
  

Materials 2020, 13, 2858; doi:10.3390/ma13122858 www.mdpi.com/journal/materials 

Article 

A Hybrid Model for Predicting Bone Healing Around 

Dental Implants 

Pei-Ching Kung, Shih-Shun Chien and Nien-Ti Tsou * 

Department of Materials Science and Engineering, National Chiao Tung University, Ta Hsueh Road,  

Hsinchu 300, Taiwan; gong1014.mse06g@nctu.edu.tw (P.-C.K.); play_58032.05g@g2.nctu.edu.tw (S.-S.C.); 

* Correspondence:  tsounienti@nctu.edu.tw; Tel.: +886-3-571-2121-55-308 

Received: 24 May 2020; Accepted: 23 June 2020; Published: 25 June 2020 

Abstract: Background: The effect of the short-term bone healing process is typically neglected in 

numerical models of bone remodeling for dental implants. In this study, a hybrid two-step 

algorithm was proposed to enable a more accurate prediction for the performance of dental implants. 

Methods: A mechano-regulation algorithm was firstly used to simulate the tissue differentiation 

around a dental implant during the short-term bone healing. Then, the result was used as the initial 

state of the bone remodeling model to simulate the long-term healing of the bones. The algorithm 

was implemented by a 3D finite element model. Results: The current hybrid model reproduced 

several features which were discovered in the experiments, such as stress shielding effect, high 

strength bone connective tissue bands, and marginal bone loss. A reasonable location of bone 

resorptions and the stability of the dental implant is predicted, compared with those predicted by 

the conventional bone remodeling model. Conclusions: The hybrid model developed here predicted 

bone healing processes around dental implants more accurately. It can be used to study bone 

healing before implantation surgery and assist in the customization of dental implants. 

Keywords: dental implant; tissue differentiation; bone remodeling; mechano-regulation theory; 

short-term healing; long-term healing 

 

1. Introduction 

Implant stability is one of the important indexes to determine dental implant survival rates in 

the clinic [1]. It is dominated by the bone healing around the surgery site. Bone healing is a series of 

complex physiological processes that involved the regulation of several tissue phenotypes. At the 

beginning of bone healing, micro-vessels, and new connective tissue form on the surface of the 

wound, which is collectively referred to as granulation tissue [2–5]. After the formation of granulation 

tissue, further tissue differentiation initiates. Cells then transfer into fibrous connective tissues, 

cartilages, and new bones according to biophysical stimulus [6–8]. The final stage of bone healing is 

referred to as bone remodeling, which is a lifelong process, where the skeletal system maintains a 

dynamic equilibrium, related to the regulation of osteoclasts and osteoblasts [9–11]. When the balance 

is disrupted by external forces, a new equilibrium state can be achieved spontaneously. Thus, 

according to the healing process mentioned above, tissue differentiation and bone remodeling stages 

have a great impact on the short-term and long-term stability of implants, respectively [12,13]. 

To efficiently predict the short-term stability of implants in advance, we aim to simulate the 

tissue differentiation process by using the mechano-regulation algorithm. The origin of the method 

is based on Pauwels [14] who first specified that distortional stress and hydrostatic compression 

dominate tissue differentiation. Carter et al. [15] implemented the theory into a finite element model 

(FEM), revealing the evolution of connective tissues. Prendergast et al. [16] modified the methods by 

adopting octahedral shear strain and fluid flow as the solid and fluid stimuli. Lacroix further 
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improved the model by using poroelastic finite elements, which can describe the biological 

mechanism in bones more accurately [5]. In recent years, many studies have revealed the effect of the 

mechanical environment and the geometric design of implants on the performance of tissue 

differentiation [17,18]. 

Bone adapts itself based on its mechanical environment and loading conditions, greatly affecting 

the morphology of bone and long-term stability of implants [11,13,19]. Many scientists have 

developed numerical methods to describe the behavior of bone remodeling [20–24]. Carter et al. 

[15,25,26] proposed that bone apparent density is dominated by strain energy density and studied 

the energy transfer in hip stems. The internal changes in bone morphology and the aging of 

connective tissues affected by the external loads were also predicted by FEM. Huiskes et al. [27] 

adopted a similar approach and simulated the femoral cortex around intramedullary prostheses to 

reveal the relationship between stress shielding effect and bone resorption. The bone remodeling 

algorithm was then extended to predict the variation of bone apparent density after implantation 

treatment [28–31]. The algorithm was verified by computed tomographic (CT) images, showing a 

high degree of similarity [32]. Most of the studies assumed a simple initial state of the models, where 

uniform material properties were assigned around the implants [29,31,33,34], i.e., the short-term bone 

healing has no effect on bone remodeling results. However, short-term healing is crucial since bone 

remodeling is an iterative process, where different initial conditions may lead to different bone 

density distribution around dental implants. 

In order to test the null hypothesis of the bone healing process in the conventional model, we 

proposed a hybrid algorithm that regards the procedure of bone healing as two stages: (1) the short-

term stage which was simulated by a tissue differentiation model and (2) the long-term stage which 

simulated by a bone remodeling model. At the beginning of the tissue differentiation model, it was 

assumed that the wound was filled with granulation tissue. The mechano-regulation algorithm was 

then applied to determine the tissue phenotypes for the following time steps. Once a stable tissue 

differentiation has been reached, the current tissue distribution with the material properties, such as 

Young’s modulus, apparent bone density, and Poisson’s ratio, in callus around the implant then 

served as the initial condition for the bone remodeling model. Then, the resulting long-term 

distribution of Young’s modulus and the remodeling stimulus will be discussed. and compared with 

the results which were similar to those done by Chou et al.[29], where the effect of short-term tissue 

differentiation was not considered. 

The objective of this study is to develop a hybrid model that can predict the stability of dental 

implants and the strength of the surrounding bones with consideration of both the short-term and 

long-term bone healing process. The results of the current work can reveal the effect of bone with 

different material properties on bone healing, providing useful information for dental clinics. 

Furthermore, the proposed model can be used to rapidly examine the morphology design of dental 

implants (such as implant radius, length, thread geometry) and the placement protocol (such as 

insertion angle and depth) to improve the osseointegration between implants and bones. 

2. Materials and Methods 

Figure 1 shows the flowchart of the current hybrid algorithm, including short-term and long-

term bone healing models. The distribution of strain, fluid velocity, and stem cell diffusion in the 

initial model (t = 0) was firstly calculated by FEM. Granulation tissues then differentiated into various 

tissue phenotypes based on the mechano-regulation algorithm. Next, the rule of mixture and 

smoothing procedure [35] was applied to determine the updated material properties and the detail 

will be discussed in Section 2.2. After the short-term healing process finished, the distribution of 

tissue phenotypes and the corresponding material properties around the implants was obtained and 

assigned to the bone remodeling model at the initial state for simulating the long-term healing 

process. Where bone remodeling algorithm adjusted the bone apparent density of each element 

iteratively until the equilibrium state of the remodeling stimulus under the given loading condition 

was achieved. The procedures will be discussed in more detail in Sections 2.2 and 2.3. 
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Figure 1. Flow chart of bone healing preoperative evaluation. 

2.1. Three-Dimensional FEM Model 

The current hybrid algorithm was applied to study the bone healing of the mandibular second 

molar (back teeth in the upper jaw), where the bone geometry, density, and other material properties 

were adopted based on Chou et al. [29]. The geometry of the bone structure was obtained by 

extruding a planar CT image with a thickness of 80 mm, as shown in Figure 2a. It was referred to as 

the bone-tooth system, consisting of a layer of cortical bone overlying on cancellous bone, and a 

natural tooth. The physiological stimulus of the healthy state, i.e., bone-tooth system, was served as 

the objective function (i.e., attractor stimulus) for the calculation of bone remodeling in the bone-

implant-prosthesis system, details of the calculation will be introduced in the next section. Next, the 

bone-implant-prosthesis system replaced the tooth in the bone-tooth system by a prosthesis and a 

short implant with a size of 5.0 × 5.1 mm; the remaining region, i.e., the extraction socket, was filled 

with callus, as shown in Figure 2b. 

The models of the two systems were built by a commercial finite element package ANSYS 18.0 

(ANSYS, Inc., Canonsburg, PA, USA). The implant, tooth, and prosthesis were meshed by the built-

in element type, SOLID185; the remaining parts of the tissues were meshed by CPT215, which allows 

the calculation of poroelastic material properties, such as the fluid velocity and pressure in the pores 

of the bones. There were approximately 138,000 elements and 94,500 nodes for both systems. To 

maintain the balance between computation time and accuracy, finer meshes were applied around the 

interfaces between bone and the tooth/implant, as shown in Figure 2. The interfaces were set to allow 

sliding with a friction coefficient of 0.3. A symmetry boundary condition was applied to the mesial 

side of the model. All of the nodes in the distal side were constrained in all degrees of freedom. A 

displacement of 10.5 μm was applied at nodes on the top of the tooth/prosthesis. This value was 

equivalent to a biting force of 100 N [36–38]; the angle of the displacement was set according to it 

used in Chou et al. [29]. Note that loading, setting, and properties of all materials, including bones, 

prosthesis, tooth, implant, and bone graft, used in the current work were based on Chou et al. [29] 

for comparison, as shown in Table 1. It is worth mentioning that, in the tissue differentiation process, 

the material properties of elements in the callus region transformed with iterations, i.e., they evolved 

according to the corresponding tissue phenotypes during the iteration process. Details of the 

mechanism of the mechano-regulation algorithm will be explained in the next section. 
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Figure 2. FEM model of (a) bone-tooth and (b) bone-implant-prosthesis systems. 

Table 1. The material properties used in the current work [29]. 

Materials 
Young’s Modulus 

(GPa) 
Poisson’s Ratio 

Permeability 

(m4/Ns) 

Ti6Al4V 113.8 0.34 N/A 

Tooth  20 0.3 N/A 

Prosthesis 80 0.3 N/A 

Bone graft  2 0.3 N/A 

Cortical bone 13.7 0.3 10−17 

Cancellous bone 2 0.3 3.7 × 10−13 

Granulation tissue 0.001 0.17 10−14 

Fibrous tissue 0.002 0.17 10−14 

Cartilage 0.01 0.17 5 × 10−15 

Immature bone 1 0.3 10−13 

Mature bone 6 0.3 3.7 × 10−13 

2.2. Mechano-Regulation Algorithm 

The mechano-regulation algorithm proposed by Lacroix and Prendergast [5,35] was adopted in 

the current work to predict the distribution of tissue phenotypes. The procedures of the algorithm, 

including the calculation in each iteration, updates of material properties, and post-processing to the 

results, were implemented by MATLAB 2019 (The MathWorks, Inc., Natick, MA , USA). At the 

beginning of the calculation, elements in the callus region were set with the material properties of 

granulation tissues. According to the theory, tissue differentiation (TD) is induced by the combination 

of octahedral shear strain (γ)  and fluid flow (ν ) caused by external loads. It is referred to as 

biophysical stimulus S�� such that: 
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where � = 0.0375 and � = 3 μm/s are empirical constants. Then, the tissue phenotype for the next 

iteration can be determined based on the value of S�� as shown in Table 2. The material properties 

of the tissue phenotype were updated accordingly. 

Table 2. The ranges of biophysical stimulus for different tissue phenotypes. 

 ���  Tissue Phenotypes 

3< ���  Fibrous tissue 

1< ��� ≤3 Cartilage 

0.266< ��� ≤1 Immature bone 

0.010< ��� ≤0.266 Mature bone 

 ��� ≤0.010 Initial resorption 

The concentration of mesenchymal stem cells determined the level of the transition from 

granulation tissue to the other tissue phenotypes. The migration [39] and proliferate [40] of 

mesenchymal stem cell can be simplified as a classical isotropic diffusion, such that: 

��

��
= �∇�� (2) 

 

 

where � is time; � is the diffusion coefficient; � is the current concentration of mesenchymal stem 

cell. The migration of stem cells started from the boundary of the extraction socket, which is called 

cells origin and marked by yellow lines in Figure2b. At the last iteration, the concentration of the stem 

cell reached the maximal value. In the current work, � is set as 8.85 × 10��� m�/s. Then, the effective 

material properties of tissues for the next iteration, including Young’s modulus, Poisson’s ratio, and 

permeability, can be obtained by a linear combination between the granulation tissue (��) and the 

differentiated tissue (��) as follows: 

���� =
���� − �

����
�� +

�

����
�� (3) 

 

 

where ���� is the maximum concentration; n is the current concentration of stem cells determined 

by Equation (2); �� is material properties of the differentiated tissue phenotype shown in Table 1. 

To avoid the instability and dramatic change of material properties between iterations, Lacroix 

and Prendergast [35] suggested a smooth procedure to average the material properties from the 

previous nine iterations, which can be written as: 

�� =
1

�
����� + ���� + ���� + ⋯ + ���(���)� (4) 

 

 

where � = 10; � is the current iteration number; ���� is the effective material properties calculated 

from Equation (3). Note that when the iteration number is � < 9, smoothing operation is applied to 

the iteration � to the first [35]. The short-term healing time was set as 70 days, which is the average 

healing period for implantation surgeries [41–43]. The short-term healing process and the 

differentiated tissue phenotypes can then be predicted. 

2.3. Bone Remodeling Algorithm 

After the numerical calculation for the short-term healing, long-term healing, i.e., bone remodeling 

(BR), occurred to alter the internal structure of bones and reach a new equilibrium state based on the 

mechanical environment. Huskies et al. [27] proposed a bone remodeling theory assuming the 

driving force of self-adaptive activity is determined by remodeling stimulus (���, unit: J/kg), such 

that: 
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 (5) 

 

 

Where � is strain energy density (unit: J/m3); � is the apparent bone density (kg/m3), t is time; and 

�⃑ is the position vector [27]. When the value of remodeling stimulus ��� is greater than the given 

threshold, bone formation occurred and Young’s modulus and bone density increase accordingly. 

On the contrary, when the remodeling stimulus ���  is less than the threshold, bone resorption 

occurred, and Young’s modulus and bone density decrease. In addition, Carter [25] stated that bones 

maintain a state of homeostasis when the remodeling stimulus is in a certain range, which is referred 

to as a “lazy zone.” Thus, the bone remodeling process can be expressed by nonlinear functions of 

the remodeling stimulus [27]: 

where ��  and ��  are formation and resorption coefficients; � is the threshold of the lazy zone, 

which is set as 0.75 [44]; �(�⃑) is the attractor stimulus induced by the biting force in the bone-tooth 

system, which is determined by Equation (5). The value of �(�⃑) in the region of callus was set to 

5, which is the average of the overall remodeling stimulus in bone element. It is worth noting that 

the rate of bone resorption is greater than that of bone formation based on clinical observations, 

resulting in a greater exponential term of resorption in Equation (6). The apparent density of a bone 

element m at the jth iteration can be derived by integrating Equation (6) with a forward Euler method 

[27,45–47], such that: 

where ∆t is the time increment [21,48]. Young’s modulus (�, unit: GPa) of bone elements was 

associated with the corresponding apparent density based on the finding of Carter and Hayes [26], 

such that: 

� = ��� (8) 

where � is constant. Note that the integration coefficients ��∆t and ��∆t in Equation (7) were set 

as 1 × 10−11 and the constant was set as 3.79, based on the setting used in Chou et al. [29]. The 

value of Young’s modulus indicated the strength of the internal structure of bone, which affected the 

calculation at the next iteration. The average remodeling stimulus (����)  in each iteration was 

recorded and served as a measure of convergence of the model, such that: 

���� =
1

������
� ��

������

���

 (9) 

where ������  is the total number of bone elements; ��  is remodeling stimulus of the local bone 

element k. It is worth noting that long-term bone healing, i.e., bone remodeling, is a lifelong process 

and the bone system evolves to reach an equilibrium state according to its current mechanical 

environment. Thus, the time step used here is, in fact, a computational increment and is not associated 

with a real-life time scale. The end of the calculation depends on the convergence of ����  as 

mentioned above. 
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3. Results 

3.1. Short-Term Healing and Tissue Differentiation 

Tissue differentiation and the evolution of bone ingrowth around the implant were evaluated 

by the mechano-regulation model. Figure 3 shows the percentage of tissue phenotypes in each day 

during the short-term healing process. In the early stage of tissue differentiation, granulation tissues 

still existed in the callus region. This is because tissue differentiation was initiated when the 

concentration of stem cells above certain levels. At this stage, the inner callus region has relatively 

low concentration as the stem cells diffused from the boundary of the callus region. Moreover, it was 

found that the soft tissue with a higher biophysical stimulus (��� > 1) such as cartilage and fibrous 

tissue decrease with time while the bone tissue increased continuously until the middle of the 

differentiation process (i.e., around the 35th day). After the 35th day, bones possessed a certain degree 

of strength, i.e., higher Young’s modulus. This resulted in the decreasing values of bone stimuli, and 

thus, maturate and immature bones gradually became the dominant tissue phenotype in the entire 

callus region. Then, most of the immature bones transformed into maturate bones as the healing 

process was closed to the 70th day. 

 

Figure 3. Percentage of various tissue phenotype in each day during the short-term bone healing 

process. 

Details of the tissue phenotype at the specific days are shown in Figure 4. On the 4th day, more 

than half of the callus region remained as granulation tissue, as shown in Figure 4. It is observed that 

cartilages and fibrous tissues occurred around the threads in the middle part and the bottom of the 

implant, respectively. It is because the applied load caused the stress concentration around the 

threads and the bottom, giving higher biophysical stimulus to the elements in that region. Note that, 

although there were mature and immature bones, the effective material properties, such as Young’s 

modulus, were still close to that of granulation tissue based on Equation (3), due to the low 

concentration of stem cell on the 4th day. Then, it can be observed that, on the 10th day, granulation 

tissues gradually transformed into mature and immature bones as the concentration of stem cells 

increased with time. It is worth noting that cartilages accumulated at tips of the threads since stress 

concentration was partially released with the increasing maturity of the surrounding bones. On the 

30th day, granulation tissues were disappeared entirely. Cartilages were mainly located at the lingual 

side because of the oblique biting force. Then, maturate and immature bones gradually dominated 

the entire system around the implant on the 50th to 70th days. It is worth noting that there were very 

few elements of bone resorption on the 10th day and were not shown in the current cross-section in 

Figure 4. In this way, the short-term healing pattern around the implant was obtained. 
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Figure 4. The tissue differentiation history predicted by the mechano-regulation algorithm. 

3.2. Bone Remodeling 

Now consider two bone remodeling models. The first, i.e., the current model, adopted the result 

at the end of short-term healing predicted by the mechano-regulation algorithm as the initial state; 

the second was the conventional model based on bone remodeling algorithm with the assumption 

that the extraction socket was filled with bone graft and regarded as the initial state where the 

material properties were set as uniform. The setting of the second model followed the work done by 

the literature [29]. Both models shared the same distribution of the objective attractor stimulus �(�⃑) 

based on the natural tooth, as shown in Figures 5a and 6a. Then, the bone remodeling models altered 

the bone apparent density of all the bone elements in the following iterations to achieve that objective 

distribution. 

In the current model, the distribution of Young’s modulus of the initial state is shown in Figure 

5d. It can be observed that certain regions in the callus in Figure 5d were in dark and light blue colors 

giving low and high Young’s modulus, ranging from 0.001 to 6 GPa based on Table 1, due to the non-

uniform stem cell concentration and the presence of different tissue phenotypes. It is worth noting 

that the average value of Young’s modulus in that region was around 2 GPa, having a good 

agreement with the value used in the conventional model where uniform Young’s modulus was 

assumed, as shown in Figure 6d. The corresponding bone apparent density of each element in the 

callus region can then be obtained by Equation (8). The resulting model with the updated bone 

apparent density was then subjected to the biting force, giving the distribution of the remodeling 

stimulus (���) for the 1st iteration, as shown in Figure 5b. The values are shown in Figure 5a,b were 

substituted into Equation (7) to obtain the updated bone apparent density for the next iteration. The 

corresponding distribution of Young’s modulus in the 1st iteration was shown in Figure 5e. It can be 

observed that bone regions with high Young’s modulus (above 12.18 GPa, colored in red) fully 

covered around the implant; most of the bones attached to the surface of the implant were also with 

non-uniform Young’s modulus (ranging from 3.04 to 6.08 GPa). The calculation continued until the 

100th iteration was achieved. It is worth noting that the average remodeling stimulus (����) of the 

current model quickly converged around the 10th iteration, showing great stability. The converged 

values ���� for both the current and conventional models were identical. The distribution of ��� of 

the 100th iteration is shown in Figure 5c. It can be observed that most of the regions had the value of 

��� closed to those of the target, i.e., the objective attractor stimulus �(�⃑). The final state of bone 

remodeling gave the distribution of Young’s modulus, shown in Figure 5f. 

The average Young’s modulus of the entire system predicted by the current model was around 

4.77 GPa. It is worth noting that bone resorptions (colored in gray) occurred around the threads 

toward the lingual side and around the neck of the implant. The total volume fraction of bone 

resorption was 0.042%. Similar to the 1st iteration, bone regions with high Young’s modulus were still 

fully covered around the implant. Two additional high strength bone tissue bands connected to 

cortical bones were formed in the bottom right (the lingual side) and top left (the buccal side) of the 

implant, which provided extra supports and enhanced the stability of the implant. 
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Figure 5. The results generated by the current model. (a) The target distribution of the attractor 

stimulus �(�⃑) based on the natural tooth. (b,c) are bone remodeling stimulus (���) at the 1st and 

100th iterations. (d–f) are the corresponding distribution of Young’s modulus during the bone 

remodeling process at the initial state, 1st, and 100th iteration. 

Next, Figure 6d shows the distribution of Young’s modulus of the initial state adopted in the 

conventional model. It can be observed that constant Young’s modulus of 2 GPa in the callus in Figure 

6d was assumed without considering the result of differentiating tissue phenotypes during the short-

term healing. Then, the distribution of the remodeling stimulus (��� ) for the 1st iteration can be 

determined as shown in Figure 6b. In the 1st iteration, the distribution of ��� was similar to that 

generated by the current model, apart from there was no high stimulus bands around the implant. 

However, such a small difference resulted in a very different distribution of Young’s modulus shown 

in Figure 6e compared with that in Figure 5e, wherein, the high strength bones partially covered 

around the implant; most of the bones attached to the surface of the implant remained a constant 

Young’s modulus of 2 GPa. Then, similar to the current model, the average remodeling stimulus 

(����) quickly converged. Finally, the 100th iteration was achieved, giving the distribution of ��� as 

shown in Figure 6c. The resulting Young’s modulus distribution is shown in Figure 6f. The volume 

fraction of bone resorption was at the value of 0.044%, which was very similar to the current model. 

A significant difference between the results of the two models was the location of bone resorption. It 

was found that bone resorption (colored in grey) occurred in the buccal side in the conventional 

model while it appeared on the lingual side in the current model. This will be discussed in more 

detail in the next section. Another obvious difference between the two models was the distribution 

of high Young’s modulus bands. The high Young’s modulus band was absent in the buccal side, and 

thus, no supporting connection between the surface of the implant and cortical bone. The average 

Young’s modulus at the 100th iteration was around 3.65 GPa which was relatively lower than that 

generated by the current model. 



Materials 2020, 13, 2858 10 of 15 

 

 

Figure 6. The results generated by the conventional model. (a) The target distribution of the attractor 

stimulus �(�⃑) based on the natural tooth. (b,c) are bone remodeling stimulus (���) at the 1st and 

100th iterations. (d–f) are the corresponding distribution of Young’s modulus during the bone 

remodeling process at the initial state, 1st, and 100th iteration. 

4. Discussion 

The results mentioned above show that the initial state of bone remodeling can greatly affect the 

distribution of Young’s modulus at the final state. In the current model, the initial state of bone 

remodeling was the result of the mechano-regulation model (short-term healing process), giving the 

top and bottom regions in the callus with lower Young’s modulus. This leads to a higher strain energy 

density and a low corresponding bone apparent density base on Equation (8). Then, these regions 

had higher remodeling stimulus based on Equation (5), promoting the formation of bones, i.e., 

Young’s modulus and apparent density increased. This non-uniform Young’s modulus at the initial 

state leads to a dramatic change of Young’s modulus in the entire callus region in the 1st iteration. On 

the contrary, in the conventional model, Young’s modulus was assumed uniform, resulting in the 

change of Young’s modulus around the implant only in the 1st iteration. 

In the 100th iteration, it can be observed that the stability of the implants was greatly influenced 

by the initial states. In the current model, there were two high strength bone tissue bands connected 

to cortical bones, while there was only one connected bone tissue band in the result generated in the 

conventional model. In addition, the average Young’s modulus in the current model was higher than 

it predicted by the current model. Thus, the stability of the implant was underestimated in the 

conventional model where uniform Young’s modulus in the callus region at the initial state was 

assumed. This indicated that short-term healing can greatly affect the results of bone remodeling and 

cannot be neglected. 

In the results of short-term healing generated by the mechano-regulation model, soft tissues 

occurred in the early stage and then replaced by bone tissues due to the decrease of biophysical 

stimulus in the later stage. This was in accordance with both the experimental [14] and computational 

[5] works in the literature. Where the literature reported that bone tissue forms after the formation of 
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soft tissues (i.e., fibrous tissue and cartilage), and then bone began to differentiate, giving the increase 

of fluid flow since woven bone is more permeable. Furthermore, three additional features can be 

found in the remodeling result in the 100th iteration predicted by both the current and conventional 

models, which were in accordance with the clinical observations. Firstly, both models predicted a 

region of bone resorption at the top surface in the lingual (right) side. This phenomenon was known 

as marginal bone loss [49,50], which was an important factor for implant stability. Secondly, both 

models generated a bone resorption region in the middle of the bone-implant interface. This is the 

so-called stress shielding effect [27,47], which was the result of the occurrence of high strength bone 

tissue (colored in red) at the region around the first thread. However, the locations of the bone 

resorption region predicted by the two models were different, where the region predicted by the 

current model was in the lingual (right) side and that predicted by the conventional model was in the 

buccal (left) side. According to the literature [51], bone resorption occurred on the right-hand side 

when the loading direction was similar to that in the current work, i.e., the load was applied from the 

top right to the bottom left. The current model successfully captured this feature, reproduce the bone 

resorption region at the right-hand side at the bone-implant interface, while the conventional model 

predicted the location of bone resorption at the opposite side. This shows that the current model can 

give a more accurate result of bone remodeling procedure in the bone-implant-prosthesis system. 

Third, the result in the 100th iteration predicted by the current model shows that around 70% of the 

surface of the implant was covered by bone tissues (i.e., the elements with Young’s modulus greater 

than that of immature bone, 2 GPa). This value was similar to that reported by Lian et al.[31], where 

they suggested around 60% contact between bone and implant when an equilibrium of bone 

remodeling is reached. Based on the features mentioned above, we conclude the rejection of the null 

hypothesis that short-term bone healing has no effect on bone remodeling results. 

Since the current hybrid model was implemented by the finite element method, which can 

perform virtual tests on a wide variety of people characteristics and dental materials by simply 

changing the geometry of the model, boundary conditions, and material properties of bones. Thus, 

the current model can potentially provide estimated information and may even provide optimized 

dental implants for dentist clinics. Next, to demonstrate the applicability of the current model and 

reveal the effect of individual differences of the patients, we adopted the case of middle-aged male 

adults with higher strength material property of bone, referred to as to higher bone strength case. 

Where Young’s modulus of cortical, cancellous, immature, and mature bone was 1.4 times [52] than 

it in Table 1, while the properties of the remaining tissues, such as fibrous tissue and cartilage, stayed 

unchanged. Then, the short- and long-term bone healing processes were evaluated by the current 

model. The corresponding results are shown in Figures 7 and 8, respectively. It was found that the 

trend of tissue differentiation in the short-term healing process was almost identical to it the standard 

case as shown in Figure 4. The only difference between the two cases was the averaged Young’s 

modulus in the high strength case was about two times higher than it was in the standard case, which 

can be seen in Figure 8a, where the material properties in the callus region were assigned according 

to the tissue differentiation result. In the 100th iteration, there were several significant differences 

between the two cases. Firstly, there was merely no bone resorption in the higher bone strength case. 

The volume fraction of bone resorption was at a value of 0.0068%. Secondly, the connective tissue 

bands in the higher bone strength case were thicker than in the standard case. The two features 

indicate that the bone system in the higher bone strength case can provide excellent supports and 

enhance the stability of the implant. This result also has good agreement with the clinical observation, 

where the dental implant failure rate for the middle-aged male adults was relatively low [53]. 

Although the current model considered both the short-term and long-term healing process and 

reproduced many features that were discovered in the experiments, the model can be further 

improved by considering the physiological mechanism listed as follows. For example, a more 

complex diffusion mechanism of stem cell migration in the short-term healing process, such as the 

growth of vessels which can be implemented by the random-walk model [54]; periodontal ligaments 

(PDL), which play a crucial role in bone remodeling, can be simulated by taken the anisotropic and 
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nonlinear elastic stress-strain behavior into account [55–57]. It is expected a more accurate prediction 

can be achieved if these factors were considered. 

 

Figure 7. The tissue differentiation history predicted by the mechano-regulation algorithm in higher 

bone strength case. 

 

Figure 8. The results generated by the current model in higher bone strength case. (a–c) are the 

corresponding distribution of Young’s modulus during the bone remodeling process at the initial 

state, 1st, and 100th iteration. 

5. Conclusions 

In this study, a hybrid numerical bone healing algorithm was developed to predict the 

morphology of bone around dental implants with the consideration of both short-term and long-term 

bone healing. The results showed that the effect of short-term bone healing should not be ignored, 

and the assumption of uniform material properties for the initial state in the bone remodeling model 

is inappropriate. The current hybrid model can reveal many bone healing features having a very good 

agreement with the literature. It can be extended to simulate different implant geometries, applied 

loads, and bone properties of patients, enabling an early prediction of the performance of clinical 

treatments. 
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