]. Most in situ methods are
based on the measurement of the depth of steel needle penetration or the amount of energy required to
drill a small cavity in the mortar joints. In situ and laboratory tests of mortars are in the process of being
developed and tested in order to determine factors affecting the measurement results. Most frequently,
the results of minor destructive testing of mortars are conducted on samples made of contemporary
materials or materials whose properties are similar to those used in the historical mortars. There are
significantly fewer tests performed on original, historical structures.

This article presents the compressive strength tests of mortars in the bed joints of masonry in
historical buildings erected at the end of the 19th century and at the beginning of the 20th century in
the centre of the royal city of Cracow. The mortar strength in the bed joints of masonry was defined
with the use of a penetrometer and double punch tests. The penetrometer tests (PT) were carried out
by means of an RSM-15 version 1.0 penetrometer [34]. The double punch tests (DPT) were performed
in accordance with DIN 18555-9 [35]. A characteristic of the historical masonry was the considerable
thickness of bed joints, the presence of large size grains in the mortar (diameters significantly exceeding
2 mm) and degradation of the mortar material in the areas near the external surface of the joints. Due to
these factors, the authors of this article proposed modifications to the methods for determining the
mortar compressive strength based on the penetrometer tests (PT) and double punch tests (DPT).

2. Experimental Research of Historical Mortars

2.1. Scope of Research

The objects of testing were the mortars in the bed joints of four buildings erected at the turn of
the 19th and 20th centuries in the historical centre of Cracow. The buildings are presented in Figure 1.
The mortars were tested as part of projects aimed at identifying the construction materials used in the
historical structures. The buildings are marked B1, B2, B3 and B4. The specification of the buildings is
presented in Table 1.

The buildings marked B1 and B2 were used in the past as a warehouse and a factory, respectively.
Buildings B3 and B4 were typical residential buildings, used for more than 100 years. In buildings
B1, B3 and B4, the main construction elements were walls and pillars erected from solid clay bricks.
In building B2, the main load-bearing structure was monolithic reinforced concrete structure, while the
brick walls were the filling between the RC beams and columns.

The facades of buildings B2, B3 and B4 did not have any plastering. Buildings B1 and B2 had
architectural elements like bossage and decorative moulding on the facade. On the inside, lime
plastering was found on the masonry walls of buildings B1, B2, B3 and B4 (except for the basements in
buildings B3 and B4).



Materials 2020, 13, 2873 3 of 13

In situ penetrometer tests were performed in all the buildings on the mortars in the masonry bed
joints. At the same time, mortar specimens for the DPT tests were taken from bed joints.
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Figure 1. The facade-side view of the buildings: (a) warehouse building-B1; (b) manufacturing hall-
B2; (c) tenement house-B3; (d) tenement house-B4. 
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B1 warehouse 1 1882 brick masonry 

B2 manufacturing hall 1 1907 brick masonry 

B3 tenement house 2 + 1 1 1909 brick masonry 

B4 tenement house 2 + 1 1 1910 brick masonry 
1 building with basement. 
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Figure 1. The facade-side view of the buildings: (a) warehouse building-B1; (b) manufacturing hall-B2;
(c) tenement house-B3; (d) tenement house-B4.

Table 1. Characteristics of buildings.

Building Symbol Building Function Number of Stories Construction Year Wall Material

B1 warehouse 1 1882 brick masonry
B2 manufacturing hall 1 1907 brick masonry
B3 tenement house 2 + 1 1 1909 brick masonry
B4 tenement house 2 + 1 1 1910 brick masonry

1 building with basement.

2.2. In Situ Tests Using Penetrometer (PT)

In situ testing of the mortars in the bed joints of the masonry walls was carried out with the use of
the impact penetrometer RSM-15 with the impact energy of 4.55 Nm (see Figure 2).

Testing by penetrometer consisted of measuring the penetration depth of the steel needle in the
masonry joint as a result of the subsequent impacts of a mass actuated by a spring. The penetration
depth measurement was carried out using the external measuring body (see Figure 2b), which provided
the needle displacement. The penetration depth was measured in millimetres.
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Figure 2. Penetrometer RSM-15 [34]: (a) complete testing set; (b) measurement device; (c) steel
needle geometry.

The penetrometer tests in the historical buildings were performed on the surfaces of the
walls. In each case, the testing area was precisely cleaned and levelled before performing the
tests. For non-plastered wall surfaces (see Figure 3a), possible repointing materials and loose mortar
fragments were removed. If the tests were to be conducted on the masonry wall from the inside,
as shown in Figure 3b, lime plaster and levelling joints were removed through brushing before testing.
After preparation of the testing area, the penetrometer was positioned perpendicular to the face of
the masonry wall. The steel needle of the penetrometer was placed in the middle of the bed joint.
According to the penetrometer manufacturer’s manual [34], the indications of the needle depth should
be registered after every five subsequent impacts. In the authors’ tests, on account of the specificity of
historical mortars, the indications of the needle depth were read out and noted after each impact.
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Figure 3. Penetrometer tests (PT)—the examples of test stands: (a) testing the mortar in the brick wall
from the outside (non-plastered wall fragment); (b) testing the mortar in the masonry wall from the
inside (after plaster removal).

The registered results of penetration depth are presented in Figure 4. While analysing the obtained
functions of relations between the number of impacts (nimp) and the needle penetration depth (dp)
in detail, it was noted that some curves clearly differed from the others. This resulted from two
phenomena which occurred during the test. The first phenomenon was caused by the needle hitting a
large size aggregate grain. In this case, the needle was blocked, and despite subsequent impacts, the
needle did not penetrate into the joint. The result is a horizontal line, as shown in example curves 4/B3
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and 5/B3 in Figure 4c. This phenomenon also occurred during testing low thickness joints or when
bricks used for erecting a structure were extremely uneven on the bed side.
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The other phenomenon took place when the penetrometer needle was immersed into the mortar
of a loose structure. The increase in the penetration depth for such a testing point was significantly
higher than in the case of the testing points of joints that were filled properly. This can be seen in 5/B2
in Figure 4b. Due to the fact that both phenomena distorted the test results to a considerable degree,
it was decided that curves affected by such phenomena would be omitted.

Finally, the following number of penetrometer tests were taken for further analysis: 6 tests for
building B1, 10 tests for building B2, 8 tests for building B3 and 7 tests for building B4.

2.3. The Double Punch Tests (DPT)

The DPT tests were introduced for the first time by Henzel and Karl [16] in order to define the
mechanical parameters of the specimens of mortars taken from a structure. This paper applied the test
methodology, according to DIN 18555-9 [35]. The height of mortar specimens used in the DPT tests
was equal to the bed joint thickness; whereas, the dimensions of specimens in the horizontal direction,
in conformity with DIN 18555-9 [35], were approximately 50 mm. The mortar specimens were loaded
by steel punches with a diameter of 20 mm. The specimen loading scheme is presented in Figure 5a.
The mortar strength obtained in the DPT tests (fDPT expressed in MPa) was calculated as the ratio of
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maximum force to the area of the steel punch cross-section. A very similar DPT method was proposed
in UIC-code [36], in which the diameter of the steel punch was recommended as 25 mm.

Materials 2020, 13, x FOR PEER REVIEW 6 of 14 

2.3. The Double Punch Tests (DPT) 

The DPT tests were introduced for the first time by Henzel and Karl [16] in order to define the 
mechanical parameters of the specimens of mortars taken from a structure. This paper applied the 
test methodology, according to DIN 18555-9 [35]. The height of mortar specimens used in the DPT 
tests was equal to the bed joint thickness; whereas, the dimensions of specimens in the horizontal 
direction, in conformity with DIN 18555-9 [35], were approximately 50 mm. The mortar specimens 
were loaded by steel punches with a diameter of 20 mm. The specimen loading scheme is presented 
in Figure 5a. The mortar strength obtained in the DPT tests (fDPT expressed in MPa) was calculated as 
the ratio of maximum force to the area of the steel punch cross-section. A very similar DPT method 
was proposed in UIC-code [36], in which the diameter of the steel punch was recommended as 25 
mm. 

 
 

(a) (b) 

Figure 5. DPT tests: (a) the specimen loading scheme; (b) the specimen population structure 
depending on thickness t1. 

The mortar specimens intended for the DPT tests were collected from the same building walls 
where PT tests were conducted. The specimens were collected by means of core drilling with the 
centrally positioned bed joint or through splitting the mortar from the fragments of walls intended 
for demolition. The joints were split from bricks by means of a steel chisel. The obtained irregular 
fragments of the bed joints were used to cut out square specimens with sides equalling approximately 
50 mm. Then, on the lower and upper surface of the specimens, in the area of applying load, gypsum 
caps were made. After preparation of gypsum caps, the mortar specimens were centrally located in 
the testing setup and compressed up to failure. The mortar specimens extracted from building B2 
were loaded at a constant velocity equalling 10 N/s. For mortar specimens collected from the 
remaining buildings, the velocity was 5 N/s. The loading of mortar specimens was carried out using 
testing machine Z100 (ZwickRoell AG, Ulm, Germany, accuracy class of testing machine 0.5; 
uncertainty of measurement 0.12%). The view of the specimen on the test stand is presented in Figure 6a. 
The results of the mortar strength tests are given in Table 2. 

Table 2. Results of double punch tests (DPT) on mortar specimens extracted from bed joints of 
historical masonry. 

Building fDPT 

Figure 5. DPT tests: (a) the specimen loading scheme; (b) the specimen population structure depending
on thickness t1.

The mortar specimens intended for the DPT tests were collected from the same building walls
where PT tests were conducted. The specimens were collected by means of core drilling with the
centrally positioned bed joint or through splitting the mortar from the fragments of walls intended
for demolition. The joints were split from bricks by means of a steel chisel. The obtained irregular
fragments of the bed joints were used to cut out square specimens with sides equalling approximately
50 mm. Then, on the lower and upper surface of the specimens, in the area of applying load, gypsum
caps were made. After preparation of gypsum caps, the mortar specimens were centrally located in
the testing setup and compressed up to failure. The mortar specimens extracted from building B2 were
loaded at a constant velocity equalling 10 N/s. For mortar specimens collected from the remaining
buildings, the velocity was 5 N/s. The loading of mortar specimens was carried out using testing
machine Z100 (ZwickRoell AG, Ulm, Germany, accuracy class of testing machine 0.5; uncertainty of
measurement 0.12%). The view of the specimen on the test stand is presented in Figure 6a. The results
of the mortar strength tests are given in Table 2.

During the tests, the typical failure mode for the loading method for these types of specimens was
observed. The cracks ran radially from the loaded part of the specimen (see Figure 6b). Due to the
influence of confinement, the specimen fragments in the outline of steel punches took the form of a
double cone after destruction (see Figure 6c). In total, 38 mortar specimens extracted from the bed
joints of the brick walls were tested.

Before and after the DPT test, the maximum aggregate grains in the mortar specimens were
measured. Such measurements were also conducted on the joint fragments left after cutting the
specimens in the laboratory. The maximum measured dimension of the aggregate grains in the
historical mortars was as follows: 12 mm—mortar in building B1, 10 mm—mortar in building B2,
6 mm—mortar in building B3 and 8 mm—mortar in building B4.
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Table 2. Results of double punch tests (DPT) on mortar specimens extracted from bed joints of
historical masonry.

Building
Number of
Specimens

(pcs.)

Average Mortar
Specimen

Thickness 1 (mm)

fDPT

Value Range
(MPa)

Average
Value (MPa)

Standard
Deviation (MPa)

Coefficient of
Variation (–)

B1 8 20.7 (25.7) 1.02–2.80 1.98 0.52 0.26
B2 9 15.1 (19.0) 3.10–4.46 3.59 0.47 0.13
B3 9 17.1 (23.2) 0.92–2.06 1.48 0.33 0.22
B4 12 16.8 (20.5) 1.33–2.69 2.00 0.44 0.22

1 The specimen total thickness is shown in brackets (with the gypsum caps)—marked as t2 in Figure 5.

3. Discussion of Test Results

Table 3 presents the results of the penetrometer tests (PT), specifying the increases in the penetration
depth corresponding to five impacts (∆dp (5)). The columns present the penetration depth for the
impact ranges 1–5, 6–10, 11–15 and 16–20.

Table 3. The list of the penetrometer test results.

Building
∆dp (5) (mm)

1–5 6–10 11–15 16–20

B1 (7.0–12.0) 9.0 (5.0–7.0) 6.3 (5.0–9.0) 6.3 (5.0–7.0) 6.0
B2 (5.5–10.5) 8.0 (1.5–4.0) 2.7 (1.0–3.0) 2.2 (1.5–2.5) 2.1
B3 (6.0–14.5) 10.5 (4.0–7.0) 6.1 (3.0–7.0) 5.0 (3.0–5.0) 4.1
B4 (6.0–12.0) 9.4 (3.5–8.0) 5.1 (2.5–9.0) 5.1 (2.5–8.0) 4.4

In brackets—the range values. Outside the brackets—the average value.

When analysing the results provided in Table 3, it may be stated that the highest penetration
value is registered with the first five impacts, then regression and stabilisation follows.

The observed result is caused by the presence of a zone of degraded and weakened mortar
material. The zone of degraded and weakened mortar is located at the surface of the masonry walls.
For external walls, this is the consequence of the destructive impact of the external environment factors.
For internal walls, the zone of degraded mortar arises during plaster removal. Furthermore, the
conditions of the contact between the needle and the mortar surface at the beginning of testing, which
are individual for each testing point, also exert some influence.

Analysing the results of the conducted penetrometer tests, it may be stated that a zone of degraded
mortar is observed in bed joints of all tested masonry buildings (see Table 3). This zone is further
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referred to in the article as the surface disturbance zone. In the surface disturbance zone, the penetration
depth indications are distorted and should be omitted when the mortar strength is obtained. Therefore,
the determination of a range of the surface disturbance zone is crucial in the analysis of the penetrometer
test results.

The determination of the range of the surface disturbance zone (zp,z) should be conducted by
means of the procedure presented in Figure 7.

Materials 2020, 13, x FOR PEER REVIEW 8 of 14 

1–5 6–10 11–15 16–20 

B1 (7.0–12.0) 9.0 (5.0–7.0) 6.3 (5.0–9.0) 6.3 (5.0–7.0) 6.0 

B2 (5.5–10.5) 8.0 (1.5–4.0) 2.7 (1.0–3.0) 2.2 (1.5–2.5) 2.1 

B3 (6.0–14.5) 10.5 (4.0–7.0) 6.1 (3.0–7.0) 5.0 (3.0–5.0) 4.1 

B4 (6.0–12.0) 9.4 (3.5–8.0) 5.1 (2.5–9.0) 5.1  (2.5–8.0) 4.4 

In brackets—the range values. Outside the brackets—the average value. 

When analysing the results provided in Table 3, it may be stated that the highest penetration 
value is registered with the first five impacts, then regression and stabilisation follows. 

The observed result is caused by the presence of a zone of degraded and weakened mortar 
material. The zone of degraded and weakened mortar is located at the surface of the masonry walls. 
For external walls, this is the consequence of the destructive impact of the external environment 
factors. For internal walls, the zone of degraded mortar arises during plaster removal. Furthermore, 
the conditions of the contact between the needle and the mortar surface at the beginning of testing, 
which are individual for each testing point, also exert some influence.  

Analysing the results of the conducted penetrometer tests, it may be stated that a zone of 
degraded mortar is observed in bed joints of all tested masonry buildings (see Table 3). This zone is 
further referred to in the article as the surface disturbance zone. In the surface disturbance zone, the 
penetration depth indications are distorted and should be omitted when the mortar strength is 
obtained. Therefore, the determination of a range of the surface disturbance zone is crucial in the 
analysis of the penetrometer test results.  

The determination of the range of the surface disturbance zone (zp,z) should be conducted by 
means of the procedure presented in Figure 7.  

 
Figure 7. The manner of determining the range of the surface disturbance zone (zp,z) based on 
penetrometer test results. Where: FA—the linear approximation of the test results for nimp = 10, 15 and 
20; FB—tests results. 

In the first step, the linear function FA is determined. The function FA is a linear approximation 
of the test results for nimp = 10, 15 and 20. The next step is to look for an nimp value (marked as nimp,z) for 
which the difference between the dp, determined on the basis of the FA function (dFA 

p ) and directly 
from the tests (dFB 

p ), is less than 5%. The value of penetration depth specified for nimp,z is the range of 
the surface disturbance zone (marked as zp,z). 

The ranges of the surface disturbance zones (zp,z) in the bed joints of the tested historical walls, 
determined in line with the procedure provided in Figure 7, are presented in Table 4. The average 
values of the surface disturbance zones are from 9.1 to 14.5 mm. Table 4 also includes the number of 
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penetrometer test results. Where: FA—the linear approximation of the test results for nimp = 10, 15 and
20; FB—tests results.

In the first step, the linear function FA is determined. The function FA is a linear approximation
of the test results for nimp = 10, 15 and 20. The next step is to look for an nimp value (marked as nimp,z)
for which the difference between the dp, determined on the basis of the FA function (dFA

p ) and directly
from the tests (dFB

p ), is less than 5%. The value of penetration depth specified for nimp,z is the range of
the surface disturbance zone (marked as zp,z).

The ranges of the surface disturbance zones (zp,z) in the bed joints of the tested historical walls,
determined in line with the procedure provided in Figure 7, are presented in Table 4. The average
values of the surface disturbance zones are from 9.1 to 14.5 mm. Table 4 also includes the number of
impacts corresponding to the boundary of the surface disturbance zones (nimp,z). After rounding to
integer values, the quantities of impacts nimp,z range from seven to eight.

Table 4. The ranges of the surface disturbance zones (zp,z) and the quantities of impacts corresponding
to the zone boundary (nimp,z).

Building zp,z (mm) nimp,z (mm)

Value Range Average Value Value Range Average Value 1

B1 5–16 11.2 2–10 7.0 (7)
B2 6–11 9.1 5–9 6.5 (7)
B3 10–18 14.5 7–9 7.8 (8)
B4 8–15 11.4 4–10 6.7 (7)

1 The brackets include nimp,z after rounding to integer values.

In [34], a correlation curve was proposed for the evaluation of the mortar compressive strength
based on the penetration depth of the penetrometer steel needle in the masonry bed joint. This correlation
curve is presented in Figure 8. Mortar strength (f m1) can be determined considering the needle
penetration depth after 10 impacts (∆dp (10)). The greater the depth of penetration of the penetrometer
steel needle after 10 impacts, the lower the mortar strength. Mortar strength, determined based on the
conducted penetrometer tests and the mentioned correlation curve, is presented in Table 5.
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Table 5. The mortar compressive strength (f m1) determined based on the penetrometer test results
according to the correlation curve from [34].

Building
f m1 (MPa)

Value Range Average Value

B1 1.0–1.9 1.5
B2 2.5–3.7 2.9
B3 1.2–2.3 1.7
B4 0.9–2.8 1.9

Mortar compressive strength (f m1) was determined considering the measurement results registered
outside the surface disturbance zones of bed joints. The compressive strength of historical mortars
obtained using penetrometer tests were between 1.5 and 2.9 MPa.

The thickness of specimens in the DPT tests performed for four types of mortars was varied. The
specimens cut out from the bed joints of building B1 were the thickest (average thickness 20.7 mm);
whereas, the samples cut out from the joints of building B2 were the thinnest (average thickness 15.1 mm).
The thickness of mortar specimens extracted from tested historical masonry were significantly higher
than the thickness of mortar specimens cut out from contemporary masonry performed according to
EN 1996-1-1 [37]. EN 1996-1-1 [37] recommends a thickness of bed joints in masonry from 6 to 15 mm.
Based on this reasoning, the thickness of mortar specimens cut out from contemporary masonry ranged
from a few millimetres at a minimum, to a maximum of 15 mm.

The influence of the specimen thickness on the DPT test results and other related significant
aspects were analysed in the studies [21,24,26,27,38]. As the specimens’ thickness increases, the impact
of confinement caused by friction between the surface of the steel punch and the mortar specimens
decreases. This affects the reduction in the ultimate compressive force of the specimen. The effect of
reducing the ultimate compressive force, and thus the value fDPT, with the increase in specimen height,
is presented in Figure 9.
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The fDPT values refer to the compressive strength (fm) of the mortars obtained on standard mortar
specimens with height and width values equalling 40 mm. The procedure for determining mortar
compressive strength on standard specimens with a height and width of 40 mm is given in EN
1015-11 [14]. The results presented in Figure 9 consider the tests conducted on lime mortars and
lime-cement mortars presented in [21,38]. The total sample thickness (t2), that is, the mortar sample
thickness and the thickness of gypsum caps (see Figure 5), is considered. The conducted analysis
provides a regression function in the following form:

(fDPT/fm) = 1.24(t2/Øs)−0.69 (1)

Based on the DPT test results, taking into account the sample height (t2), mortar compressive
strength (f m2) may be calculated from the following relation:

fm2 = fDPT/ (1.24(t2/Øs)−0.69) (2)

Table 6 presents mortar compressive strength values (f m2) determined from Equation (2).

Table 6. Mortar compressive strength values (f m2) determined based on the DPT test with consideration
of Equation (2).

Building t2/Øs (–) f m2 (MPa)

B1 1.29 1.9
B2 0.95 2.8
B3 1.16 1.4
B4 1.03 1.7

It should be noted, however, that the coefficient of determination (R2) for the proposed function is
low. Further research is needed for different mortar types to confirm the proposed relationships.

Figure 10 compares the mortar compressive strength values based on penetrometer tests (f m1) and
DPT tests (f m2).

The differences ranged from 4% to 27% (on average 14%). The mortar in the manufacturing hall
building (B2) had the highest compressive strength. This was also confirmed in PT and DPT tests.
In the remaining buildings, the mortars had compressive strength which ranged from 1.4 to 1.9 MPa.
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4. Summary

This article presented the strength test results of the mortars used in the erection of four historical
brick buildings. The mortars were tested in situ with the use of a penetrometer and in the laboratory
by means of the DPT procedure. The laboratory tests were conducted on the specimens collected from
the masonry bed joints.

Tests showed that the historical mortars are characterised by specific properties, such as low
strength, significant inhomogeneity and the presence of aggregate grains of large sizes considerably
exceeding the current requirements. The characteristic properties of bed joints in the brick walls were
their significant thickness and the presence of degraded material zones in the areas near the wall
surface. The thickness of bed joints in tested masonry far exceeded the recommendations of current
standards. Due to the above factors, modification of the applied testing methods and the methods of
analysing their results was proposed in this paper.

In regard to the penetrometer tests, the notion of a surface disturbance zone was introduced, and
the manner of its range determination was provided.

The DPT test results were analysed, considering the influence of specimen thickness (see
Equation (2)). The introduced modifications allowed for more precise determination of the compressive
strength of mortar in the historical brick walls.

The compressive strength of the tested historical mortars was minor. Based on the penetrometer
tests, the mortar strength values ranged from 1.5 to 2.9 MPa, and the DPT tests ranged from 1.4 to
2.8 MPa.

The penetrometer method is simple and fast in application. Nevertheless, currently, there are
not a sufficient number of penetrometer tests carried out on historical buildings in order to verify this
method for different types of mortars.

The DPT method requires cutting out samples from wall bed joints and conducting laboratory
tests, which is more complicated. Cutting out a significant quantity of samples is sometimes impossible
for conservation reasons.

For the reasons given above, the authors of this paper suggest the compilation of both testing
methods in order to establish the mortar compressive strength in the bed joints of historical buildings.
The penetrometer tests allow limiting the sampling of structures. The results of the DPT should be
used for the verification of the mortar strength specified in the penetrometer tests.
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8. Łątka, D.; Matysek, P. The estimation of compressive stress level in brick masonry using the flat-jack method.
Procedia Eng. 2017, 93, 266–272. [CrossRef]

9. Lumantarna, R.; Biggs, D.T.; Ingham, J.M. Uniaxial compressive strength and stiffness of field extracted and
laboratory constructed masonry prisms. J. Mater. Civ. Eng. 2014, 25, 567–575. [CrossRef]

10. Matysek, P.; Witkowski, M. Compressive tests of historical brick masonry–case study of the Archduke Rudolf
Casern buildings. Int. J. Archit. Herit. 2019, in press. [CrossRef]

11. Matysek, P.; Witkowski, M. A comparative study on the compressive strength of bricks from different
historical periods. Int. J. Archit. Herit. 2016, 10, 396–405. [CrossRef]

12. Fódi, A. Effects influencing the compressive strength of a solid, fired clay brick. Period. Polytech. 2011, 55,
117–128. [CrossRef]

13. Beben, D.; Ukleja, J.; Maleska, T.; Anigacz, W. Study on the restoration of a masonry arch viaduct: Numerical
and lab tests. Materials 2020, 13, 1846. [CrossRef]

14. EN 1015-11 Methods of Test for Mortar for Masonry–Part 11: Determination of Flexural and Compressive Strength of
Hardened Mortar, European Committee for Standardization; CEN: Brussels, Belgium, 2007.

15. Benedetti, A.; Pelà, L. Experimental characterization of mortar by testing on small specimens. In Proceedings
of the 15th International Brick Block Masonry Conference, Florianópolis, Brazil, 3–6 June 2012; pp. 1–10.

16. Henzel, J.; Karl, S. Determination of strength of mortar in the joints of masonry by compression tests on
small specimens. Darmstadt Concr. 1987, 2, 123–136.

17. Gucci, N.; Barsotti, R. A non-destructive technique for the determination of mortar load capacity in situ.
Mater. Struct. 1995, 28, 276–283. [CrossRef]

18. Pelà, L.; Roca, P.; Aprile, A. Comparison of MDT techniques for mechanical characterization of historical
masonry. In Proceedings of the 10th International Conference on Structural Analysis of Historical
Constructions, Leuven, Belgium, 13–15 September 2016; pp. 769–775.

19. Marastoni, D.; Pelà, L.; Benedetti, A.; Roca, P. Combining Brazilian Tests on masonry cores and Double
Punch Tests for the mechanical characterization of historical mortars. Constr. Build. Mater. 2016, 112, 112–127.
[CrossRef]
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