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Abstract: Sapphire substrates with different crystal orientations are widely used in optoelectronic
applications. In this work, focused ion beam (FIB) milling of single-crystal sapphire with A-, C-,
and M-orientations was performed. The material removal rate (MRR) and surface roughness (Sa)
of sapphire with the three crystal orientations after FIB etching were derived. The experimental
results show that: The MRR of A-plane sapphire is slightly higher than that of C-plane and M-plane
sapphires; the Sa of A-plane sapphire after FIB treatment is the smallest among the three different
crystal orientations. These results imply that A-plane sapphire allows easier material removal during
FIB milling compared with C-plane and M-plane sapphires. Moreover, the surface quality of A-plane
sapphire after FIB milling is better than that of C-plane and M-plane sapphires. The theoretical
calculation results show that the removal energy of aluminum ions and oxygen ions per square
nanometer on the outermost surface of A-plane sapphire is the smallest. This also implies that
material is more easily removed from the surface of A-plane sapphire than the surface of C-plane and
M-plane sapphires by FIB milling. In addition, it is also found that higher MRR leads to lower Sa and
better surface quality of sapphire for FIB etching.

Keywords: sapphire; focused ion beam; crystal orientation; etching; material removal rate;
surface roughness

1. Introduction

Sapphire (α-Al2O3) is a transparent, hard and brittle material that withstands high temperature,
high pressure, and chemical corrosion [1,2]. It is well established that sapphire is an anisotropic
material, and the three most commonly used crystal orientations are A (1120), C (0001), and M (1100).
The arrangement of atoms on A-, C-, and M-oriented sapphire is different, which results in anisotropic
optical properties [3,4], mechanical characteristics [5,6], thermal and chemical properties. Therefore,
sapphire with the three different crystal orientations can be applied in different fields. For example,
A-plane sapphire has been widely used in optical windows, microelectronics and high-temperature
superconductors [7]. C-plane sapphire is often used as substrates of gallium nitride (GaN)-based
light emitting diodes [8]. M-plane sapphire can be used to conduct the epitaxial growth of semipolar
or nonpolar GaN films [9]. Previous studies have revealed that the material removal rate (MRR)
and surface quality of single-crystal sapphire depend on the crystal orientation [10–14]. Therefore,
the processing of anisotropy sapphire needs to consider the influence of crystal orientation on processing
efficiency and quality. High precision micro/nano-structures on transparent substrates are highly
desired for a wide range of applications for electrofluidic devices and optical devices fabrication [15].

Materials 2020, 13, 2871; doi:10.3390/ma13122871 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma13122871
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/12/2871?type=check_update&version=2


Materials 2020, 13, 2871 2 of 8

The micro/nano-structures on sapphire substrate have many functions. For example, nanopatterned
sapphire substrate plays an important role in enhancing the light output of GaN-based light emitting
diodes [16]. Micro/nano-structures on sapphire can also be used to create a superhydrophobic surface
for water repellence and self-cleaning applications [17]. There are several ways to manufacture
micro/nano-structures on sapphire, such as machining, chemical etching, laser processing, and ion
beam etching. However, micro/nano-structures on sapphire fabricated by machining has several
defects, such as cracks, delamination, and surface damage [18]. Preparation of micro/nano-structures
on sapphire by chemical corrosion has low efficiency, is environment unfriendly and harmful to users.
Furthermore, the shape of micro/nano-structures on sapphire is also difficult to control precisely
due to the anisotropic corrosion of the sapphire material. Laser processing can efficiently produce
micro/nano-structures on sapphire. Nevertheless, laser-processed sapphire inevitably suffers from
thermal damage, thermal cracking, and debris [13]. Focused ion beam (FIB) milling has proved to be a
simple and efficient method for the fabrication of micro/nano-structures in the research field [19,20].
Since FIB etching removes material one atom at a time, the micro/nano-structures created by FIB milling
have no surface damage, debris, or cracks. The major disadvantage of the FIB technique is throughput
due to its extremely low etching rate. As a result, FIB milling is not suitable for industry. However,
FIB technology still has many unique advantages, such as high resolution and flexibility, maskless
processing, and rapid prototyping. Thus, FIB technology has become one of the key approaches in
precision micro/nano-fabrication for various applications, including nano-optics, surface engineering,
MEMS, bio-sensing, and nanotechnology [21,22].

In this study, rectangular pits were etched on A-, C-, and M-plane sapphires using a commercial
FIB machine. The geometrical dimensions, as well as the etched volumes of the rectangular pits,
were determined. Further, the MRRs of sapphire with A-, C-, and M-orientations were derived.
To better understand the differences in MRR among the A-, C-, and M-orientations, the energy required
to remove aluminum ions (Al3+) and oxygen ions (O2−) from the lattice sites at the outermost surface
of sapphires with different orientations was theoretically calculated. In addition, the surface roughness
of the bottom of the pits on sapphire substrates was characterized. The surface quality of sapphire
with different crystal orientations after FIB etching was also analyzed.

2. Materials and Methods

Single-crystal sapphire specimens with A-, C-, and M-orientations were purchased from Helios
New Materials Co., Ltd. (Jiangyin, China). The geometrical dimensions of these sapphire specimens
were 10 mm in length, 10 mm in width and 0.43 mm in thickness. The surfaces of these sapphire
specimens were polished, and their surface roughness (Sa) was about 0.4 nm. The A-plane (1120),
C-plane (0001), and M-plane (1100) sapphires were oriented according to their axes, see Figure 1a–c.

A Seiko SMI3050 dual FIB system (SEIKO, Chiba, Japan) was used to etch rectangular pits on the
polished surface of the A-, C-, and M-plane sapphires (Figure 1a–c). To compare the etched volumes
of the rectangular pits on the A-, C-, and M-plane sapphires, the milling parameters for the sapphire
specimens with three different crystal orientations were set to be identical. The FIB milling parameters
were as follows: The ion beam accelerating voltage was 30 kV; the ion beam current was 800 pA;
the pixel dwell time was 100 µs; the number of passes was 952; the total dosage of the ions was
18.78 nC/cm2; the etching area of each rectangular pit was set to 15 µm × 5 µm; and the processing time
was set to 21 min for an area of 75 µm2. The arrows inside the pits in Figure 1a–c represent the milling
direction of FIB. The morphologies of the rectangular pits on the A-, C-, and M-plane sapphires were
characterized using field emission scanning electron microscopy (Supra 55, ZEISS, Jena, Germany).
The etched geometrical dimensions and volumes, together with the surface roughness of the bottom of
etched pits on A-, C-, and M-plane sapphires, were characterized using a three-dimensional (3D) optical
surface profilometer (Newview 5032, ZYGO, Middlefield, CT, USA). The removal rate of the etched
sapphire was determined by the removal volume per minute. The surface quality of the FIB-processed
sapphire was evaluated for surface roughness.
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Figure 1. Schematic of rectangular pits on A-plane (a), C-plane (b), and M-plane (c) sapphires fabricated
by focused ion beam (FIB) milling.

3. Results and Discussion

3.1. Morphology and Dimension of the FIB-Etched Pits

SEM images of the rectangular pits on the A-, C-, and M-planes of the sapphire, with the samples
tilted by 0◦, are shown in Figure 2a–c, respectively. SEM images in Figure 2d–f were taken with the
sapphire samples tilted by 30◦. As can be seen, the FIB-etched pits have smooth and vertical sidewalls,
and the bottom of the FIB-etched pit is also very smooth. Figure 3a,b depicts the cross-sectional depth
profiles of the pits along the horizontal dashed lines in Figure 2a–c and the vertical dashed lines in
Figure 2d–f. A 3D optical surface profilometer was used to measure the geometrical dimensions of
the etched pits. The etched depth of the pit was about 1285.9 nm for A-plane, 1302.9 nm for C-plane,
and 1291.6 nm for M-plane. The etched length of the pit was about 15.1 µm for A-pane, 14.7 µm for
C-plane, and 14.8 µm for M-plane. The etched width of the pit was about 5.0 µm for A-plane, 4.5 µm
for C-plane, and 4.7 µm for M-plane.
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direction (b), respectively.

3.2. Material Removal Rates of A-, C-, and M-Plane Sapphires by FIB Milling

The material removal rate (MRR) is defined as the etched volume per minute. Hence, the MRR
can be calculated by MRR = etched volume/processing time. Here the FIB processing time is 21 min.
The etched volumes of the pits on the C- and M-planes of sapphire were also measured with a 3D
optical surface profilometer and the results are depicted in Figure 4a. As can be seen in Figure 4a,
the etched volume of the pit is around 97.17 µm3 for A-plane sapphire, 82.60 µm3 for C-plane sapphire,
and 88.49 µm3 for M-plane sapphire, respectively. This indicates that the etched volume of the pit
for the A-plane sapphire is larger than that for the C-plane and M-plane sapphires, while the etched
volume of the pit for the C-plane sapphire is the smallest. According to the etched volumes of
the pits on sapphire with different crystal orientations (Figure 4a), the MRRs of sapphire substrates
including A-, C-, and M-planes can be derived, and the results are presented in Figure 4b. It can
be seen that the average MRR is ~4.63 µm3/min for A-plane sapphire, ~4.21 µm3/min for M-plane
sapphire, and ~3.93 µm3/min for C-plane sapphire. This indicates that the MRR of A-plane sapphire is
slightly higher than that of C-plane and M-plane sapphires for FIB milling. The orientation-dependent
MRR may be caused by the different bond energies of the bonds Al–O, Al–Al, and O–O for A-, C-,
and M-plane sapphires. The differences in MRRs for different crystal planes of sapphire substrates are
not so obvious in our experiment. We suspect that the small differences in MRRs are related to the
removal depth of the FIB etching. As the etched depth decreases, the differences in MRRs for different
crystal planes of the sapphire substrates gradually increase. In the future, we will study the influence
of removal depth on the MRRs of single-crystal sapphires with different orientations. We will focus on
the MRR of sapphire when the etching depth is on the nanometer scale.
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Figure 4. Etched volumes (a) and material removal rate (b) of the pits on A-, C-, and M-planes
of sapphire.

To reveal the crystal orientation effects on the MRR of sapphire, it is worthwhile to review
the crystal structure of sapphire. Figure 5a shows the crystal structure of a hexagonal unit cell of
α-Al2O3 [23]. A primitive cell of the sapphire crystal has lattice parameters a = b = 4.758 Å and
c = 12.991 Å. According to Table II in Reference [24], the total potential energy of Al3+ and O2− ions at
the lattice sites for a perfect crystal of α-Al2O3 is −90.4 and −41.1 eV, respectively. Since the zero of
potential energy in this table is for an ion removed to infinity, the energy required to remove an Al3+

ion from a lattice site on the sapphire surface is 45.2 eV, while the energy to remove an O2− ion from a
lattice site on the sapphire surface is 20.55 eV (see Reference [24]). Figure 5b–d shows the expanded
two-dimensional (2D) arrangement of Al3+ and O2− ions at the lattice sites on the surface of A-, C-,
and M-plane sapphires. As can be seen in Figure 5b, for A-plane sapphire, the length and width of
the selected region are 2.472 and 2.599 nm, respectively, so the area of the selected region on A-plane
sapphire surface is 6.42 nm2. The total numbers of Al3+ and O2− ions within the selected region are
35 and 14, respectively. Thus, the total potential energy required to remove these ions in the selected
region from the A-plane sapphire surface is 35 × 45.2 + 14 × 20.55 = 1869.70 eV. Thus, the energy
required to remove Al3+ and O2− ions per nm2 from A-plane sapphire surface is 291.23 eV/nm2. The
energy required to remove Al3+ and O2− ions per nm2 was calculated as 908.63 and 471.65 eV/nm2 for
C- and M-planes of sapphire, respectively. Table 1 summarizes the removal energy of Al3+ and O2−

ions from square nanometers of the outermost surface of sapphires with different crystal planes. As
can be seen in Table 1, the removal energy of Al3+ and O2− ions per nm2 of the surface of A-, C-, and
M-plane sapphires increases in the following order: EA < EM < EC. The larger the removal energy,
the harder it is to remove material. This result also confirms that material is more easily removed
from the surface of A-plane sapphire compared with the surface of C-plane and M-plane sapphires
using FIB milling. However, it should be noted that our approach is based on a simplified 2D model.
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Only the Al3+ and O2− ions on the outermost surface of sapphire are considered for the calculation of
the removal energy per nm2.
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Figure 5. Crystal structure of sapphire (a) and expanded 2D arrangement of Al3+ and O2− ions on the
surface of A-plane (b), C-plane (c), and M-plane (d) sapphires.

Table 1. Removal energy of Al3+ and O2− ions per nm2 on the sapphire surface.

Orientation Number of
Al3+ Ions

Number of
O2− Ions

Area (nm2)
Total Potential

Energy (eV)

Removal Energy Per nm2

for Surface Ions
(eV/nm2)

A 35 14 6.42 1869.70 291.23
C 66 37 4.12 3743.55 908.63
M 42 21 4.94 2329.95 471.65

3.3. Surface Roughness of the Pits on A-, C-, and M-Plane Sapphires

It can be seen intuitively in Figure 2a–f that the etched rectangular pits have outstanding surface
quality. The Sa values of the bottom of the pits on A-, C-, and M-plane sapphires are shown in Figure 6.
It was found that the surface roughness of the bottom of the pit was ~2.29 nm for C-plane sapphire,
~2.15 nm for M-plane sapphire, and ~1.01 nm for A-plane sapphire. This result illustrates that the
surface quality of A-plane sapphire after FIB etching was better that that of C-plane and M-plane
sapphires. The fact that A-plane sapphire has higher MRR and smaller Sa values compared with
C-plane and M-plane sapphires for FIB milling is consistent with a previous report [14]. It was found
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from References [12,14] that when the material removal rate of sapphire is higher, the surface roughness
is smaller. This phenomenon was also observed in our work.Materials 2020, 13, 2871 7 of 8 
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etched pit for A-oriented sapphire is 1.01 nm, which is smaller than that for C-oriented and M-
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