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Abstract: High-performance pumping concrete has been widely used in high-rise building
construction because of its superior qualities. However, early cracking problems can occur in
cast-in-place pumping concrete, which is due to the excessive use of cement. In this paper, an
innovative concrete mixing procedure called “post-filling coarse aggregate concrete” (PFCC) was
adopted and applied to large slump concrete. The influence of the post-filling coarse aggregate (PFA)
ratio on the mechanical properties of large slump concrete were investigated. Three different concrete
strength grades (C30, C40 and C50) and five different PFA ratios (0%, 10%, 15%, 20%, 25%) were
considered. The designed slump for the reference concrete was 180–200 mm. Experimental tests
on the compressive strength of cubic specimens, axial compressive strength of prism specimens,
splitting tensile strength, modulus of rupture and modulus of elasticity were performed. All tests
were conducted in room conditions. Results showed that the slump of the PFCC decreases as
the PFA ratio increases. It also indicated that, in general, the mechanical properties of PFCC
are not linearly increasing as the PFA ratio rises, and there exists a turning point. Based on the
experimental investigation and analysis in this study, the optimum post-filling coarse aggregate ratio
is recommended to be 20%.

Keywords: coarse aggregate interlocking; post-filling coarse aggregate; mechanical properties;
post-filling coarse aggregate ratio

1. Introduction

Coarse aggregate interlocking concrete is a new type of concrete mixing process, designed to
replace a portion of cementitious materials with low cost coarse aggregate to maximize the ratio of
aggregate to binder (coarse aggregate to cement binder ratio). The conventional concrete with the same
water-cement ratio as coarse aggregate interlocking concrete is made usually as reference concrete
(RC). Compared with reference concrete, the coarse aggregate interlocking concrete increases the
amount of coarse aggregate and reduces the amount of cementitious materials. It not only improves
the concrete properties such as strength, modulus of elasticity, shrinkage reduction and durability, but
also exerts a positive impact on energy conservation and carbon dioxide emission reduction. Recycled
coarse aggregate concrete also presents its potential for economic and environmental sustainability
and has been studied by researchers extensively [1–5]. Researchers have studied the coarse aggregate
interlocking concrete [6–8], and it has been successfully applied to hydraulic dam engineering [6]
and pavement engineering [9] as well as ultra-high-performance concrete (UHPC) [10,11]. In recent
years, researchers have started to investigate the basic properties performance of coarse aggregate
interlocking concrete [12,13] including scattering-filling coarse aggregate concrete [14,15].
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Concrete is a multi-phase material composed of coarse aggregate, mortar and an interfacial
transition zone between the two. As the skeleton of concrete strength, coarse aggregate is usually the
strongest element in concrete with the best volume stability and durability [16,17]. Meddah et al. [18]
found that the coarse aggregate content has a great influence on the compressive strength of ordinary
concrete and high-strength concrete. It indicated that the compressive strength of ordinary concrete
increased with the increase of coarse aggregate content at certain range. However, it decreased after the
coarse aggregate reached a certain value. Meanwhile, Stock et al. [19] reported that when the volume
content of coarse aggregate is 20%, the compressive strength and tensile strength of concrete were both
lower than that of cement mortar. When the content reached 40%, the compressive strength and tensile
strength reached their lowest. It exhibited that the compressive strength and tensile strength began to
increase significantly until the value reaches 60%. The increase of coarse aggregate content not only
improved the concrete strength, but also improved the other properties of the concrete. Counto [20],
Hirsch [21], Tasdemir and Karihaloo [22] found that the modulus of elasticity, effective stress intensity
factor, fracture energy and splitting tensile strength of concrete increased with the increase of coarse
aggregate content. At the same time, it showed that the improved dosage of the coarse aggregate and
the lower content of the cementitious material reduced the shrinkage deformation of the concrete,
effectively solving the early cracking problem and improving the durability of the concrete. In addition,
coarse aggregate is the cheapest component in concrete other than water. Increasing the amount of
coarse aggregate could reduce the cost of concrete material.

Post-filling coarse aggregate concrete is one kind of coarse aggregate interlocking concrete. The
coarse aggregate at different gradations is evenly added to premade concrete before the pumping and
casting. The strength of the coarse aggregate itself is much higher than that of the mortar, and the
strength of the concrete can be enhanced within a certain volume content range of coarse aggregate.
Shen et al. [23,24] studied the so called “scatter-filling coarse aggregate concrete” experimentally
and found that the coarse aggregate interlocking can be achieved by scatter filling coarse aggregate
technology for either high strength concrete or self-consolidating concrete. It indicated that as the
volume replacement ratio of coarse aggregate increased from 0% to 30%, the strength and modulus
of elasticity of the concrete reached the maximum as the volume ratio of coarse aggregate reached
20%. Meanwhile, the chloride permeability coefficient and the dry shrinkage coefficient of concrete
decreased with the increase of the volume ratio of coarse aggregate. The study by Shen et al. [25]
also demonstrated that the coarse aggregate in the scatter filling coarse aggregate concrete can be
effectively interlocked, so that the aggregate can fully exert the strength skeleton function in the
concrete. In addition, SEM results [25] showed that the interfacial bonding between the scatter filling
coarse aggregate and the cement paste was tighter than bonding between the aggregate and cement
paste in ordinary concrete. It stated that due to the dry surface of coarse aggregate, the water can be
adsorbed into the aggregate pores and the water-cement ratio of the interface transition zone was
reduced, which caused the increase of density of the interface transition zone and enhancement of
concrete strength.

Shen et al. [26] investigated the concrete composition and economic indicators by comparing
different construction technology. It concluded that the concrete prepared by the scatter filling coarse
aggregate process presented the highest strength and it was significantly improved compared with the
concrete made by conventional process. It found that the water cement ratio and shrinkage of scatter
filling coarse aggregate were much lower than that of conventional concrete. It also concluded that,
by economic and environmental analysis, the scattering filling coarse aggregate concrete reduced the
production cost as well as the environment impact of producing concrete.

It is well known that the interfacial transition zone between the coarse aggregate and cement paste
is very critical and could determine the failure of concrete. Normally, the following measures were
adopted to improve the strength and mechanical performance in the interfacial transition zone (ITZ):
(1) decrease water/cement ratio; (2) use supplementary cementitious materials or high performance
admixture; (3) select the high quality aggregate to improve the ITZ performance; (4) improve the
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concrete fabrication process technology, i.e., mixing, placement and curing technology. Among all the
measures mentioned above, the investigation of the effect of the mixing procedures on the mechanical
performance of concrete is the objective in this study, by using post-filling coarse aggregate concrete.
The post-filling coarse aggregate concrete technology not only realizes the green high-performance
of concrete, but also significantly reduces the cost of concrete and reduces carbon-dioxide emissions,
which is one of the effective ways to achieve low-carbon emissions in the cement concrete industry.
Although Shen et al. [14,15,23–25] has studied the concrete properties obtained by the scattering-filling
coarse aggregate process, the high slump concrete made by post-filling coarse aggregate technology
has not been reported on.

The study of the basic mechanical properties of post-filling coarse aggregate is crucial to
understanding its structural behavior in order to facilitate its application in engineering. Hence,
the post-filling coarse aggregate concrete (PFCC) with different post-filling ratios and different concrete
strengths are studied in this paper. In this study, the mixture design and optimization for post-filling
coarse aggregate large slump concrete will be performed for different concrete strength grades. The
slump loss, compressive strength of cubic specimen and prism specimen, splitting tensile strength,
modulus of elasticity as well as modulus of rupture are studied. Through the experimental study, the
relationship between the post-filling coarse aggregate (PFA) ratio and the above properties of large
slump concrete are obtained, and the optimized PFA ratio is recommended. The percentage of the
volume of the coarse aggregate to the total volume of the concrete is defined as post-filling coarse
aggregate ratio. Five PFA ratios (0%, 10%, 15%, 20%, 25%) and three different concrete grades (C30,
C40 and C50) are studied as parameters in this study. The PFA ratio of 0% indicates the reference
concrete without post filled coarse aggregate. It aims to provide research data and design guidelines
for the application of post-filling coarse aggregate concrete in the building engineering as well as
civil infrastructure.

2. Experimental Program

2.1. Materials

P·II32.5R cement and P·II42.5R ordinary Portland cement were used. Fly ash was used to replace
part of the cement. The coarse aggregate for reference concrete was continuous graded gravel with
a particle size of 5–10 mm, as shown in Figure 1a. The coarse aggregate for post-filling was made
of 5–16 mm continuous grade limestone gravel with the apparent density of 2500 kg/m3, as shown
in Figure 1b. The sand was made of ordinary natural river medium sand. Polycarboxylate acid
superplasticizer ViscoCrete3301 was used with molecular weight of 5000–50000 provided by local
dealer of Sika Company (Dalian, China). The technical properties of superplasticizer are shown in
Table 1.
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Table 1. Properties of polycarboxylate superplasticizer.

Water Reduction Efficiency Matrix Appearance Specific Gravity pH Value

30% Modified polycarboxylate solution Light brown 1.06–1.2 6–8

2.2. Mixture Proportions

The design of the mixture proportions of concrete is to meet the workability and strength
requirements. Three different compressive strength (30 MPa, 40 MPa and 50 MPa for cubic specimens)
of concrete were designed in this study, which is denoted as C30, C40, and C50. The required slump of
concrete in this study is 180–200mm. The mixture proportions are shown in Table 2.

Table 2. Mixture proportions for three concrete grades.

Concrete
Strength

Grade

Cement + Fly
Ash +

Mineral
Powder

Sand Coarse
Aggregate Water Water

Reducer
Slump
(mm)

7d
Compressive

Strength
(MPa)

28d
Compressive

Strength
(MPa)

C30 352 + 88 + 0 716 1074 220 4.4
200 21 320.8:0.2:0 0.4 0.6 0.5 1%

C40 352 + 44 + 44 716 1074 202 5.72
190 28 410.8:0.1:0.1 0.4 0.6 0.46 1.3%

C50 388 + 97 + 0 705 1058 194 7.28
200 41 540.8:0.2:0 0.4 0.6 0.4 1.5%

Note: The percentage of water reducer is based on the cementitious materials (cement and fly ash). The concrete
mixture component unit is kg/m3.

2.3. Mixing Procedures for Post-Filling Coarse Aggregate Concrete

Before mixing the concrete, the inside of the mixer was prewetted. Then the pre-weighed materials
including coarse aggregate, fine aggregate, cementitious materials and water were poured into the
mixer in turn. The polycarboxylic acid superplasticizer was dissolved into the water and added into
the mixture. All mixture components were mixed in a self-falling mixer for 3 to 5 min. After that,
the coarse aggregate was filled into the concrete mixture and then was stirred for 10 to 15 s. Finally,
a slump test was performed for the fresh concrete and specimen’s mechanical properties. After the
specimens were cured for 48 h in the room environment (20 ± 2 ◦C temperature, 60 ± 5% relative
humidity), specimens were demolded and immediately moved to the standard curing room for 28 days
before testing. The steps of post-filling coarse aggregate are shown in Figure 2.
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2.4. Specimen Preparations

Specimens for the compressive strength of cubic specimen (fcu), splitting tensile strength (fts),
modulus of rupture (fr), modulus of elasticity (Ec), compressive strength of prism specimen (fc) were
prepared according to the Chinese standard GB/T50081-2002 [27]. Three concrete strength grades
(C30, C40 and C50) and five coarse aggregate post-filling ratios (0%, 10%, 15%, 20%, and 25%) were
considered in this study. The selection of post-filling ratios was based on the preliminary test. Three
specimens were prepared for each strength property. Table 3 shows the specimen sizes.

Table 3. Specimen sizes.

Mechanical Property Dimension

Compressive strength for cubic specimen ( fcu) 150 mm × 150 mm × 150 mm
Compressive strength for prism specimen ( fc) 150 mm × 150 mm × 300 mm

Modulus of elasticity (Ec) 150 mm × 150 mm × 300 mm
Splitting tensile strength ( fts) 150 mm × 150 mm × 150 mm

Modulus of rupture ( fr) 150 mm × 150 mm × 700 mm

3. Results and Discussion

3.1. Slump

It was observed that, during the slump test, when the post-filling ratio of coarse aggregate is equal
to less than 15%, the concrete mixture fell slowly and evenly under the action of gravity. However, when
the post-filling ratio is equal or higher than 20%, the workability of the post-filling coarse aggregate
concrete was reduced, and the fresh concrete showed a tendency to segregate, which eventually led to
collapse on one side of the concrete mixture. Figure 3 shows the typical results of the slump test.

The slump test results are shown in Table 4. As shown, the slump of the post-filling coarse aggregate
concrete (PFCC) decreases with the increase of the post-filling coarse aggregate ratio. It also exhibits that
when post-filling coarse aggregate (PFA) ratio is not more than 15%, the slump is larger than 140 mm
which meets the construction requirements (140 mm is set as target slump in this study). It is believed
that the pores and dry surfaces on the coarse aggregate will absorb the water in the concrete and it causes
the low slump of high post-filling coarse aggregate ratio.

Table 4. Slump test results.

Concrete Grade

Slump (mm)

Post-Filling
Ratio

0%

Post-Filling
Ratio
10%

Post-Filling
Ratio
15%

Post-Filling
Ratio
20%

Post-Filling
Ratio
25%

C30 200 150 145 120 110
C40 190 150 140 90 80
C50 220 170 150 115 90
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3.2. Compressive Strength of Cubic Specimens

3.2.1. Distribution of Coarse Aggregate

Figure 4 shows the distribution of aggregates in the vertical cross section of the concrete specimens
with post-filling aggregate ratios of 0%, 10%, 15%, 20% and 25%, respectively.

It can be seen from the Figure 4a that most of the coarse aggregate in the reference concrete is
suspended in the mortar, and the strength of the coarse aggregate cannot be fully exerted. From
Figure 4b–e, it shows that, simply based on the photo observations, the coarse aggregate content
increases and the cement paste content decreases in the cross section with the increase of the post-filling
aggregate ratio. It is speculated that, with the increase of the post-filling aggregate ratio, an increase of
the connections and interlocking between the coarse aggregate was formed in the cross section.
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3.2.2. Failure Mode

During the compression test of the cubic specimens, there was no significant difference shown
between the failure modes of the reference concrete and the post-filling aggregate concrete. In the initial
stage of loading, there was no crack on the surface of the test specimen. As the load was gradually
increased, the stress was continuously increased, and cracks in the parallel direction to the load started
to appear in the middle of the specimen on the side surface. As the load continued to increase, the
cracks gradually developed to the top and bottom of the specimen and new cracks were also generated.
In the end, the surface of concrete began to peel off and two cone-shaped failure modes were formed.
The failure mode of the cubic specimen is shown in Figure 5.Materials 2020, 13, x FOR PEER REVIEW 8 of 18 
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It was observed that the failure of the low-strength grade PFCC (C30 and C40) mainly occurred
at the interface between the coarse aggregate and the cement paste. It is primarily the bond failure
between the coarse aggregate and cement paste. While for the C50 grade PFCC, in contrast to the C30
and C40 grade PFCC, the brittle splitting failure of the coarse aggregate was observed.

3.2.3. Compressive Strength Results

The test results of the compressive strength of the cubic specimens are shown in Table 5. The
relationship between the compressive strength and post-filling aggregate ratio is shown in Figure 6.

Table 5. Compressive strength of cubic specimens.

Concrete Grade Post-Filling Aggregate Ratio Compressive Strength (MPa)
7d 28d

C30

0% 20.5 (1.3) 32.4 (1.4)
10% 25.1 (1.1) 36.5 (1.9)
15% 26.0 (1.2) 38.2 (2.4)
20% 26.9 (0.4) 39.1 (3.6)
25% 26.3 (1.5) 38.2 (4.5)

C40

0% 28.9 (1.3) 40.9 (0.7)
10% 32.7 (3.0) 43.4 (0.3)
15% 35.4 (2.0) 46.3 (0.3)
20% 38.5 (2.2) 49.0 (2.8)
25% 33.0 (1.6) 44.1 (0.2)

C50

0% 41.1 (0.4) 54.0 (2.8)
10% 46.3 (1.0) 59.7 (3.1)
15% 46.4 (1.7) 60.5 (0.8)
20% 47.5 (0.2) 64.8 (0.7)
25% 40.8 (1.1) 53.1 (3.1)

Note: Numbers in parenthesis indicate the standard deviation from the test results of three duplicate samples.
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It can be seen from the Figure 6 that the same trends are observed for all three strength grades. The
cubic compressive strength first increased and then decreased as the PFA ratio increased for both the
7-day and 28-day strengths. The cubic compressive strength fcu reached the maximum when the PFA
ratio was 20% for the C30, C40 and C50 concrete. The maximum 7-day compressive strength for the
C30, C40 and C50 was 26.9, 38.5 and 47.5 MPa, respectively, which increased by 6.4, 9.6 and 6.4 MPa,
respectively, compared with the reference concrete. The percentage of compressive strength increase
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was 31.2%, 33.2% and 15.6%, respectively. Meanwhile, the 28-day maximum compressive strength of
C30, C40 and C50 reaches 39.1, 49.0 and 64.8 MPa respectively, increased by 6.7 (20.7%), 8.1 (19.8%) and
10.8 MPa (20.0%), respectively. It is therefore recommended that the optimum post-filling aggregate
ratio is 20%. Similarly, in Shen’s study [15], it was reported that the compressive strength of concrete
at 28-day reached the maximum at 10% or 15% of scattering filling ratios for either scattering-filling
natural or recycled aggregate. It was also shown that the 7-day compressive strength reached the peak
at 10% or 15% for scattering filling recycled aggregate [15].

The dry surface of the post-filling coarse aggregate absorbs the water in the reference concrete,
reduces the water cement ratio of the newly formed interfacial transition zone (ITZ) in post-filling
coarse aggregate concrete and increases the compactness of the new ITZ. Therefore, the strength of the
ITZ is enhanced, and at the macro level, the compressive strength concrete is improved compared with
the reference concrete. These are the speculated reasons that the compressive strength of the concrete
is increased after post-filling aggregate is added.

However, Figure 6 indicates that the 20% PFA ratio is generally the turning point for compressive
strength enhancement. This can be explained by the fact that, when the PFA ratio reaches 25%, as
mentioned above, the large amount of dry coarse aggregate reduces the workability of the PFCC. It was
also observed that a large amount of air bubbles existed in the 25% PFCC. On the other hand, when the
PFA ratio is less or equal than 20%, the cement mortar is enough to bond all the aggregate so that the
aggregate in the concrete could improve the concrete compressive strength. However, when the PFA
ratio is higher than 20%, the extra cement mortar is not enough to cover the post-filling coarse aggregate,
which leads to the appearance of internal pores. It was also reported in Shen et al.’s study [14] that
it was difficult and took extra time to consolidate the concrete with the 30% scattering-filling coarse
aggregate content. In all, the unsatisfactory workability at the large post-filling ratio (20% for cubic
compressive strength), which leads to the incompact internal structure of the PFCC, is speculated to
cause the turning point of the concrete’s compressive strength.

Meanwhile, the compressive strength of the PFCC in this study was compared with that of
scattering filling coarse aggregate concrete in the literature ([14,15]), as exhibited in Figure 7. SFNA0
and SFNA2 indicate the scattering filling coarse aggregate with different natural coarse aggregate
gradations, showing that the compressive strength in [15] also increased first and then decreased with
the peak value being at 5% and 10% PFA ratio for 7-day and 28-day compressive strength, respectively,
which is similar to the results in this study.Materials 2020, 13, x FOR PEER REVIEW 10 of 18 
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3.3. Splitting Tensile Strength

In general, the brittle failure at the splitting tensile strength was observed for all concrete specimens,
as shown in Figure 8. Similar to the compressive strength, for the low-strength (C30 and C40) concrete



Materials 2020, 13, 2761 10 of 18

specimens, the cracking failure along the interface between the coarse aggregate and the cement paste
was observed. For C50 specimens, the failure was due to the splitting cracking of the coarse aggregate
itself. In all, the post-filling aggregate process does not show significant effect on the splitting tensile
strength fts of concrete.
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The splitting tensile strength test for the cubic specimen was conducted to obtain the tensile
strength of the concrete. The experimental results are shown in Figure 9. As shown, the splitting tensile
strength of the PFCC increases and then decreases with the increase of the PFA ratio. There exists a
turning point in tensile strength-PFA ratio for all three concrete strength grades. For the C30 grade
concrete, the highest tensile strength is 3.07 MPa, which is increased by 0.26 MPa (9.3%) compared
with the reference concrete. For C40 concrete, the highest tensile strength is 3.35 MPa, which shows
an increase of 0.31 MPa (10.2%) compared with the reference concrete. For C50 concrete, the highest
tensile strength reaches 4.25 MPa, which is enhanced by 0.45 MPa (11.8%) compared with the reference
concrete. The highest strengths occurred at the PFA ratios of 15%, 20%, and 10% respectively for C30,
C40 and C50 concrete. It is suggested that the optimized PFA ratio for PFCC is between 10% and 15%
for the best of splitting tensile strength.
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3.4. Modulus of Rupture

The modulus of ruptures (MORs) of tested specimens with variations of PFA ratios are shown
in Table 6 and Figure 10. It can be found from Figure 10 that, the modulus of rupture of PFCC are
improved compared with reference concrete for three strength grade concrete. For C30, the highest
MOR is 5.0 MPa, which is increased by 0.4 MPa (8.7%) compared with reference concrete. For C40, the
highest MOR reaches 6.34 MPa, which is improved by 0.52 MPa (8.9%) compared with the reference
concrete. For C50, the highest MOR reached 7.73 MPa, which was 0.86 MPa (12.5%) higher than that
of the reference concrete. It is also observed that the 20% PFA ratio is a turning point of MOR for
C30 and C50. Additionally, the MORs of the C40 specimens increase with the increase of PFA ratios.
It is recommended that the optimized PFA ratio is 15–20% for the sake of the modulus of rupture
of concrete.

Table 6. Modulus of rupture.

Concrete Strength Grade PFA Ratio Modulus of Rupture (MPa)

C30

0% 4.60 (0.14)
10% 4.71 (0.46)
15% 4.72 (0.31)
20% 5.00 (1.34)
25% 4.94 (1.47)

C40

0% 5.82 (0.12)
10% 5.93 (0.16)
15% 6.00 (0.31)
20% 6.31 (0.44)
25% 6.34 (0.22)

C50

0% 6.87 (0.04)
10% 7.28 (0.46)
15% 7.57 (0.39)
20% 7.73 (0.18)
25% 7.72 (0.95)

Note: Numbers in parenthesis indicate the standard deviation from the test results of three duplicate samples.
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3.5. Modulus of Elasticity

The modulus of elasticity of the concrete specimens with variations of the PFA ratio are shown in
Figure 11. The relationship between the modulus of elasticity of concrete with its compressive strength
as well as its apparent density can be found in the ACI (American Concrete Institute) building code as
the following Equation (1).

Ec = 0.043ω1.5
c
√

f ′c (1)

where Ec is secant line modulus of elasticity; ωc is apparent density of concrete; f ′c is the compressive
strength of concrete cylinder specimen (150 mm in diameter and 300 mm in length).
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It can be seen from Figure 11 that the trend for the modulus of elasticity is similar as that of
compressive strength. With the increase of the PFA ratio, the modulus of elasticity of PFCC increases
first and then decreases, reaching the maximum modulus of elasticity at 20% PFA ratio for all concrete
grades. This is consistent with the numerical model prediction in Equation (1). As the post-filling
coarse aggregate ratio increases, the density of the concrete increases and it causes the modulus of
elasticity of the PFCC increase. It shows that the highest modulus of elasticity of the C30, C40 and C50
PFCC reaches 3.55 × 104, 3.63 × 104 and 3.59 × 104 MPa, respectively. The increase of the moduli of
elasticity compared with the reference concrete are 0.65 × 104 (22.4%), 0.56 × 104 (18.2%) and 0.03 ×
104 MPa (0.84%). Generally, the modulus of elasticity of the PFCC is greater than that of the reference
concrete. It is worthy to mention that, unexpectedly, the modulus of elasticity of the reference concrete
is higher than that of the C50 PFCC at the 10% and 15% PFA ratio. This inconsistency is speculated
to be caused by test errors and discreteness of concrete specimens. Figure 11 also indicates that at
25% PFA ratio, the modulus of elasticity begins to decrease. This is consistent with Equation (1) as
the apparent density of concrete drops due to the segregation of concrete observed in the slump test.
Meanwhile, Xu et al. [15] found the similar developing trend of elastic modulus for scatter-filling
recycled coarse aggregate concrete. It demonstrated that the elastic modulus increased to the peak at
10% scattering-filling ratio and then it dropped at 15% scattering-filling ratio [15]. In addition, Figure 12
compares the elastic modulus results in this research with the literature findings. SFRA0 indicates
the scattering filling coarse aggregate concrete with recycled coarse aggregate. It can be inferred that,
similarly as C30 and C40 concrete, the elastic modulus of scattering filling coarse aggregate in [15] also
rose to the maximum value at the 10% PFA ratio and then dropped. Although the turning point is
slightly different, in general, the elastic moduli with post-filling aggregate are higher than those of the
reference concrete. Overall, it is suggested that the optimized PFA ratio is 20%.
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3.6. Axial Compressive Strength of Prism Specimen

The axial compressive strength of prism specimen with dimension of 150 mm × 150 mm × 300 mm
was also tested. It was observed that the vertical cracks (parallel to the longitudinal direction) of the
prism specimen appeared until the peak load was reached. Then, the load carrying capacity dropped
immediately and the vertical cracks continued to develop toward the top and bottom of the specimen
in width and in depth. Finally, the specimen was failed by the crushing of concrete and a penetrating
diagonal crack was formed accompanied by the cracking sound.

In the axial compression test, the failure mode of the PFCC specimen is primarily the same as
that of the reference concrete specimen, which are both brittle failure modes along the longitudinal
direction. It exhibits that, as seen in Figure 13, the splitting crack is at a 70 degree angle (compared to
the 50–60 degree of the reference concrete) to that of the horizontal plane. During the experiment, it
was also found that the cracking sound of PFCC is larger than that of reference concrete, indicating
that more coarse aggregate in the PFCC was split off than that in reference concrete.
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The test results of the axial compressive strength of PFCC are shown in Table 7 and Figure 14.
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Table 7. Axial compressive strength for prism specimen.

Concrete Strength PFA Ratio Average of Axial Compressive Strength (MPa)

C30

0% 28.5 (3.7)
10% 31.9 (2.4)
15% 30.8 (2.1)
20% 29.2 (0.7)
25% 29.9 (1.7)

C40

0% 33.7 (1.1)
10% 36.4 (0.7)
15% 38.2 (0.3)
20% 36.0 (1.8)
25% 34.0 (1.1)

C50

0% 42.7 (4.0)
10% 45.8 (2.1)
15% 47.4 (0.3)
20% 49.7 (2.5)
25% 49.0 (2.0)

Note: Numbers in parenthesis indicate the standard deviation from the test results of three duplicate samples.
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As shown in Table 7, for C30, the highest axial compressive strength of PFCC is 31.9 MPa, which
is increased by 3.4 MPa (11.9%) compared with the reference concrete. For C40, the highest axial
compressive strength of PFCC reaches 38.2 MPa, which is increased by 4.5 MPa (13.4%) compared
with the reference concrete. For C50 concrete, the highest axial compressive strength is 49.7 MPa
and it is increased by 7.0 MPa (16.4%) compared with the reference concrete. It also exhibits that the
highest strengths for C30, C40 and C50 grade concrete are located at the PFA ratios of 10–15%, 15%,
and 20% respectively.

Therefore, it can be inferred that the axial compressive strength for the prism specimen increases
and then decreases with the increase of the PFA ratio generally. The highest compressive strength
occurs at the approximate PFA ratio of 10–20%. Compared with the reference concrete, the axial
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compressive strength of the PFCC is approximately increased by 10% overall. A 15–20% post-filling
aggregate ratio is suggested for axial compressive strength.

3.7. Economic Cost Analysis of PFCC Materials

A cost analysis was conducted for the reference concrete and post-filling aggregate concrete at
various post-filling ratio according to the current market price. The results are shown in Tables 8–10
and Figure 15.

Table 8. Cost comparison between reference and post-filling coarse aggregate concrete (C30).

Material Cement Fly Ash CA FA Water WR Cost
(RMB)/m3

Unit
Price/(RMB·kg−1) 0.55 0.4 0.17 0.17 0.0025 15

Reference
concrete

Proportion 352 88 1074 716 220 4.4
599.65cost 193.6 35.2 182.58 121.72 0.55 66

PFCC
10%

Proportion 316.8 79.2 1216.6 644.4 198 3.96
582.19cost 174.24 31.68 206.82 109.55 0.495 59.4

PFCC
15%

Proportion 299.2 74.8 1287.9 608.6 187 3.74
573.45cost 164.56 29.92 218.94 103.46 0.468 56.1

PFCC
20%

Proportion 281.6 70.4 1359.2 572.8 176 3.52
564.72cost 154.88 28.16 231.06 97.38 0.44 52.8

PFCC
25%

Proportion 264 66 1430.5 537 165 3.3
555.99cost 145.2 26.4 243.19 91.29 0.41 49.5

Note: the unit for materials proportion is kg/m3.

Table 9. Cost comparison between reference and post-filling coarse aggregate concrete (C40).

Material Cement Fly Ash Mineral
Powder CA FA Water WR Cost

(RMB)/m3

Unit Price/(RMB·kg−1) 0.55 0.12 0.5 0.17 0.17 0.0025 15

Reference
concrete

Proportion 352 44 44 1074 716 202 5.72
611.49Cost 193.6 5.28 22 182.58 121.72 0.51 85.8

PFCC
10%

Proportion 316.8 39.6 39.6 1216.6 644.4 181.8 5.15
592.82Cost 174.2 4.75 19.8 206.82 109.55 0.45 77.25

PFCC
15%

Proportion 299.2 37.4 37.4 1287.9 608.6 171.7 4.86
583.52Cost 164.6 4.49 18.7 218.94 103.46 0.43 72.9

PFCC
20%

Quantity 281.6 35.2 35.2 1359.2 572.8 161.6 4.58
574.26Cost 154.9 4.22 17.6 231.06 97.38 0.4 68.7

PFCC
25%

Proportion 264 33 33 1430.5 537 151.5 4.29
564.87Cost 145.2 3.96 16.5 243.19 91.29 0.38 64.35

Note: the unit for materials proportion is kg/m3.

It can be seen from Figure 15 that, as the post-filling ratio increases, the unit cost for post-filling
concrete decreases. It also demonstrates that, as the concrete strength increases, the cost reduction
decreases. It exhibits that the post-filling coarse aggregate concrete is fairly promising in saving the
cost of concrete materials.



Materials 2020, 13, 2761 16 of 18

Table 10. Cost comparison between reference concrete and post-filling coarse aggregate concrete (C50).

Material Cement Fly Ash CA FA Water WR Cost
(RMB)/m3

Price/(RMB·kg−1) 0.6 0.4 0.17 0.17 0.0025 15

Reference
concrete

Quantity 388 97 1058 705 194 7.275
680.93Cost 232.8 38.8 179.86 119.85 0.49 109.13

PFCC
10%

Quantity 349.2 87.3 1202.2 634.5 174.6 6.5
654.62Cost 209.52 34.92 204.37 107.87 0.44 97.5

PFCC
15%

Quantity 329.8 82.5 1274.3 599.3 164.9 6.2
642.80Cost 197.88 33 216.63 101.88 0.41 93

PFCC
20%

Quantity 310.4 77.6 1346.4 564 155.2 5.8
629.44Cost 186.24 31.04 228.89 95.88 0.39 87

PFCC
25%

Quantity 291 72.8 1418.5 528.8 145.5 5.5
617.63Cost 174.6 29.12 241.15 89.90 0.36 82.5

Note: the unit for materials proportion is kg/m3.
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4. Conclusions

The objective of this research is to elucidate the relationship between the post-filling coarse
aggregate technology, particular the post-filling ratios, and the mechanical properties of large slump
PFCC associated with different concrete strength grades. It aims to provide a promising concrete
production technology on the premise of its cost-saving as well as environmental benefits. The
workability, compressive strength, elastic modulus, splitting tensile strength and modulus of rupture
were experimentally tested and analyzed. Based on the experimental study and analysis of mechanical
properties of the post-filling coarse aggregate concrete (PFCC), a few specific conclusions can be drawn.

(1) With the increase of the post-filling coarse aggregate (PFA) ratio, the slump of concrete
decreases. Experimental results indicate that the slump of PFCC could meet the designed requirement
of larger than 140 mm when the PFA ratio is no more than 15%.

(2) Results show that the failure mode of PFCC is similar as that of reference concrete. For C30 and
C40 concrete, the failure of PFCC is basically the bond failure between the coarse aggregate and the
cement paste. While the splitting cracking failure of the coarse aggregate was observed primarily for
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the C50 concrete. Moreover, the brittleness of the PFCC specimen is higher than that of the reference
concrete specimen.

(3) The compressive strength test results of the cubic specimen show that the compressive strength
of the PFCC at 7 d and 28 d increases first and then decreases as the PFA ratio increases for three
concrete grades, which are all higher than those of reference concrete. For cubic compressive strength,
the optimized PFA ratio in volume is 20%.

(4) The splitting tensile strength, modulus of rupture, axial compressive strength as well as
the modulus of elasticity of PFCC are improved compared with those of reference concrete. The
recommended PFA ratio is 15% for above properties. It was also found that, as the concrete strength
grade increases, the enhancement of splitting tensile strength, modulus of rupture, axial compressive
strength and modulus of elasticity in absolute value are increased.

(5) Generally, it does not indicate significant differences on the failure modes between the
post-filling coarse aggregate concrete specimens and the reference concrete specimens.
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