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Abstract: Knowledge of texture and residual stresses in tungsten heavy pseudoalloys is substantial 

for the microstructure optimization. These characteristics were determined in cold and warm 

rotary swaged W/NiCo composite with help of neutron diffraction. The results were discussed in 

view of the observed microstructure and mechanical properties. The investigated bars consisted of 

tungsten agglomerates (bcc lattice) surrounded by NiCo-based matrix (fcc lattice). No preferential 

crystallographic orientation was found in the as-sintered bar. A strong texture was formed in both 

the tungsten agglomerates (<101> fiber texture parallel to the swaging axis) and in the NiCo-based 

matrix (<111> fiber texture) after rotary swaging. Although usually of double-fiber texture, the 

<001> fiber of the fcc structures was nearly missing in the matrix. Further, the cold-swaged bar 

exhibited substantially stronger texture for both phases which corresponds to the higher measured 

ultimate tensile strength. The residual stress differences were employed for characterization of the 

stress state of the bars. The largest residual stress difference (≈400 MPa) was found at the center of 

the bar deformed at room temperature. The hoop stresses were non-symmetrical with respect to 

the swaging axis, which was likely caused by the elliptical cross section of the as-sintered bar. 
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1. Introduction 

Tungsten heavy alloys (THAs), typically used in challenging applications such as aircraft 

counter-balances, gyroscope rotors, radiation shields, and kinetic penetrators in the military 

industry, exhibit excellent mechanical and physical properties [1]. Given their microstructure, 

typically containing approximately spherical tungsten agglomerates (usually 90–97 wt%) 

embedded in a ductile matrix consisting of other elements (e.g., Co, Ni, Fe, and Cu), THAs are also 

termed as composites or pseudoalloys [2,3]. Due to the substantial difference between the melting 

temperatures of tungsten and matrix-forming elements, THAs can hardly be cast and thus the 

typical fabrication technology of THAs combines methods of powder metallurgy (fabrication of 

powders—preferably by mechanical alloying, subsequent sintering, and possible final quenching), 

and processing via plastic deformation under hot or cold conditions [4]. Since the final performance 

and properties of the product can significantly be influenced by the selected processing steps, it is 

advantageous to optimize the used technology with help of characterization of the structural and 

microstructural phenomena (such as possible presence of residual stress and texture) and their 
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effects on the final properties for each THA chemical composition and intended final product 

application [5,6]. 

A fundamental parameter having the most substantial influence on the structure 

characteristics and mechanical properties is the grain size. This parameter can be affected during 

the final production steps involving processing via plastic deformation. Effective grain refinement 

can be advantageously introduced by applying techniques imposing intensive shear strain, such as 

the methods of severe plastic deformation (SPD). Several research works showed that imposing 

intensive shear strain into THAs during their production enhances their utility properties and 

ballistic performance [7,8]. Probably the most widespread SPD method is the equal channel angular 

pressing (ECAP) and its modifications (TCAP [9], TCMAP [10], NECAP [11], etc.), which have been 

proven to refine effectively the grain size to the ultra-fine-grained (UFG) scale for various materials 

ranging from aluminium [12], through magnesium [13], copper [14], steel [15], and also tungsten 

[16,17]. However, ECAP is a discontinuous process, as the majority of SPD methods including the 

most effective methods of high-pressure torsion (HPT) [18] are, and is only suitable for processing 

samples of finite dimensions. This disadvantage limits a prospective industrial scale-up of 

conventional SPD methods for THAs production. Primarily for this reason, the currently used 

methods of THAs fabrication are mostly based on conventional processing technologies, such as hot 

extrusion [19,20], cold rolling [21], and combinations of thermomechanical processing and ageing 

[22], although studies documenting positive effects of SPD methods on improvement of THAs 

performance were reported [23–25]. 

Nevertheless, industrially applicable methods of imposing intensive shear strain into the 

processed materials exist as well. Rotary swaging (RS) is, amongst the intensive plastic deformation 

methods, advantageously used in the industry, primarily in the automotive, to manufacture solid, 

hollow and/or shaped axisymmetric products via gradually reducing cross-sections and increasing 

lengths of the processed workpieces [26]. The technology incrementally imposes substantial shear 

strain into the processed material and thus provides significant plastic deformation resulting in the 

elimination of residual porosity in the microstructure refinement and in the enhancement of 

mechanical and utility properties [27]. RS is not only suitable for processing of conventionally cast 

alloys but can also be favorably used to process composites, pseudoalloys, and sintered materials 

[28]. 

During the plastic deformation, the slip process induces crystal lattice rotation. In 

polycrystalline metals, this re-orientation of grains develops the deformation texture [29]. In many 

materials, properties are texture specific. Plastic deformation also induces residual stress into the 

deformed component. Both texture and residual stress are important microstructural features 

which influence the final mechanical properties for THAs. Material properties such as strength, 

stress corrosion cracking resistance, deformation behavior or resistance to radiation damage can be 

highly dependent on the texture and related changes in the microstructure. It is, therefore, 

important to know both the texture and residual stress. The process of a component fabrication can 

be then optimized. 

One of the techniques beneficially used in studying structure and microstructure of metallic 

materials is neutron diffraction [30]. One of the main advantages of this method lies in the possibility 

to acquire data from the bulk of the sample, not only from its near-surface regions. This is crucial 

especially for THAs mainly consisting of tungsten, which is highly absorbent for other radiation 

types (X-ray, electrons). Although tungsten is also relatively highly absorbent also for neutrons, 

neutron path length through the alloy up to 15 mm is still possible even from medium flux neutron 

sources. Utilization of neutrons enables the signal to be averaged over a relatively large volume and 

the effects of local variability, large grain size, and possible local artefacts are thus minimized. The 

large penetration capability of thermal neutrons in most metallic materials allows nondestructive 

measurements of both texture and elastic strains/stresses [31] within the bulk of large polycrystalline 

specimens. 

The primary aim of the presented study is to determine texture and differential residual stress 

in the investigated THA after sintering, as well as after processing via rotary swaging at various 
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temperatures. The study is mainly based on a characterization of the occurring microstructural 

phenomena via neutron diffraction. 

2. Materials and Methods 

The W, Ni and Co powders with the initial particle sizes ranging between 2 and 4 µm were at 

first homogeneously mixed for 24 h to create the 93W-6Ni-1Co mixture in wt.%. The initial powder 

mixture is depicted in the next section. The mixture was subsequently compressed via cold isostatic 

pressing at 400 MPa into bars, which were then sintered at 1500 °C under H2 protective atmosphere. 

After sintering, the bars with approximately 12 × 18 mm2 elliptical cross sections were quenched in 

water. Throughout the following text, the green as-sintered material is denoted as W_0. The sintered 

bars were subsequently processed via rotary swaging either at room temperature (sample W_A), or 

at 900 °C (sample W_B). The first swaging pass was essential to transform the elliptical bar 

cross-section to a circular diameter. The following swaging passes were then performed to achieve 

the final circular swaged bars with the diameter of 10 mm. 

The microstructures of the sintered and swaged bars were observed on polished transversal 

cross-sectional cuts acquired by electro-erosive cutting. Back-scattered electron (BSE) analysis in 

scanning electron microscopy (SEM) using Tescan Lyra 3 device (Tescan Brno s.r.o, Brno, Czech 

Republic) was used. 

For texture determination, the neutron diffraction patterns were collected using the MEREDIT 

diffractometer of CANAM infrastructure at NPI Řež near Prague [32]. A mosaic Cu monochromator 

(reflection 220) was used to provide neutrons with the wavelength of λ = 0.146 nm. The neutron 

beam cross section was 10 × 10 mm2. The multi-detector bank (35 × 3He point counters with 

corresponding 10′ Soller collimators) was positioned to four different angular positions in order to 

collect intensities of altogether four different reflections at different 2θ angles (θ being the scattering 

angle). The samples for the texture determination were fixed in the beam using a goniometer 

enabling their angular positioning. Intensities of the reflections were angularly scanned for both 

present phases within all the three sample bars in order to reveal their textures. The angular steps of 

the sample tilt and of the sample rotation was 5°. 

Bulk-average elastic strain/stress measurement using neutron diffraction is based on the 

determination of dhkl interplanar distance for the selected crystallographic plane. For strain 

determination, the experiment was performed using the SPN-100 neutron diffractometer installed at 

the LVR-15 research reactor in Řež [33]. This experimental facility is dedicated for mapping of 

residual strains in polycrystalline materials. SPN-100 instrument is equipped with curved Si 

monochromator and position-sensitive detector (PSD) for fast recording of diffraction patterns. 

Neutron wavelength of λ = 0.213 nm and the tungsten 110 reflection were selected for the 

measurements leading to the diffraction angle 2θ of approximately 60°. This is not an optimum 

geometrical diffraction arrangement (which would be at 2θ ≈ 90° with an irradiated gauge volume of 

a cubic or rectangular shape). Nevertheless, selection of 2θ = 90° would have resulted in studying the 

(200) crystallographic plane that is strongly affected by intergranular strains, i.e., large difference 

with macroscopic residual stresses. The incident beam was defined by 2 × 17 mm2 and 2 × 2 mm2 

cadmium slits for the hoop/radial and axial strains, respectively. The cadmium slit of 2 mm width 

was used for the diffracted beam for all the strains. The 2θ angle determined in the diffraction 

experiment was then averaged over the elongated gauge volume of ½ × (4 × 2.3 × 17) mm3 and ½ × (4 

× 2.3 × 2) mm3 for the hoop/radial and axial strains, respectively. To determine the 2θ angles in all 

three directions, different geometrical arrangements of the examined sample with respect to the 

scattering vector were performed [34]. The line measured during the experiment is shown in Figure 

1. Only the positions up to ±3 mm from the center were measured to ensure the gauge volume to be 

completely within the sample, avoiding spurious strains (remind, that the sample diameter was 10 

mm). 

The sintered bar was originally considered as the d0 sample. However, this stress-free reference 

was later dismissed for three main reasons: 
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‐ The tungsten heavy alloy is formed by two phases, W and NiCo, that provoke thermal 

mismatch between them, aggravating complete relaxation. 

‐ During cooling from the sintering temperature, macro-stresses are generated within the bulk of 

the sample, varying the interplanar distance. 

‐ During rotary swaging, mainly at high temperature, the phases within the sample can undergo 

inter-diffusion, hindering the comparison with the sintered sample. 

 

Figure 1. Sketch of the sample indicating the three orthogonal strain directions: axial (z-direction, 

denoted also as (1), radial (2) and hoop (3). 

When the d0 reference is not available, an alternative method described by Graces [35] can be 

used to calculate the stress differences in three orthogonal directions: 

𝜎1 − 𝜎3 = −
𝐸

(1 + 𝜈)
(𝜃1 − 𝜃3) 𝑐𝑜𝑡 𝜃𝑀 (1) 

𝜎2 − 𝜎3 = −
𝐸

(1 + 𝜈)
(𝜃2 − 𝜃3) 𝑐𝑜𝑡 𝜃𝑀 (2) 

𝜎1 − 𝜎2 = −
𝐸

(1 + 𝜈)
[(𝜃1 − 𝜃3) − (𝜃2 − 𝜃3)] 𝑐𝑜𝑡 𝜃𝑀 (3) 

where θ1, θ2 and θ3 are the measured θ angles in directions 1, 2 and 3, respectively, and θM 

corresponds to an arbitrary fixed value in the vicinity of the unknown value θ0. These expressions do 

not require any d0 of a stress-free reference. 

Mechanical properties of the investigated bars were tested by tensile tests. The testing was 

performed using a Zwick/Roel device (ZwickRoell Czech Republic, Brno, Czech Republic) with bars 

of 100 mm length at the strain rate of 1.3 × 10−3 s−1. The measured stress-strain curves of the 

as-sintered and swaged material states were published previously in [36]. 

3. Results 

3.1. Structure Characterization 

Figure 2a depicts an image of the original powder mixture, whereas structures of the W_0, 

W_A, and W_B sample bars are depicted in Figure 2b–d, respectively. As can be seen, the powder 

mixture consolidated sufficiently during sintering and the structure of the sintered and quenched 

W_0 sample consisted of approximately spherical tungsten agglomerates surrounded by the 

NiCo-based matrix (Figure 2b). Based on our previous study [36], the phases are the α-W phase with 

B2 structure (bcc), further referred to as the W-B2 phase, and the matrix with Ni-like structure (fcc). 

The matrix phase (denoted NiCo2W in what follows) is a solid solution of Co in Ni with a small 

addition of W which diffused into the NiCo-based matrix. 

It was found by neutron diffraction [36] that the original as-sintered sample consisted of 

fine-grained W-B2 phase surrounded by a coarse-grained NiCo2W matrix. Both cold and warm 

rotary swaging caused fragmentation of the NiCo2W and resulted in formation of fine-grained 

matrix microstructure. 

Swaging at room temperature (sample W_A) resulted in a decrease of the agglomerate size and 

in shortening of the inter-agglomerate distances (Figure 2c), as well as in deformation of the 

agglomerates to a non-spherical shape. Swaging at room temperature also resulted in the radial flow 



Materials 2020, 13, 2869 5 of 15 

 

tendency imparted by the radial swaging force component which is visible on the cross-sectional cut. 

Swaging at 900 °C (sample W_B) also imparted a decrease of the agglomerate size and shortening of 

the inter-agglomerate distances (Figure 2d), although not so pronounced as in the case of cold 

swaged sample. The radial plastic flow of the swaged material was also less visible. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure 2. Original powder mixture (a); structures of investigated sample bars: W_0 (b); W_A (c); 

W_B (d). 

3.2. Data for Texture Determination 

The texture measurement was carried out at the neutron diffractometer in all three sample bars 

for both present phases W-B2 and NiCo2W using reflections 110, 112, 111, 100. From the measured 

data, the pole figures were calculated using JTEX software [37]. The obtained pole figures are 

displayed in Figure 3. The individual pole figures in Figure 3 are plotted in the same scale for all 

three samples and both phases in order to compare absolutely the texture extent between samples 

and phases (i.e., not only a qualitative characterization of the preferential orientation). 

From the pole figures, it is clear the W-B2 phase within the original as-sintered W_0 sample 

exhibited no texture. The corresponding pole figure also confirms that there are very large grains of 

NiCo2W phase in the W_0 bar without any clear preferential orientation. 

As the spotty pattern of NiCo2W W_0 pole figure changes to smooth contours in pole figure 

diagrams of W_A and W_B bars, it is clear that the large grains of NiCo2W were obviously largely 

refined during the rotary swaging to form fine-grained microstructures within both the W_A and 

W_B samples. 
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 W-B2 Phase NiCo2W Phase 

W_0 

 
(a) 

 
(b) 

W_A 

 
(c) 

 
(d) 

W_B 

 
(e) 

 
(f) 

Figure 3. The measured pole figures for all samples (marked on the left, W_0 (a,b); W_A (c,d); W_B 

(e,f)) and both phases (marked on the top, B2 (a,c,e); NiCo2W (b,d,f)) and all measured reflections. 

The intensity scale is identical for all graphs. The swaging axis (z) was perpendicular to the figure 

plane. 

3.3. Stress Differences 

Stress differences are valuable to identify trends and enable a comparison between both swaged 

sample bars W_A and W_B. The determined stress differences (σi−σj) for both samples are shown in 

Figure 4. We remind that the index 1 stands for axial direction, the index 2 for radial and 3 for hoop 

directions. Then (σ1−σ2) difference means the difference between axial and radial stresses, (σ1−σ3) is 

then the difference between axial and hoop stresses, and finally (σ2−σ3) denotes the difference 

between radial and hoop stresses. 

As can be seen, the (σ1−σ2) difference was ≈200 MPa larger for the W_A than for the W_B sample 

at r = 0 (where r denotes the distance from the center of the cylindrical bar), and the distinction 
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decreased to ≈−100 MPa at the radius of −3 mm. The (σ1−σ3) difference was ≈50 MPa higher at r = 0, 

and by ≈100 MPa smaller at r = +3 mm for the W_A sample, when compared to the W_B one. The 

(σ2−σ3) profile exhibited the most significant difference at the right side of the sample bar, i.e., along 

the positive values of the measured radius, where the W_B sample exhibited ≈0 MPa, while the 

value was ≈−150 MPa for the W_A sample. 

The (σ1−σ2) profile can be considered roughly symmetric for both the W_A and the W_B sample 

bars. This symmetry was not observed for the other stress differences in both the W_A and W_B 

samples. Regardless of the particular analyzed stress difference and sample, the sample center 

exhibited either a maximum or a minimum value of the particular stress difference, even in spite of 

the asymmetry observed for the (σ1−σ3) and (σ2−σ3). It is also notable that (σ2−σ3), i.e., the radial-hoop 

stress difference, differs clearly from zero at the sample center for the W_A sample, although the 

sample is of cylindrical symmetry after the rotary swaging. 

 

Figure 4. Stress differences for swaged sample bars: W_A (a); W_B (b). 

3.4. Mechanical Properties 

The mechanical properties of the as-sintered bar as well as the swaged bars determined via 

tensile testing were already published in [36] (as-sintered sample and final passes of the rotary 

swaging), and in [4] (including initial passes of the rotary swaging). Here, the main results of the 

testing are summarized. The lowest ultimate tensile strength (UTS) of approximately 860 MPa was 

recorded for the W_0 sintered bar. On the other hand, this sample bar exhibited substantial plasticity 

of almost 20%. The high plasticity of the sintered material state is primarily provided by the matrix, 

since the sintering temperature is sufficiently high to result in a recrystallized structure for the NiCo 

phase. Swaging at both the room and elevated temperatures resulted in concurrent UTS increase and 

plasticity decrease, except for the W_B sample swaged via a single pass, the plasticity for which 

slightly increased when compared to the sintered state. The final swaging resulted in the increase in 

UTS up to more than 1800 MPa for the W_A swaged bar. The UTS for the W_B swaged bar was 

approximately 100 MPa lower than for the W_A. Nevertheless, the plasticity was higher for this 

sample bar. The significant increase in the UTS after the rotary swaging is primarily caused by the 

deformation strengthening which introduced a significant accumulation of dislocations in the 

NiCo2W phase. The dislocation accumulation resulted in a large micro-strain increase [36] 

connected to the residual stresses of type III [38]. The overall strengthening in the cold-swaged bar is 

higher since the increased swaging temperature leads to dynamic relaxation processes within the 

matrix which enhance plasticity but also lowers the UTS. 

4. Discussion 

While the original as-sintered sample W_0 exhibited no texture, the pole figures displayed in 

Figure 3 show strong deformation texture for both W_A and W_B samples. On the other hand, there 
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is no visible special pattern in preferential grain orientation around the sample axis: The intensity 

exhibits always circular symmetry, which indicates a random radial orientation of crystallites and 

thus fiber texture. It means that the elliptical cross section of the original as-sintered sample bar is 

not reflected anyhow in the grain preferential orientation after rotary swaging. 

The inverse pole figures were calculated from the measured pole figures. The most important 

pole figures are those measured along the sample-bar axis (z direction, denoted also by index 1 in 

this paper) which was the symmetry axis of the plastic deformation, i.e., the swaging axis. The 

results for z direction can be seen in Figure 5. 

 B2 Phase (bcc) NiCo2W Phase (fcc) 

W_0 

a  b  

W_A 

c  d  

W_B 

e  f  

 
 

Figure 5. The inverse pole figures for all the samples (marked on the left: W_0 (a,b); W_A (c,d); W_B 

(e,f)) and both phases W-B2, NiCo2W (marked on the top: B2 (a,c,e); NiCo2W (b,d,f)) for the 

direction along the sample-bar axis (z or direction 1). The intensity scale is identical for all graphs. 

The inverse pole figures confirm that the grains within both the W-B2 and NiCo2W phases in 

the as-sintered W_0 sample bar did not exhibit any prevailing preferential orientation. An indication 

of small preferential orientation (fiber <101>) in NiCo2W phase (see Figure 5) is inconclusive as the 
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extremely large grain, estimated to 0.2–1 mm size [36], was detected in NiCo2W phase. Therefore, 

the inverse pole figure is deduced from only a very small number of grains, as can be seen from the 

spotty pole figure of W_0 bar in Figure 3. 

On the other hand, a strong deformation texture was formed in both phases after rotary 

swaging. The textures in both samples W_A and W_B are qualitatively the same: W-B2 phase of 

tungsten (bcc structure) is textured with crystallographic orientation <101> preferentially along the 

sample bar axis after the rotary swaging while NiCo2W phase (fcc structure) is textured with the 

crystallographic orientation <111> preferentially along the sample bar axis (i.e., swaging direction). 

Development of <101> fiber texture after severe deformation in W-B2 phase of THAs was reported 

previously. For example, Ekbom et al. [39] observed <101> texture in a heavy alloy (90W, 7Ni, 3Fe) 

prepared by sintering and deformed either in a tensile testing machine or by extrusion. Gong et al. 

[20] determined <101> texture in tungsten phase of fine-grained 93W–4.9Ni–2.1Fe–0.03Y (wt.%) alloy 

after hot extrusion. Nevertheless, neither [39] nor [20] reported a crystallographic texture of the 

matrix phase in the THA composite structure, which obviously can be significantly different, and 

neither compared the texture of samples processed at different temperatures under otherwise the 

same conditions. 

For bcc metals, <101> fiber texture is generally predicted after uniaxial tension or wire drawing 

[40]. Our observation for W-B2 phase corresponds well to this typical pattern. In the sense of 

preferential orientation of W-B2 agglomerates, rotary swaging is thus similar to uniaxial tension 

deformation. 

Nevertheless, for fcc metals (as is our NiCo2W phase) the typical fcc tension texture is a mixed 

<001> and <111> fiber texture [40,41]. Although the proportion between these two fibers depends on 

the stacking fault error, <001> fiber should still be forming around 35% of the volume fraction for 

nickel [42]. Our observation deviates from this typical behavior as the <001> fiber texture is largely 

suppressed (see Figure 5) and <111> fiber texture fully dominates the preferential orientation of the 

matrix. Suppression of the <001> component is most probably due to the interaction of NiCo2W 

phase with the second component of the investigated metallic composite, i.e., with the W-B2 phase. 

Another explanation could lie in the rotary swaging technique itself, which would mean that this 

technique is capable to form a non-standard texture in fcc metals. It is, nevertheless, sure that the 

temperature plays no role in this pattern, as the <001> fiber was suppressed with respect to the <111> 

fiber in both samples swaged at RT and at the elevated temperature. 

Although the textures in both samples W_A and W_B are qualitatively the same, there is a 

significant difference between the sample W_A and the sample W_B: the W_A sample (deformed at 

room temperature) exhibits much stronger texture than W_B (deformed at 900 °C) for both present 

phases (W-B2 as well as NiCo2W). It can be seen in the inverse-pole-diagram figure (Figure 5, see the 

color scale) as well as in the Table 1 showing the relative maximum intensities in the pole figures. 

This difference is highly probably caused by the different deformation temperatures for the two 

samples. As the weaker texture formed during the deformation at 900 °C, it indicates that also other 

than primary deformation mechanism for the bcc phase (W-B2) as well as for the fcc phase 

(NiCo2W) were, to a certain extent, activated. (Reminder: the primary deformation mechanism for 

plastic deformation in fcc crystals is the crystallographic slip on the {111} crystallographic planes 

along the <110> crystallographic directions, while it is the slip on the {110} crystallographic planes 

along the <111> directions for bcc crystals.) The secondary deformation mechanisms were most 

probably enabled by a substantially larger diffusion of atoms at high temperature. These additional 

deformation mechanisms lower the amount of crystallite rotation caused by the movement of 

dislocations on primary slip planes. 
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Table 1. Relative maximum intensities in the pole figures. 

Sample Bar Processing W-B2 Phase NiCo2W Phase 

W_0 as sintered 1.19 --- 

W_A swaged at RT 2.62 2.52 

W_B swaged at 900 °C 2.09 2.02 

The differences in the determined residual stresses between both the W_A and W_B samples 

can be also ascribed to the different deformation temperatures. Before discussing the details of the 

individual stress differences, the von Mises equivalent stress formula is employed for comparison of 

the overall level of the residual stresses in both investigated bars. 

Von Mises equivalent stress σVM determines a limit, above which yielding starts, and is thus also 

termed the maximum distortion criterion. Under multi-axial loading conditions, it is used to predict 

yielding of materials. A larger value of von Mises equivalent stress implies that the material is closer 

to the yield point. The σVM stress is determined by the expression (in case when the stresses are 

calculated in the orthogonal directions) 

√
(𝜎1 − 𝜎2)

2 + (𝜎1 − 𝜎3)
2 + (𝜎2 − 𝜎3)

2

2
 (4) 

When the same formula is used with the measured residual-stress differences, the obtained 

resulting stress level constitutes a simple single parameter providing information about the overall 

residual stress level in the particular location in the bar, and can be also used for determining a 

region where the plastic deformation, and consequently the texture, was the largest. It also enables 

an overall comparison of the residual stress levels in W_A and W_B samples. 

By applying this approach to our measured residual stress differences for W_A and W_B 

samples, the profiles which are shown in Figure 6 are obtained. The maximum stresses of ≈400 MPa 

and of ≈250 MPa are observed at the center of the bar for the W_A and W_B samples, respectively, 

while minima are reached at r = ± 2 mm. Obviously, the point closest to yielding is in the center of 

each bar. This is qualitatively the same for the sample deformed at RT and for the sample deformed 

at 900 °C. It is interesting as the applied deformation force was at the surface. Nevertheless, we must 

take into account that the range in which the residual stresses were measured did not span the full 

cross section of the bar. There was no measurement near the surface region where—in 

principle—the residual stresses could be still higher. More detailed considerations about the residual 

stresses are to be carried out in order to estimate the residual stresses near the surface and to 

calculate the stress value according to the von Mises-like formula in that locations. 

Nevertheless, if we assume only the measured region, the stress level is larger (up to 150 MPa 

larger) at the center of the bar (between r = −1 mm and r = 1 mm) for the W_A when compared to the 

W_B sample, while they are only ≈50 MPa larger closer to the outer surface. Since the larger residual 

stress level indicates that there were larger stresses during the deformation process at that particular 

region, it is possible to infer that a larger plasticization occurred in the sample center. Then, 

consequently, a stronger texture was built in the sample center. This cannot be deduced from the 

texture measurement itself (described in the previous section) as the texture measurement was 

carried out with the gauge volume containing the whole cross section of the bar and local variations 

cannot be thus distinguished. In this way, it is possible to correlate the observed texture differences 

between both W_A and W_B samples and the residual stresses developed during the rotary swaging 

process: W_A sample exhibiting stronger texture also exhibits higher residual stress level, mainly in 

the core of the bar. 
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Figure 6. The stress calculated using von Mises formula (4) from the measured differences of the 

stresses for W_A and W_B samples. 

It can be deduced from the shape of the overall stress level (Figure 6) that the qualitative 

character of the residual stresses distribution is the same for both samples, i.e., the cold as well as hot 

swaged, but the overall level is lower for W_B deformed at HT. The lower level must be connected 

with the deformation at high temperature (HT). At HT, yield stress is lower than at RT. Residual 

stresses created during swaging at HT cannot be higher than yield stress at that temperature (they 

would cause yielding otherwise). Therefore, the residual stresses formed at HT (i.e., before cooling) 

are lower than the residual stresses formed during deformation at RT in the cold swaged sample bar. 

Additionally, restoration phenomena (which are likely to be activated at higher temperatures, 

dependent on diffusion of atoms) take place at HT, which further lower the residual stresses formed 

during swaging at high temperature. Such restoration processes are hindered during the 

deformation at room temperature. 

The cooling obviously did not change the overall picture of the residual stresses, as the 

character of residual stresses is the same for W_B sample after cooling from high temperature and 

for W_A sample (for which no cooling took place). A typical cooling stress profile is smooth and 

parabolic [43], as well as the (σ1−σ2) difference [44]. If cooling induced stresses played an important 

role, the (σ1−σ2) difference would be positive close to the outer surface. However, it is observed to be 

≈−200 MPa at r = ± 3 mm (Figure 4b) in this study. The cooling could hypothetically play a role in the 

asymmetry of the overall stress level in the W_B sample in case the cooling of the bar proceeded 

axially non-symmetrically. It can be seen in Figure 6 that the stress is nearly symmetric for W_A 

sample (RT swaging) while the minima are slightly asymmetric for W_B bar (900 °C swaging 

followed by cooling to RT). However, stresses developed during cooling are expected to be roughly 

symmetric in all directions in a circular cross-section bar. Further, a detailed investigation of the 

individual differential stresses (σ1−σ3) and (σ2−σ3) rather points at another cause of the asymmetry. 

The profile asymmetries depicted in Figure 4, noticeably the largest for the hoop stresses, were 

highly likely the consequence of the elliptical cross section of the original sintered bar. The initial 

non-circular sintered sample cross-section can finally contribute to a non-symmetric internal stress 

distribution during the deformation process, provoking the asymmetry in the stress differences 

profiles containing the σ3 stress, which is manifested mainly by the (σ2−σ3) difference. It should also 

be noted that—as a result of the experimental setup for residual stresses measurement—the 

elongated gauge volume is smoothing the real stress differences. As a consequence, the presented 
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stress differences are a bottom limit of the real differences. Due to these reasons, the determined 

(σ2−σ3) stress difference is not equal to zero at the center of the W_A sample bar. 

The differences in the stresses between the W_A and W_B samples (see Figure 4) were the 

largest for the (σ1−σ2) differential stress. The observed (σ1−σ2) difference is always positive at the 

center of the sample bar and negative at the radius r = ± 3 for both the studied W_A and W_B 

samples, suggesting that the axial stresses are always larger at the center of the bar and smaller close 

to the outer surface when compared to the radial stresses. Assuming the radial stress (σ2) must be 

close to zero at r = ± 5 mm to comply with the boundary condition, it is straightforward to assume 

that axial stresses (σ1) are compressive close to the outer surface (see Figure 4). A further condition is 

that the axial stresses integrated over the cross section are self-equilibrated-which requires that 

tensile axial stresses develop at the center. At the same time, the (σ1−σ2) difference changes sharply, 

more noticeably for the W_A sample. Therefore, it is reasonable to deduce that the radial stress is 

negative at the center of the sample (approaching to zero when close to the outer surface) in order to 

produce this observed sharp (σ1−σ2) profile variation as a function of r. 

Another interesting point is if the measurement would have been performed in the same 

cross-section but in another diametrical line. This study would require the measurement of absolute 

stresses, i.e., the presence of a reliable stress-free reference. Nevertheless, since the stress differences 

involving the hoop component always exhibit large asymmetries, the hoop-stress magnitude is 

expected to be dependent on the measured line while the axial and radial components are supposed 

to be less affected. 

The more extensive stress analysis with employed complex equilibrium condition is to be 

published in a separate article. 

An obvious correlation between the texture strength and UTS can be observed: the higher UTS 

corresponds to the more pronounced texture in W_A sample with respect to W_B one. The larger 

texture strength of NiCo2W phase with <111> fiber type in the sample swaged at RT means that 

more matrix crystallites are oriented in this way than in the sample swaged at 900 °C. As the yield 

strength in fcc crystals is highest just for the <111> crystallographic direction [45], larger yield stress 

as well as UTS can be expected at the sample swaged at RT. Nevertheless, another cause for higher 

yield stress and UTS can be the observed larger dislocation density [36] after rotary swaging, which 

was observed in the sample swaged at RT. 

5. Conclusions 

The study was focused on the investigation of the effects of cold and warm rotary swaging 

regimes on the microstructure characteristics of a WNiCo tungsten heavy pseudoalloy. 

The analysis confirmed that the as-sintered sample consisted of fine-grained W-B2 tungsten 

agglomerates and coarse-grained NiCo2W matrix. This finding can be attributed to the high 

sintering temperature promoting significant grain growth within the NiCo2W matrix. No 

preferential crystallographic orientation can be deduced in the as-sintered structure, neither in W-B2 

agglomerates, nor in NiCo2W matrix. 

During rotary swaging, the large grains of NiCo2W fractioned to form a fine-grained 

microstructure. A strong texture was formed in both NiCo2W and W-B2 phases after rotary 

swaging. The texture type is different for these two phases, which was expected as the W-B2 phase is 

bcc while the NiCo2W phase is fcc. The W-B2 phase formed fiber texture with the <101> parallel to 

the swaging axis, while <111> fiber was parallel to the swaging axis for NiCo2W phase. For W-B2 

phase, it is the typical behavior of uniaxially deformed bcc metal. However, NiCo2W phase texture 

is non-typical, as <001> fiber of the usually double-fiber texture is largely suppressed. 

Although the textures in both rotary swaged samples (20 °C and 900 °C) are qualitatively the 

same, the cold-swaged bar exhibited substantially stronger texture for both phases. Obviously, the 

different deformation temperatures played a role here. This observation corresponds to the higher 

measured ultimate tensile strength of more than 1800 MPa for the cold-swaged bar: both the tensile 

strength and the texture intensity indicate substantial deformation strengthening and hindered 

restoration during room temperature swaging. 
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The largest residual stress differences were found for the sample deformed at room 

temperature. The maximum (σ1−σ2), i.e., axial-radial difference, of ≈400 MPa was found at the center 

of the sample and the minimum of ≈−300 MPa at the radius of −3 mm. The hoop stress distribution 

was found to be non-symmetrical along the swaging axis for both the swaged bars. 

The residual stress profile determined using von Mises-type formula exhibited larger values at 

the center of the sample bars and minima at r = ± 2 mm. The profile is symmetric for W_A bar 

(despite the observed asymmetries in the individual stress differences, mainly for the (σ2−σ3) 

difference), while its minima are non-symmetric for W_B sample. Detailed evaluation of the 

asymmetries leads to the conclusion that it was likely caused by the elliptical cross-section of the 

as-sintered bar. 

Comparison of the differential stresses and the textures indicates that the texture difference 

between samples swaged at RT and at 900 °C develops mainly in the inner core of the deformed 

bars. 
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