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Abstract: Renewable vinyl compounds itaconic acid (IA) and its derivative 10-hydroxyhexylitaconic
acid (10-HHIA) are naturally produced by fungi from biomass. This provides the opportunity to
develop new biobased polyvinyls from IA and 10-HHIA monomers. In this study, we copolymerized
these monomers at different ratios through free radical aqueous polymerization with potassium
peroxodisulfate as an initiator, resulting in poly(IA-co-10-HHIA)s with different monomer
compositions. We characterized the thermal properties of the polymers by thermogravimetric
analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). The nuclear magnetic resonance
analysis and the gel permeation chromatography showed that the polymerization conversion, yield,
and the molecular weights (weight-averaged Mw and number-averaged Mn) of the synthesized
poly(IA-co-10-HHIA)s decreased with increasing 10-HHIA content. It is suggested that the
hydroxyhexyl group of 10-HHIA inhibited the polymerization. The TGA results indicated that
the poly(IA-co-10-HHIA)s continuously decomposed as temperature increased. The FT-IR analysis
suggested that the formation of the hydrogen bonds between the carboxyl groups of IA and 10-HHIA
in the polymer chains was promoted by heating and consequently the polymer dehydration occurred.
To the best of our knowledge, this is the first time that biobased polyvinyls were synthesized using
naturally occurring IA derivatives.

Keywords: itaconic acid; 10-hydroxyhexylitaconic acid; radical polymerization; renewable polymer

1. Introduction

Owing to the growing environmental interest, the development of renewable polymer materials
derived from biomass is increasing in popularity [1–4]. To develop polymers with unique properties,
novel monomer type building blocks are in demand because the monomer unit predominantly affects
the polymer properties [5–7]. Some renewable monomers that are produced by microbes from biomass
consist of larger carbon numbers (higher than C5) [8]. These monomers are barely synthesized from
petroleum resources and possess unique structural characteristics increasing their potential to be
applied as new monomers.

Itaconic acid (IA) is one of the most promising renewable vinyl compounds commercially
produced using fungi, mostly Aspergillus terreus [9–12]. IA is a sustainable monomer because it is
fermentatively produced from biomass. To date, many IA copolymers have been synthesized from
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IA by free radical copolymerization (e.g., with methyl methacrylate (MMA)) or polycondensation
(e.g., with diols) [8,13–20]. For instance, Ranjha et al., have synthesized poly(MMA-co-IA) by free
radical copolymerization using crosslinkers for development of controlled drug delivery [19]. On the
other hand, Dai et al., have synthesized a series of polyesters by melt polycondensation of IA with
diols and glycerol [20]. The resulting copolymers further copolymerized with acrylated epoxidized
soybean oil showed great potential for applications as coatings, adhesives, and composites. Specifically,
some papers reported that IA-based polyvinyls have cation-exchange properties [21–23]. Interestingly,
naturally occurring IA derivatives possessing a vinyl group have been found as metabolic products
from fungi and lichens. This suggests that it is possible to synthesize new biobased polymers from these
IA derivatives. However, there is no report on the polymers synthesized using naturally occurring
IA derivatives.

Recently, we have developed a new screening method for microbes from soil to produce IA [24–26].
In our screening study, we have also isolated a fungus Aspergillus niger S17-5 producing two IA
derivatives from glucose, 9-hydroxyhexylitaconic acid (9-HHIA) and 10-hydroxyhexylitaconic acid
(10-HHIA) [27]. These compounds possess an alkyl chain with a hydroxy group. Therefore, it might
be possible to synthesize novel biobased polyvinyls excellent in impact resistance, tensile strength,
and moldability, compared to IA homopolymers. The production titer of 10-HHIA is higher than that
of 9-HHIA; therefore, 10-HHIA would be the preferred monomer for the polymer synthesis.

The present study reports on the free radical polymerization of poly(IA-co-10-HHIA)s with
IA and 10-HHIA monomers in water using potassium peroxodisulfate (KPS) as initiator (Figure 1).
The thermal properties of the polymers were characterized with thermogravimetric analysis (TGA)
and Fourier-transform infrared spectroscopy (FT-IR).
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2. Materials and Methods

2.1. Materials

IA (Molecular weight: 130.1) was purchased from Wako Pure Chemical Corp. (Osaka, Japan).
KPS, sodium dihydrogenphosphate, disodium hydrogenphosphate, deuterium oxide, and sodium
hydroxide were purchased from Nacalai Tesque Inc. (Kyoto, Japan). All reagents were used without
further purification.

2.2. Preparation of 10-HHIA

The 10-HHIA (Molecular weight: 230.2 g mol−1) was obtained from the culture supernatant of
A. niger S17-5 according to a method described elsewhere [27]. Briefly, A. niger S17-5 was cultured
in 1 L of a GM2 liquid medium (per 1 L: 130 g glycerol, 0.154 g MgSO4·7H2O, 0.19 mg FeCl2·4H2O,
0.46 g NH4NO3, 15.4 mg KH2PO4, 96 mg CaCl2, 1.2 mg ZnSO4·7H2O, 2.3 mg CuSO4·5H2O) [28].
The culture was centrifuged to obtain the supernatant. The supernatant typically contained 10-HHIA
at a concentration of 0.5 g L−1. The supernatant was purified using a preparative high-performance
liquid chromatograph (HPLC, LaChrom Elite, Hitachi High-Technologies, Tokyo, Japan) equipped
with a preparative HPLC Inertsil ODS 10 µm column (GL sciences, Tokyo, Japan). The 10-HHIA was
eluted using a water/acetonitrile/trifluoro acetic acid solution (flow rate: 5 mL min−1). The eluate was
monitored at an absorbance of 210 nm. The eluate was dried by freeze dehydration, resulting in the
purified 10-HHIA (approx. 0.1 g).
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2.3. Copolymerization

Different IA/10-HHIA monomer ratios were used (200/0, 160/40, 100/100, and 0/200 µmol in
feed). The corresponding monomer ratio and 2 µmol KPS were added to 0.4 mL of water in a
glass ampule. After the mixtures were degassed three times by freeze-thaw, the glass ampule was
sealed and then placed in an oil bath at 75 ◦C for 48 h. Then, the reaction mixtures were dialyzed in
water at 25 ◦C for 3 days with a Spectra/Por 7 dialysis membrane (Molecular weight cut-off: 1 kDa)
(Spectrum Laboratories Inc., Rancho Dominguez, CA, USA). The dialyzed solutions were dried by
freeze dehydration, resulting in the purified poly(IA-co-10-HHIA)s.

2.4. Measurements

The 1H NMR spectra were recorded on a Bruker AV-300 (Billerica, MA, USA). All samples
were analyzed by 1H NMR with D2O after freeze dehydration. Especially, when samples of
poly(IA-co-10-HHIA) with IA/10-HHIA monomer ratios of 100/100 and 0/200 were analyzed by
NMR, an aliquot of 10 mM NaOH in D2O was used as a solvent to completely dissolve the synthesized
polymers. The conversion of the synthesized copolymers was calculated as follows:

Conversion (%) = (1 – Am/(Am + Ap)) × 100
Am: the area of vinylidene proton signals at 6.5 ppm;
Ap: the area of copolymer proton signals.
The gel permeation chromatography (GPC) was conducted with a PU-2089 pump (JASCO, Tokyo,

Japan), a CO-2065 column oven (JASCO), and an RI-2031 refractive index detector (JASCO). A Shodex
OHpak SB-804 HQ (8.0 × 300 mm, Showa Denko K.K., Tokyo, Japan) column was used with 20 mM
phosphate buffer (pH 7.0) as the eluent (flow rate: 0.5 mL min−1 at 30 ◦C). The molecular weights
were calibrated against pullulan standards according to the method for GPC analysis of IA-derived
polymers [16].

The TGA was carried out with a Discovery TGA (TA instruments, New Castle, DE, USA).
The polymer samples were analyzed under a nitrogen gas purge of 10 mL/min at a heating rate of
10 ◦C min−1 and a temperature ranging from 25 to 700 ◦C.

The FT-IR was performed with a FT/IR 4600 spectrometer (JASCO). The polymer samples were
heated at 200 ◦C for 18 h under a nitrogen gas atmosphere. After natural cooling, the spectra were
recorded in transmittance mode within the range from 4000 cm−1 to 400 cm−1 with a resolution of
4 cm−1 and 16 scans were co-added.

3. Results and Discussion

3.1. Synthesis of Poly(IA-co-10-HHIA)s

According to reported homo-polymerizations of IA [29–34], the poly(IA-co-10-HHIA) copolymers
were synthesized by the free radical polymerization of IA and 10-HHIA in water with KPS as an
initiator. Figure 2 shows a representative 1H NMR spectrum of the poly(IA-co-10-HHIA) copolymer.
The methylene signal at 2.7 ppm represents the polymer backbone. The signals at 2.2–2.3 ppm
correspond to methine and methylene protons of IA and 10-HHIA. The signals at 1.3–1.6 and 3.4 ppm
correspond to the methylene protons of the hexyl group of 10-HHIA. These results indicated that novel
biobased polyvinyls could be synthesized using the naturally occurring IA derivative as a monomer.
The reproducibility of the copolymer structure was confirmed because similar NMR spectra were
obtained after the same experiment several times (data not shown). Figure 3 shows GPC curves of
poly(IA-co-10-HHIA)s synthesized with different monomer feed ratios. The GPC curves show that all
synthesized copolymers have a single peak, indicating that two distinct molecular weight species were
absent in the samples analyzed.
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Table 1 summarizes the polymerization conversion, the monomer compositions, the copolymer
yields, the number-average molecular weight (Mn), and the molecular weight distribution (MWD) of
the molecular weight distribution of the copolymers with weight-average molecular weight (Mw).
The polymerization conversion, yield, Mw, and Mn of the synthesized poly(IA-co-10-HHIA)s decreased
by increasing the feed ratio of 10-HHIA. Interestingly, all obtained copolymers have, despite the
free radical polymerization, relatively low MWDs (1.10–1.29). A related paper reported that the
homo-polymerization of IA in water with KPS required a relatively long reacting period (48 h) and
the resulting poly(IA) showed low MWDs (1.12–1.14) [34]. Our results with 10-HHIA are in good
agreement with results reported so far.

In summary, we demonstrated that 10-HHIA can be polymerized by free radical polymerization
in the same way as IA, resulting in novel renewable polyvinyls, but the degree of polymerization
of 10-HHIA is lower than that of IA; this may be due to the steric effect of the hydroxyhexyl group
of 10-HHIA.
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Table 1. Synthesis of poly(IA-co-10-HHIA)s with different monomer feed ratios.

Code IA/10-HHIA (µmol) 1
Conversion (%) 2 Composition (%) 2

Yield (%) 3 Mn
(g mol−1) 4 Mw/Mn 4

IA 10-HHIA IA 10-HHIA

1 200/0 98 - 100 0 72 26,400 1.29
2 160/40 70 55 84 16 36 15,400 1.16
3 100/100 56 30 66 34 18 9870 1.08
4 0/200 - 16 0 100 11 9780 1.10

1 Monomer feed ratio. The volume of reaction solvent (water) was 0.4 mL. 2 Determined by 1H NMR. 3 Isolated
yield. 4 Determined by GPC.

3.2. Thermal Characterization of Poly(IA-co-10-HHIA)s

To characterize the thermal properties of poly(IA-co-10-HHIA)s, TGA and FT-IR were conducted.
Figure 4 shows TGA thermograms of poly(IA-co-10-HHIA)s from 25 to 700 ◦C. The TGA of
all poly(IA-co-10-HHIA)s indicated a similar profile and they continuously decomposed as the
temperature increased. Previous papers on TGA of poly(acrylic acid) and poly(IA) described similar
results [31,35–38]. Krušić et al., have reported that the derivative thermogravimetry curve of poly(IA)
has three maxima, at 185 ◦C, 315 ◦C, and 388 ◦C, assigned to the elimination of water and the formation
of polyanhydride, followed by decarboxylation of anhydride groups and the breaking of the main
polymer backbone [32,39]. Kayaman et al., have reported that poly(IA) showed a small weight loss at
100 ◦C implying the loss of moisture, and that poly(IA) had a significant weight loss at around 165 ◦C
when TGA thermal decomposition was analyzed [37]. In addition, Ha et al., have reported that the
carboxyl groups in poly(acrylic acid) were crosslinked by dehydration at 160 ◦C [40]. This suggested
that dehydration occurred by linking the carboxyl groups of IA and 10-HHIA units by heating.
Interestingly, the TGA results indicated that the poly(IA-co-10-HHIA)s continuously decomposed
as temperature increased. This may be because the hydroxyhexyl group of 10-HHIA inhibited the
formation of the linkage between the carboxyl groups of IA and 10-HHIA units. As the 10-HHIA
content increased, the weight loss rate of poly(IA-co-10-HHIA)s was reduced. This may be due to the
weight contribution of the carboxyl group in the copolymers decreased.
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Figure 5 shows FT-IR spectra of poly(IA) and a representative poly(IA-co-10-HHIA) copolymer
before and after heating at 200 ◦C for 18 h. The non-heated poly(IA) has the characteristic peaks at
2800–3400 cm−1, 1707 cm−1, 1639 cm−1, 1411 cm−1, 1193 cm−1, and 908 cm−1 assigned to a broad
-OH stretching, the carboxylic acid (C=O) stretching, asymmetric C=O stretching of carboxylate
anion, symmetric C=O stretching of carboxylate anion, C-O-H in-plane bending interactions, C-O
stretching dimer, and O-H out-of-plane bending, respectively, according to the FT-IR spectrum of
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poly(IA) [37]. The non-heated poly(IA-co-10-HHIA) copolymer showed a similar profile. The poly(IA)
and poly(IA-co-10-HHIA) copolymer heated at 200 ◦C for 18 h have a clear peak corresponding to the
symmetric C=O stretching of carboxylate anion at 1610–1616 cm−1. This indicates that the heating
promoted the formation of the hydrogen bonds between the carboxyl groups of IA and 10-HHIA.
The intensity of the peak corresponding to the carboxylic acid (C=O) stretching at 1706–1715 cm−1

decreased after the heating. This suggests dissociation of the carboxyl groups of IA and 10-HHIA by
the heating. It has been reported that heating poly(IA) results in the dehydration between carboxyl
groups in the polymer and consequently the formation of poly(IA anhydride) [31,38]. These suggest
that the formation of the hydrogen bonds between the carboxyl groups of IA and 10-HHIA in the
polymer chains was promoted by heating and consequently the polymer dehydration occurred.
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Figure 5. FT-IR spectra of (a) poly(IA) and (b) poly(IA-co-10-HHIA) synthesized with an IA/10-HHIA 
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4. Conclusions

The present study reports the synthesis and thermal characterization of poly(IA-co-10-HHIA)s.
The poly(IA-co-10-HHIA)s were synthesized by free radical polymerization with different monomer
feed ratios (IA/10-HHIA: 200/0–0/200 µmol). The resulting polymers with higher 10-HHIA content
showed a lower polymerization conversion, yield, Mn, and Mw of the synthesized copolymers.
The copolymer MWDs were also relatively low (1.10–1.29). We related this to the steric effect of the
hydroxyhexyl group of 10-HHIA. Thermal analyses suggested that heating promoted the formation of
the hydrogen bonds between the carboxyl groups of IA and 10-HHIA in the polymer chains and then
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