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Abstract: An analytical model to determine temperature in a single brake disc of multi-disc system
is proposed. The model considers the convective cooling on the lateral surfaces of the disc and
structure of composite friction material. Calculations were carried out for a disc made of carbon
friction composites material Termar-ADF. The influence of heat transfer with environment, length
of bundles with fibers, and concentration of fibers in composite on the temperature of the disc was
investigated during single braking with constant deceleration.
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1. Introduction

At the present time, high-speed and heavy-duty vehicles are extensively developed. These include
high-speed rail and road transport, machines for military purposes, and, in particular, aircraft. For the
successful operation of these categories of vehicles, appropriate braking devices are required that ensure
their sufficient maneuverability. To design brakes, it is necessary to fulfill a complex of requirements
(ensuring high braking torque and wear resistance, absence of overheating, stability of characteristics,
etc.), which is associated with the choice of friction materials, design of the brake unit, bench, and field
tests [1].

The braking system of modern passenger as well as military aircraft consists of package of fixed
and rotating friction discs located inside the wheel. After switching on the brake, the special pistons
compress package, the front surfaces of discs are in contact, and the process of friction braking begins.
While the kinetic energy of the aircraft is absorbed, the friction between fixed and rotating discs causes
that they are heated up even to 1500 ◦C, and temperatures of the friction surfaces reach up to 3000 ◦C.
Therefore, the disc’s materials must be resistant enough to thermal shock [2].

It is known that the friction polymer materials start to degrade at the temperature of 230 ◦C, and the
degree of degradation increases with temperature within the range 269–400 ◦C [3,4]. The degradation
of the polymer materials causes brake fade phenomena, where the coefficient of friction is reduced with
increasing temperature [5]. The high temperature decreases the yield strength and leads to changes
in the wear mechanism and the real contact configuration [6]. These phenomena could increase the
wear rate of the brake friction material [7]. Therefore, to improve the working life of aircraft brakes,
there is an increasing use of carbon friction composites materials (CFCM) that differ in the type of
reinforcement, the method of forming the friction layer, the variations of technological heat treatment,
etc. For such a material, a certain degree of wear intensity is typical, but, in general, CFCM has
significant advantages over friction metal ceramics and plastics. CFCM materials are characterized by
less tendency to increase wear with rise in temperature, as well as smaller sensitivity to changes in the
specific pressure and sliding speed [8–10].
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Carbon-carbon (C/C) composite materials are used at heavy working conditions, under which
the temperature of the surface of friction can exceed 1500 ◦C and the bulk temperature 800 ◦C. CFCM
such as Carbenix-4000 (Honeywell International Inc., Charlotte, NY, USA), Sepcarb (Safran Landing
Systems, Vélizy, France), and Termar (PJSC Aviation Corporation "Rubin”, Russia) have a low density
and thermal linear expansion coefficient, high thermal conductivity, energy-absorption capability,
stable coefficient of friction, and retain mechanical properties up to 2400–2800 ◦C [11–14]. Carbon
composite brake discs are lighter, economical, and have excellent high energy friction characteristics.
Two basic advantages of C/C materials at high temperatures—the heat capacity and strength (higher by
2.5 and 2 times, respectively, than steel)—result in a 40% weight savings [2]. These remain unaffected
by thermal shocks and mechanical fatigue [15]. Due to such a specific combination of the properties,
C/C composites are more widely used for producing brakes subjected to heavy loads and extreme
application conditions, and can be considered as the basic construction material for high-temperature
applications, e.g., in aerospace and aircraft industry brake systems. Currently, roughly 60% of produced
C/C composites accounts for aircraft braking discs [16,17]. Carbon composites are also widely used
for the production of automobile brakes and could potentially be used in brakes for high-speed
trains [18,19].

Depending on the purpose, various modifications of CFCM of the Termar type are used, which
have different thermal, mechanical, and friction-wear properties. The discrete-reinforced transversely
isotropic friction C/C Termar-ADF is a material with the formation of the original press package by the
random arrangement of long fibers with use of special installation. Termar-ADF is fabricated using a
pitch matrix reinforced by high modulus fibers with the average length being 20 mm. Fibrous materials
are used for two cycles of impregnation with thermoplastic pitch using liquid-phase pyrolysis at 600 ◦C
with pressure up to 100 MPa. Each cycle of impregnation is followed by carbonization at 1200 ◦C.
The final heat treatment is performed at 2000 ◦C for 1 h [20].

The calculation of the temperature regime and wear characteristics of the brake is the most
important step in the design of the brake wheel as a whole. One of the most loaded elements of the
brake, receiving greater thermal and mechanical loads, are the discs. Numerous natural tests and studies
on the brakes have shown that the main factor determining the wear resistance of the C/C material of
the discs, and hence the life of the product as a whole, is the temperature. Thus, the determination
of the temperature field of the disc is necessary for predicting the durability of the brake. The result
of test for heat pulsing friction of brand Termar-ADF carbon frictional composite material on the
multipurpose friction machine IM-58-T2 is presented in [21]. The effect of the reinforcement type and
the heat treatment conditions of the CFCM on their friction coefficient, wear rate, and the stability
indicator of the friction coefficient is studied in [22].

The complex methodology for the design and manufacture of brakes for air wheels is presented
in [23,24]. It includes the theoretical and experimental technique of load and thermal calculation of
friction couples and modeling of their work under the conditions of varying external operational
factors. The use of that methodology allows optimizing the design of the brake at the given dimensions
according to parameters such as the braking torque and its stability, the duration and way of braking,
the brake resource according to the wear factor, and volumetric and surface temperature. One of
the most important components of the thermal calculation of the brake is the solution of the thermal
problem of friction—the boundary-value problem of heat conductivity for a friction element heated by
a frictional heat flow on the working surface and cooled on its free surfaces. Reviews of analytical
and numerical solutions of this problem are presented in [25,26]. It is noted that most authors have
considered the case of a homogeneous disc material with adiabatic free surfaces. An attempt to take
into account the convective cooling of the lateral surfaces of a homogeneous disc during braking with
constant deceleration is undertaken in [27]. Unfortunately, it presents formulas for determining the
temperature only on the friction surface of the disc. The generalization of such solution in the case of a
disc made of composite C/C material is executed in [28]. The solution is obtained in the form of the
Duhamel integral, which is useful in practical applications.
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For a multi-disc brake pair made of composite C/C materials, a numerical finite element method
(FEM) solution of thermal problem of friction is obtained in [29], and an analytical solution is presented
in [30]. That solutions are obtained considering effective properties of disc composite materials.
This article provides analytical solution to the thermal problem of friction, considering the structure
of the composite material. In detail, the main aim of the article is to obtain an exact solution to the
thermal problem of friction, which simulates the process of frictional heating of an individual disc of a
multi-disc brake during single braking. It is assumed that the disc is made of composite C/C material
containing carbon fibers, collected in bundles, which are located in planes parallel to the surface of
friction. At the first stage, an exact solution of the corresponding thermal problem of friction for an
orthotropic disc is obtained, considering the effective thermal conductivity coefficients of the material
in the axial and radial directions, as well as convective cooling of the lateral surfaces. In the second
stage, the procedure for determining the above-mentioned effective properties of the composite at
three levels (micro, meso, and macro) is proposed. Based on the obtained solution, the distribution of a
transient temperature field in a disc made of Termar-ADF is investigated.

2. Statement to the Problem

Multi-disc aircraft braking systems are subjected to heavy mechanical and thermal loads during
braking. Typically, such systems are a package of identical discs. A scheme of such multi-disc system
and the calculation diagram of the considered problem are presented in Figure 1. A microscopic view
of the real structure of such C/C composite can be found in [15,20] and sample photo of single brake
disc made of Termar-ADF in [31].
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Figure 1. Disc brake: scheme of the problem.

It is assumed that all friction discs have the same internal radius r1, external radius r2, thickness
2d, and are made of orthotropic material with different thermal conductivities Kr and Kz in radial r and
axial z directions, respectively. Each of the two outer fixed discs has one friction surface, while the inner
rotating and fixed discs have two friction surfaces, and thus they heat up more. Since all the discs are
made of the same material, the temperature fields in the internal discs are approximately the same, and
their distribution over the thickness of the disc is symmetrical relative to its middle surface. Therefore,
the corresponding thermal problem of friction can be formulated not for a whole disc with a thickness
of 2d, but only for its half with a thickness of d, assuming that the friction surface z = 0 is heated by
frictional heat flow with the intensity q and the plane of symmetry z = d is adiabatic. Since the thermal
conductivity of CFCM in the circumferential direction parallel to the working surfaces of the disc is
much higher than in the axial direction z of action of the heat flow, the distribution of the temperature
field on each surface 0 < z < d is uniform. Lateral surfaces of the discs r = r1 and r = r2 0 ≤ z ≤ 2d are
cooled convectively with constant coefficient of heat transfer h. The mutual overlap of the contacting
elements is full, so the nominal contact area Aa = π(r2

2 − r2
1) remains unchanged during braking.
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Taking the above-mentioned assumptions into account, distribution of the temperature T across
the disc thickness 0 ≤ z ≤ d at a fixed moment of time 0 ≤ t ≤ ts, we may find from solution to the
following boundary-value problem of heat conduction [28]:

∂2T(z, t)
∂z2 −

2h∗

Kzl
[T(z, t) − Ta] =

1
k
∂T(z, t)
∂t

, 0 < z < d, 0 < t ≤ ts (1)

Kz
∂T(z, t)
∂z

∣∣∣∣∣∣
z=0

= −q(t), 0 < t ≤ ts (2)

Kz
∂T(z, t)
∂z

∣∣∣∣∣∣
z=d

= 0, 0 < t ≤ ts (3)

T(z, 0) = Ta, 0 ≤ z ≤ d (4)

where
q(t) = q0q∗(t), 0 ≤ t ≤ ts (5)

q0 = f p0V0, V0 = ω0rm, rm = 0.5(r1 + r2), (6)

q∗(t) = 1−
t
ts

, ts =
W0

q0Aa
(7)

h∗ =
(1

h
+

r2 − r1

2Kr

)−1
(8)

k =
Kz

ρc
(9)

Ta is the initial temperature of the disc; t is the time; ts is the time of braking; f is the coefficient of
friction; ρ is the density; c is the specific heat of material; p0, ω0, and W0 are respectively initial values
of contact pressure, angular velocity, and kinetic energy.

Introducing the dimensionless variables and parameters:

ζ =
z
d

, τ =
kt
d2 , τs =

kts

d2 , Bi =
2h∗d2

Kz(r2 − r1)
, T0 =

q0d
Kz

, T∗ =
T − Ta

T0
(10)

We write the problem in Equations (1)–(4) as:

∂2T∗(ζ, τ)
∂ζ2 − BiT∗(ζ, τ) =

∂T∗(ζ, τ)
∂τ

, 0 < ζ < 1, 0 < τ ≤ τs (11)

∂T∗(ζ, τ)
∂ζ

∣∣∣∣∣∣
ζ=0

= −q∗(τ), 0 < τ ≤ τs (12)

∂T∗(ζ, τ)
∂ζ

∣∣∣∣∣∣
ζ=1

= 0, 0 < τ ≤ τs (13)

T∗(ζ, 0) = 0, 0 ≤ ζ ≤ 1 (14)

where
q∗(τ) = 1−

τ
τs

, 0 ≤ τ ≤ τs (15)

It should be noted that the adoption of the linear model in Equations (1)–(9) to determine the
temperature field in the brake disc, imposes some restrictions on the possibility of its use in medium
and heavy modes of operation of the brake, when the surface temperature reaches values above
450 and 750 ◦C, respectively [3]. It is known that at such temperatures the coefficient of friction
and the thermo-physical properties of the material may change the initial values. Application of
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the analytical models in such cases may involve the use of the friction coefficient averaged during
braking; this approach has been used in the following numerical analysis. Thermal sensitivity of a
material is usually taken into account by converting in its solution the value of the coefficient of thermal
conductivity at room temperature to its value at the average volume temperature of the disc during
braking. Of course, this approach is approximate, but gives no less sufficiently good compliance of the
maximum temperature values with relevant experimental data [21]. To consider the thermal sensitivity
of the above-mentioned characteristics, at each time step during braking, requires the development of
appropriate nonlinear models, and the usage of numerical methods to solve them [29].

3. Solution to the Problem

By replacing [32]
T∗(ζ, τ) = Θ(ζ, τ)e−Biτ (16)

the boundary-value problem in Equations (11)–(15) is transformed into the form:

∂2Θ(ζ, τ)
∂ζ2 =

∂Θ(ζ, τ)
∂τ

, 0 < ζ < 1, 0 < τ ≤ τs (17)

∂Θ(ζ, τ)
∂ζ

∣∣∣∣∣∣
ζ=0

= −q∗(τ)eBiτ, 0 < τ ≤ τs (18)

∂Θ(ζ, τ)
∂ζ

∣∣∣∣∣∣
ζ=1

= 0, 0 < τ ≤ τs (19)

Θ(ζ, 0) = 0, 0 ≤ ζ ≤ 1 (20)

where Θ(ζ, τ) is now the unknown function. Using the Duhamel’s theorem [33], the solution of the
problem in Equations (17)–(20) can be expressed as:

Θ(ζ, τ) = −

τ∫
0

q∗(s)eBi s ∂
∂τ

Θ0(ζ, τ− s)ds, 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs (21)

where function

Θ0(ζ, τ) = ζ−
1
2
ζ2
− τ−

1
3
+ 2

∞∑
n=1

e−λ
2
nτ

λ2
n

cos(λnζ), 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs (22)

λn = πn, n = 1, 2, . . . . (23)

is the solution to the problem in Equations (17)–(20) at q∗(τ) = 1 [34]. After integration on the right side
of Equation (21) with functions q∗(τ) (Equation (15)) and Θ0(ζ, τ) (Equations (22) and (23)), we obtain:

Θ(ζ, τ) = J0(τ) + 2
∞∑

n=1

e−λn
2τ Jn(τ) cos(λnζ), 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs (24)

where

J0(τ) = −
1
Bi

(
1 +

1
τsBi

)
+

(
1−

τ
τs

+
1
τsBi

) eBi τ

Bi
(25)

Jn(τ) = −
1

Bin

(
1 +

1
τsBin

)
+

(
1−

τ
τs

+
1

τsBin

) eBinτ

Bin
(26)

Bin = Bi + λ2
n, n = 1, 2, . . . . (27)
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Taking into account the sums of the series [35]:

∞∑
n=1

cos(λnζ)

Bin
=

1

2
√

Bi
cos ech(

√

Bi)ch[(1− ζ)
√

Bi] −
1

2Bi
(28)

∞∑
n=1

cos(λnζ)

Bi2n
= 1

4Bi cos ech2
(√

Bi)ch(ζ
√

Bi)+

+ 1
4Bi
√

Bi
cos ech(

√
Bi)

{
ch[(1− ζ)

√
Bi] + ζ

√
Bi sh[(1− ζ)

√
Bi]

}
−

1
2Bi2

(29)

From Equations (16) and (24)–(27), we find the dimensionless temperature of the disc in the form:

T∗(ζ, τ) =
cos ech(

√
Bi)

√
Bi

{(
1− τ

τs
+ 1

2τsBi

)
ch[(1− ζ)

√
Bi] + ζ

2τs
√

Bi
sh[(1− ζ)

√
Bi]

}
+

+
cos ech2(

√
Bi)

2τsBi ch(ζ
√

Bi) −
(
1 + 1

τsBi

)
e−Bi τ

Bi − 2
∞∑

n=1

(
1 + 1

τsBin

)
e−Binτ

Bin cos(λnζ),

0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs

(30)

On the heated surface ζ = 0 from the solution in Equation (30), it follows that [27]:

T∗(0, τ) =
cth(
√

Bi
)

√
Bi

(
1−

τ
τs

+
1

2τsBi

)
+

cos ech2
(√

Bi
)

2τsBi
−

(
1 +

1
τsBi

) e−Bi τ

Bi
− 2

∞∑
n=1

(
1 +

1
τsBin

) e−Binτ

Bin
,

0 ≤ τ ≤ τs

(31)

where the coefficients Bin, n = 1, 2, . . . . are determined by Equation (27).
In the limiting case τs →∞ , the solutions in Equations (30) and (31) take the form:

T∗(ζ, τ) =
cos ech(

√
Bi)

√
Bi

ch[(1− ζ)
√

Bi] −
e−Bi τ

Bi
− 2

∞∑
n=1

e−Binτ

Bin
cos(λnζ), 0 ≤ ζ ≤ 1, τ ≥ 0 (32)

T∗(0, τ) =
cth(
√

Bi
)

√
Bi

−
e−Bi τ

Bi
− 2

∞∑
n=1

e−Binτ

Bin
, τ ≥ 0 (33)

Next, we verify the achieved solutions. For this purpose, from the solution in Equation (30), we
find the derivative:

∂T∗(ζ,τ)
∂ζ = −

cos ech(
√

Bi)
√

Bi

{(
1− τ

τs

)√
Bi sh[(1− ζ)

√
Bi] + ζ

2τs
ch[(1− ζ)

√
Bi]

}
+

+
cos ech2(

√
Bi)

2τs
√

Bi
sh(ζ

√
Bi) + 2

∞∑
n=1

(
1 + 1

τsBin

)
e−Binτ

Bin λn sin(λnζ),

0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs

(34)

On the heated ζ = 0 and adiabatic ζ = 1 surfaces of the disc, from the relation in Equation (34),
it follows that:

∂T∗(ζ, τ)
∂ζ

∣∣∣∣∣∣
ζ=0

= −
(
1−

τ
τs

)
, 0 ≤ τ ≤ τs (35)

∂T∗(ζ, τ)
∂ζ

∣∣∣∣∣∣
ζ=1

= −
cos ech(

√
Bi

)
2τs
√

Bi
+

cos ech2
(√

Bi
)

2τs
√

Bi
sh(
√

Bi) = 0, 0 ≤ τ ≤ τs (36)
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i.e., the solution in Equation (30) satisfies the boundary conditions in Equations (12) and (13).
Substituting τ = 0 in Equation (30), we get:

T∗(ζ, 0) =
cos ech(

√
Bi)

√
Bi

{(
1 + 1

2τsBi

)
ch[(1− ζ)

√
Bi

]
+ ζ

2τs
√

Bi
sh[(1− ζ)

√
Bi

]}
+

+
cos ech2(

√
Bi)

2τsBi ch(ζ
√

Bi) −
(
1 + 1

τsBi

)
1
Bi − 2

∞∑
n=1

(
1 + 1

τsBin

) cos(λnζ)
Bin

, 0 ≤ ζ ≤ 1 (37)

Using the sums (28) and (29), we have:

2
∞∑

n=1

(
1 + 1

τsBin

) cos(λnζ)
Bin = −

1
Bi −

1
τsBi2 +

cos ech2(
√

Bi)
2τsBi ch(ζ

√
Bi

)
+

+
cos ech(

√
Bi)

√
Bi

{(
1 + 1

2τsBi

)
ch[(1− ζ

) √
Bi

]
+ ζ

2τs
√

Bi
sh[(1− ζ

) √
Bi

]}
,

0 ≤ ζ ≤ 1

(38)

Introducing the sum in Equation (38) into Equation (37), we confirms the execution of the initial
condition in Equation (14).

Finally, taking into account the notation in Equation (10), we obtain the temperature field in
the disc:

T(z, t) = Ta + T0T∗(ζ, τ), 0 ≤ z ≤ d, 0 ≤ t ≤ ts (39)

where T∗(ζ, τ),0 ≤ ζ ≤ 1,0 ≤ τ ≤ τs is the dimensionless temperature (Equation (30)).

4. Thermal Insulation of the Lateral Surfaces of the Disc

Formally, for h = 0, the boundary-value problem of heat conduction in Equations (11)–(15), with
respect to dimensionless temperature T∗(ζ, τ), becomes similar to the problem in Equations (17)–(20)
with respect to the function Θ(ζ, τ). Therefore, analogously to Equation (24), we can write:

T∗(ζ, τ) = J0(τ) + 2
∞∑

n=1

e−λn
2τ Jn(τ) cos(λnζ), 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs (40)

where
J0(τ) = τ

(
1−

τ
2τs

)
(41)

Jn(τ) = −
1
λ2

n

(
1 +

1
τsλ2

n

)
+

(
1−

τ
τs

+
1

τsλ2
n

)
eλ

2
n τ

λ2
n

(42)

and coefficients λn, n = 1, 2, . . . . have the form in Equation (23).
With account of the sums [35]

∞∑
n=1

cos(λnζ)

λ2
n

=
1
2

(1
2
ζ2
− ζ+

1
3

)
, 0 ≤ ζ ≤ 1 (43)

∞∑
n=1

cos(λnζ)

λ4
n

= −
1
6

(1
8
ζ4
−

1
2
ζ3 +

1
2
ζ2
−

1
15

)
, 0 ≤ ζ ≤ 1 (44)

the solution in Equations (40)–(42) takes the form:

T∗(ζ, τ) = τ
(
1− τ

2τs

)
+

(
1
2ζ

2
− ζ+ 1

3

)(
1− τ

τs

)
−

1
3τs

(
1
8ζ

4
−

1
2ζ

3 + 1
2ζ

2
−

1
15

)
− 2

∞∑
n=1

(
1 + 1

τsλ2
n

)
e−λ

2
nτ

λ2
n

cos(λnζ)
, 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs (45)
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Substituting ζ = 0 in the solution in Equation (45), we find known formula to calculate the
dimensionless temperature of the heated surface of the adiabatic disc [27]:

T∗(0, τ) = τ
(
1−

τ
2τs

)
+

1
3

(
1−

τ
τs

+
1

15τs

)
− 2

∞∑
n=1

(
1 +

1
τsλ2

n

)
e−λ

2
nτ

λ2
n

, 0 ≤ τ ≤ τs (46)

5. Effective Thermal Conductivity Coefficients

Let us consider the brake disc made from CFCM Thermal-ADF. It consists of the bundles with
fibers incorporated into the matrix. Cylindrical shaped bundles are arranged in layers parallel to the
front surfaces of the disc. Effective values of thermal conductivities of such composite Kz and Kr are
determined by means of averaging at the three scale levels: micro, meso, and macro [28].

At the micro-level, a single bundle is considered, which consists of closely spaced fibers embedded
in the matrix material (Figure 2).
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where fK  and mK  are the thermal conductivities of fiber material and matrix material, 
respectively, and 10 ≤≤ fV  is the fiber volume ratio. 

A unit cell of composite at the meso-level has the shape of a rectangular cuboid with length A  
and squared cross-section with width B . This cell contains a single centered bundle in form of 
squared cuboid with dimensions a  and b , respectively (Figure 3). It should be noted that the real 
circular shape of bundle cross-section has been replaced by a square to simplify further calculations, 
and it does not introduce significant errors in calculations [28]. 
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The effective coefficients of thermal conductivity for selected unit cell of composite in 
longitudinal IIK  and transversal ⊥K  directions are determined using the method of heat flux lines 
linearization [37]. This method consists in the division of the unit cell of composite by adiabatic or 
isothermal and adiabatic planes and calculating the thermal resistance of each part: 

Figure 2. Single bundle with fibers (the micro-level).

The effective coefficients of thermal conductivity of this bundle in the transversal direction (across
the fibers) K̂⊥ and in longitudinal direction (along the fibers) K̂II are established using the mixture rule
in the following form [36]:

K̂⊥ =

(V f

K f
+

1−V f

Km

)−1

, K̂II = V f K f + (1−V f )Km (47)

where K f and Km are the thermal conductivities of fiber material and matrix material, respectively,
and 0 ≤ V f ≤ 1 is the fiber volume ratio.

A unit cell of composite at the meso-level has the shape of a rectangular cuboid with length A and
squared cross-section with width B. This cell contains a single centered bundle in form of squared
cuboid with dimensions a and b, respectively (Figure 3). It should be noted that the real circular shape
of bundle cross-section has been replaced by a square to simplify further calculations, and it does not
introduce significant errors in calculations [28].
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The effective coefficients of thermal conductivity for selected unit cell of composite in longitudinal
KII and transversal K⊥ directions are determined using the method of heat flux lines linearization [37].
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This method consists in the division of the unit cell of composite by adiabatic or isothermal and
adiabatic planes and calculating the thermal resistance of each part:

R =
l

SK
(48)

where l is the distance traveled by a heat flux Q, S is the area of cross-section of the part perpendicular
to the heat flux direction, and K is the thermal conductivity of the material of the same part (Figure 4).
Bearing in mind that the results depend on the manner of the unit cell division, we find effective
thermal conductivities of cell using two methods of division by means of adiabatic and isothermal
planes. The final results are established as an arithmetic average of two outcomes obtained by different
methods. Below, we consider these two methods.
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Division of a unit cell by adiabatic planes 1-1 and 2-2 in the transverse direction is shown in
Figure 4a, and in the longitudinal direction in Figure 4b.

Based on Equation (48), the effective coefficients of thermal conductivity of selected unit cell of
composite in this case are determined in the form:

K⊥ =
B

ABR⊥
=

1
AR⊥

, KII =
A

B2RII
(49)

where, according to the scheme of combining resistances Ri, i = 1, 2, 3 of individual part (Figure 5a),
the total thermal resistances R⊥ and RII of the unit cell are equal to:

R⊥ =
(2R⊥,1 + R⊥,2)R⊥,3

2R⊥,1 + R⊥,2 + R⊥,3
=

(
1

R⊥,3
+

1
2R⊥,1 + R⊥,2

)−1

(50)

R⊥,1 =
B− b

2abKm
, R⊥,2 =

1
aK̂⊥

, R⊥,3 =
B

(AB− ab)Km
(51)

RII =
(2RII,1 + RII,2)RII,3

2RII,1 + RII,2 + RII,3
=

(
1

RII,3
+

1
2RII,1 + RII,2

)−1

(52)

RII,1 =
A− a
2b2Km

, RII,2 =
a

b2K̂II
, RII,3 =

A
(B2 − b2)Km

(53)

and the thermal conductivities K̂II and K̂⊥ of the bundle contained in the unit cell are calculated using
Equation (47).
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Figure 5. Scheme of combining the particular resistances for the divisions of a unit cell by planes:
(a) adiabatic; and (b) adiabatic and isothermal.

Substituting the effective thermal resistance R⊥ (Equations (50) and (51)) and RII (Equations (53)
and (540) into Equation (49), we find:

K⊥ =

(
1−

ab
AB

)
Km +

1
A

(
B− b
abKm

+
1

aK̂⊥

)−1

, (54)

KII =

(
1−

b2

B2

)
Km +

A
B2

(
A− a
b2Km

+
a

b2K̂II

)−1

. (55)

Division of the unit cell simultaneous by adiabatic 1-1 and 2-2 and isothermal 3-3 and 4-4 planes,
respectively, in transverse and longitudinal directions, are presented in Figure 6. A scheme of combining
resistances for this division is shown in Figure 5b.
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Proceeding as above, we obtain:

R⊥ = 2R⊥,4 +
R⊥,2R⊥,5

R⊥,2 + R⊥,5
= 2R⊥,4 +

(
1

R⊥,2
+

1
R⊥,5

)−1

(56)

R⊥,4 =
B− b

2ABKm
, R⊥,5 =

b
(AB− ab)Km

(57)
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RII = 2RII,4 +
RII,2RII,5

RII,2 + RII,5
= 2RII,4 +

(
1

RII,2
+

1
RII,5

)−1

(58)

RII,4 =
A− a

2B2Km
, RII,5 =

a
(B2 − b2)Km

(59)

where thermal resistances R⊥,2 and RII,2 are determined using Equations (51) and (53). Taking into
account the effective thermal resistances R⊥ (Equations (56) and (57)) and RII (Equations (58) and (59))
in Equation (49), we find:

K⊥ =
1
A

 B− b
ABKm

+

(
aK̂⊥ +

(AB− ab)
b

Km

)−1−1

(60)

KII =
A
B2

 A− a
B2Km

+

(
b2

a
K̂II +

(B2
− b2)

a
Km

)−1
−1

(61)

The length A and the width B of the unit cell of composite are related with dimensions a and b of
the single bundle and the bundle volume ratio 0 ≤ Vb ≤ 1 as:

a− b = A− B, ab2 = VbAB2 (62)

Eliminating A in Equation (62), we obtain the following algebraic equation for parameter B:

B3 + (a− b)B2
− ab2V−1

b = 0 (63)

At the macro-level, the fiber bundles are arranged on the planes parallel to the front surfaces of
the disc (Figure 7).
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Figure 7. Layers of the bundles (the macro-level).

The thermal conductivity of the disc in the axial direction is equal to the effective coefficient of
thermal conductivity of the unit composite cell in the transverse direction on the meso-level:

Kz = K⊥ (64)

where K⊥ is a mean arithmetic of values calculated from Equations (54) and (60).
When determining the effective coefficient of thermal conductivity of the disc in the radial

direction, the orientation of fiber bundles on the planes should be taken into account (Figure 8).
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If the bundles are arranged in the radial direction (Figure 8a), then:

Kr = KII (65)

where KII is a mean arithmetic values obtained from Equations (55) and (61). However, if the bundles
are oriented in circumferential direction (Figure 8b), then:

Kr = K⊥ (66)

where K⊥ is determined as in Equation (64). In the case of composite discs with chaotically oriented
fiber bundles (Figure 8c), the effective coefficient of thermal conductivity in the radial direction is
defined as:

Kr = 0.5(K⊥ + KII) (67)

where KII and K⊥ are calculated in the same manner as in Equations (65) and (66), respectively.
The empirical Equation (67) assumes that the number of bundles oriented in the radial and

circumferential directions are equal. Therefore, the value of Kr found using Equation (67) for the chaotic
orientation bundles may be established with an error. One of the proposals to modify Equation (67)
could be to use statistical methods with the known probability distribution of bundles orientation.

6. Numerical Analysis

Calculations of the temperature T (Equation (39)) were performed for a disc made of carbon
composite material− Termar-ADF with randomly oriented fiber bundles (K f = 250 W m−1K−1,
Km = 10 W m−1K−1, c = 1400 J kg−1K−1, and ρ = 1800 kg m−3) [27]. The values of others input
parameters were equal to: d = 14 mm, r1 = 27 mm, r2 = 37 mm, f = 0.28, p0 = 0.98 MPa,
ω0 = 593.75 rad s−1, ts = 6.8 s, b = 1 mm, V f = 0.95, and Ta = 20 ◦C [28].

The change of temperature during braking on the friction surface of the disc is presented in
Figure 9. Solid line demonstrates the results obtained using Equations (31) and (39) with effective
values of thermal conductivities Kz (Equation (64)) and Kr (Equation (67)). Dotted line presents
appropriate data obtained from measurement of temperature by means of thermocouples [27]. It can
be seen that the curves are close to each other. In the initial stage of braking, the temperature achieved
in the theoretical solution rapidly increases to maximum value Tmax = 466 ◦C at t = tmax = 3.36 s,
whereupon it decreases to T = 337 ◦C at the stop t = ts = 6.8 s. The highest value of the experimentally
measured temperature is almost the same; however, it is attained a bit later at t = tmax ≈ 4 s. In the
final stage of braking, the experimental temperature is slightly higher than the value obtained using
the theoretical solution.
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and (39). The temperature growth at the very beginning of the process is the fastest, and its 
maximum value is the highest on the friction surface 0=z . Increasing the distance from this surface 
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Figure 10. Evolutions of temperature T  on the different depths z  from the heated surface of the 
disc for 12KmW140 −−=h , mm,30=a  and 5.0=bV . 

Figure 9. Evolutions of temperature T on the heated surface z = 0 of the disc for h = 140 W m−2K−1,
a = 30 mm, and Vb = 0.5. The solid line is the theoretical solution using Equations (31) and (39) and
the dotted line is the experimental data from the article [27].

Changes of temperature during braking on different distances from heated surface of the disc are
shown in Figure 10. Calculations were conducted based on the exact solution in Equations (30) and
(39). The temperature growth at the very beginning of the process is the fastest, and its maximum
value is the highest on the friction surface z = 0. Increasing the distance from this surface to the
inside of the disc, the temperature decreases and the delay effect occurs—elongation of the time tmax of
maximum temperature achievement. After achieving the highest temperature value at the particular
depths in the range 0 ≤ z < 6 mm, the temperature drop lasts until standstill, whereas, for z ≥ 6 mm,
the temperature monotonically rises during the whole braking process.
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The increase of heat exchange with an environment leads to linear decrease of maximum
temperature Tmax of the friction surface of the disc (Figure 11). The highest value Tmax = 473 ◦C
is achieved at tmax = 3.39 s for h = 50 Wm−2K−1. Enhancement of convective cooling intensity to
h = 250 Wm−2K−1 results in the drop of the maximum temperature to Tmax = 460 ◦C at tmax = 3.29 s.
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Figure 11. Dependence of maximum temperature Tmax of the heated surface of the disc z = 0 on
coefficient of heat exchange h for a = 30 mm, Vb = 0.5.

Changes of effective thermophysical properties of composite material due to increasing the length
a of bundles are shown in Figure 12. We see that significant rise of Kr and drop of Kz and k take place
in the range 1 mm ≤ a ≤ 15 mm. Further increase of parameter a causes gentler variations, and for
a ≥ 25 mm values of coefficients Kr, Kz, and k remain almost constant. Since the bundles are located
on the planes oriented parallel to the front disc surface z = 0 (Figure 7), their length has slight effect
on heat conduction in the axial direction. For the shortest considered length a = 1 mm, the effective
coefficient of thermal conductivity in this direction has the greatest value Kz = 28.3 W m−1K−1.
Inconsiderable elongation of bundles results in the slight decrease to Kz ≈ 25 W m−1K−1, and it remains
steady on this level within 7 mm ≤ a ≤ 30 mm. The composite’s ability to conduct heat in the radial
direction Kr significantly increases from Kr = 28.7 W m−1K−1 for a = 1 mm to Kr = 63.5 W m−1K−1

for a = 30 mm. On the contrary to the described above changes of effective thermal conductivity,
the thermal diffusivity is the highest k = 1.125× 10−5 m2s−1 for the composite with the shortest bundles
(a = 1 mm). With increase of the bundle length, effective thermal diffusivity drops, attaining minimum
value k = 0.985× 10−5 m2s−1 for a = 30 mm.
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Figure 12. Dependencies of effective coefficients of thermal conductivity Kr, Kz and thermal diffusivity
k on the length a of fiber bundle for h = 140 W m−2K−1 and Vb = 0.5.

With increasing bundle length, the maximum temperature of the heated disc surface z = 0 is rising
from the value Tmax = 439.4 ◦C for a = 1 mm to Tmax = 459.2 ◦C for a = 30 mm(Figure 13). As shown
in Figure 12, the coefficients of thermal conductivity in radial and axial directions of composite with
short fiber bundles take close values and its thermal diffusivity is the greatest. The last leads to a
faster heat removal from the surface of friction and, consequently, to relatively low value of maximum
temperature. Increase of fiber bundles causes decrease of thermal diffusivity and increase of maximum
temperature. Growth of Tmax is the most rapid over the change range 1 < a ≤ 5 mm, when the drop of
thermal diffusivity is the largest.
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Figure 13. Dependence of maximum temperature Tmax of the disc on the length of bundles a for
h = 140 W m−2K−1 and Vb = 0.5.

Increase of concentration of bundles in composite results in increase of its thermal diffusivity
and conductivity from values k = 0.985 × 10−5 m2s−1, Kr = 63.5 Wm−1K−1, and Kz = 25 Wm−1K−1
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at Vp = 0.5 to k = 3.527 × 10−5 m2s−1, Kr = 155.9 Wm−1K−1, and Kz = 88.9 Wm−1K−1 at Vb = 0.95
(Figure 14). Such growth of material ability to dissipate heat from friction surface of the disc causes
almost linear drop of maximum temperature value Tmax and elongation of time tmax of its achievement
(Figure 15). For the smallest considered concentration of fiber bundles in composite (Vb = 0.5),
the maximum temperature Tmax = 466 ◦C is the highest and attained at time tmax = 3.36 s, while,
for the largest value Vb = 0.95, we have Tmax = 289.2 ◦C and tmax = 4.73 s.
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7. Conclusions

The calculation scheme is proposed to estimate the maximum temperature of a multi-disc brake
system. For this purpose, the boundary-value problem of heat conduction is formulated for a single
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disc considering the frictional heating on its front surfaces, convective cooling of its lateral surfaces,
and the detailed structure of the composite material. This material is made up of layers of fiber bundles
arranged in planes parallel to the front surfaces of the disc. Each bundle has a cylindrical shape
filled with matrix material reinforced with carbon fibers. The effective thermal conductivities of this
composite are calculated at the three scale levels: micro, meso, and macro. The exact solution of the
problem is obtained, which allows investigating variations of disc temperature under the effect of
input parameters of braking process and friction material parameters (such as the concentration of
fibers and their dimensions and orientation). Calculations were carried out for a disc made up of
carbon composite material Termar-ADF, widely applied in aircraft brakes. Due to performed numerical
analysis, it is established that:

• Temperature values calculated on the basis of the obtained analytical solution are consistent with
appropriate experimental data presented in [27].

• During short-lasting (0 < ts ≤ 10 s), heavy loaded (p0 � 1 MPa) braking processes, the influence
of convective cooling of the lateral disc surfaces on its maximum temperature is inconsiderable.
The decrease of the maximum temperature value with increase of coefficient of heat exchange
is linear.

• The increase of the concentration of fiber bundles in the composite results in increase of its thermal
conductivity and diffusivity.

• The high temperature of the disc at fixed intensity of convective cooling can be decreased by using
shorter fiber bundles and simultaneously increasing their concentration in the composite material.

The solution was obtained without considering possible variations of friction coefficient and
material properties under the influence of temperature. It should be noted that consideration of
thermal sensitivity and friction coefficient changes is possible by using the nonlinear models, which
require numerical methods, such as FEM, to solve the proper thermal problems of friction. Some
steps are taken to do this in [29], although for a different material. Another problem that is difficult
to solve, arising in this context, is related to the development of composite structure models with
temperature-dependent thermophysical properties of its components. Even in the considered case
of constant thermophysical properties, the procedure for determining the effective properties of the
composite is quite complicated. We achieved this by using some geometric simplifications, in particular
by converting the actual circular cross-sectional shape of the bundle into a square. The development of
mathematical models of the composite, taking into account thermal sensitivity of its components and
their interaction will be one of the directions of our future research.

Based on these findings, we conclude that the proposed mathematical model allows with sufficient
accuracy determining a temperature mode of a multi-disc brake at a single braking. Calculations
are executed only for one frictional composite material, but the model proposed can be used for
other materials, too. In such a case, it may be necessary to use other methods for obtaining effective
thermophysical properties of the composite [38].
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Nomenclature

A length of the unit cell (m)
a length of the bundle (m)
Aa area of the nominal contact region (m2)
B width of the unit cell (m)
b width of the bundle (m)
Bi Biot number (dimensionless)
c specific heat (J kg−1 K−1)
d thickness (m)
f mean coefficient of friction (dimensionless)
h heat transfer coefficient (W m−2 K−1)
Kr,Kz thermal conductivities of the disc (W m−1 K−1)
K f ,Km thermal conductivities of fibers and matrix materials (W m−1 K−1)
K̂⊥,K̂II effective thermal conductivities of the fiber bundle (Wm−1 K−1)
K⊥, KII effective thermal conductivities of the unit cell (Wm−1 K−1)
l distance traveled by a heat flux (m)
p0 nominal value of contact pressure (MPa)
Q heat flux (W)
q intensity of the frictional heat flux (W m−2)
q0 nominal value of the frictional heat flux intensity (W m−2)
r1 internal radius of the disc (m)
r2 external radius of the disc (m)
R⊥, RII effective thermal resistances of the unit cell (K W−1)
S area of the part cross-section (m2)
t time (s)
ts time of braking (s)
T temperature (◦C)
Ta initial temperature (◦C)
T∗ dimensionless temperature
T0 temperature scaling factor (◦C)
Vb bundle volume ratio (dimensionless)
V f fiber volume ratio (dimensionless)
W0 initial value of kinetic energy (J)
z axial coordinate (m)
r radial coordinate (m)
Greek symbols
ρ density (kg m−3)
τ dimensionless time
τs dimensionless time of braking
ζ dimensionless spatial coordinate
ω0 initial value of angular speed (rad s−1)
Subscripts
f fiber
m matrix
r radial direction
z axial direction
⊥ transversal direction
II longitudinal direction
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