

Supplementary Materials

The Influence of the Electrodeposition Parameters on the Properties of Mn-Co-Based Nanofilms as Anode Materials for Alkaline Electrolysers

Karolina Cysewska ^{1,*}, Maria Krystyna Rybarczyk ², Grzegorz Cempura ³, Jakub Karczewski ⁴, Marcin Łapiński ⁴, Piotr Jasinski ¹ and Sebastian Molin ¹

- ¹ Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland; piotr.jasinski@pg.edu.pl (P.J.); sebastian.molin@pg.edu.pl (S.M.)
- ² Chemical Faculty, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, ul. Narutowicza 11/12, 80–233 Gdansk, Poland; maria.rybarczyk@pg.edu.pl
- ³ Faculty of Metals Engineering and Industrial Computer Science, International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, ul. A. Mickiewicza 30, 30-059 Krakow, Poland; cempura@agh.edu.pl
- ⁴ Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80–233 Gdansk, Poland; jakkarcz@pg.edu.pl (J.K.); marcin.lapinski@pg.edu.pl (M.Ł.)
- * Correspondence: karolina.cysewska@pg.edu.pl

Received: 21 May 2020; Accepted: 10 June 2020; Published: 11 June 2020

Figure S1. Cyclic voltammograms recorded during sweeping the potential from 0.15 to 0.25 V vs. Ag/AgCl with different scan rates in aqueous solution of 1 M KOH for Mn-Co film synthesized in solution of Mn:Co 2:4 mM (a), 2:6 mM (c) and 2:8 mM (e) for 200 mC. Corresponding linear approximation of the capacitive currents versus scan rate obtained from cyclic voltammograms for Mn-Co film synthesized in solution of Mn:Co 2:4 mM (b), 2:6 mM (d) and 2:8 mM (f) for different deposition charge.

Figure S2. Synthesis graphs recorded during the potentiostatic deposition of Mn/Co oxide/hydroxides at -1.1 V vs. Ag/AgCl in aqueous solution of differently concentrated Mn(NO₃)₂·4H₂O and Co(NO₃)₂·6H₂O with electropolymerization time limited by a charge of 200 mC.

Figure S3. Optical microscopy image of the as-deposited and after alkaline treatment in 1 M KOH Mn-Co film on nickel foam.

Figure S5. SEM images of Mn-Co film synthesized in aqueous solution of Mn:Co 2:4 mM for 60 mC (**a**) and 2:8 mM for 200 mC (**b**) on nickel foil.

Figure S6. SEM images of Mn-Co film synthesized in aqueous solution of **(a)** 4 mM Co(NO₃)₂·6H₂O or **(b)** 4 mM Mn(NO₃)₂·4H₂O and 2 mM Co(NO₃)₂·6H₂O on nickel foam for 200 mC

Figure S7. Linear sweep voltammetry profiles (**a**) and corresponding Tafel plots (**b**) of Mn-Co film synthesized in solution of Mn:Co 2:4 mM, 4:2 mM and 0:4 mM on nickel foam measured in Ar-purged 1 M KOH.

Figure S8. Linear sweep voltammetry profiles of nickel foil and Mn-Co film synthesized in solution of Mn:Co 2:8 mM for 60 and 120 mC on nickel foil.

Table S1. Comparison of catalyst based on Mn and/or Co transition metals synthesized electrochemically for OER activity available in the literature.

catalyst	substrate	solution	Eonset / V vs. RHE	η (10 mA·cm ⁻² geo)/ mV	Ref.
Mn-Co	Ni foam	1 M KOH	1.47	335	This work
CoMn-LDH	carbon	0.1 M KOH	-	258	[1]
MnO_2	carbon	0.1 M KOH	-	424	[1]
MnO _x -573K	F:SnO2	1 M KOH	-	570 at 20 mA \cdot cm ⁻² _{geo}	[2]
Mn_3O_4	F:SnO2	1 M KOH	-	570	[2]
Co_3O_4	Ni foil	0.1 M KOH	1.58	530	[3]
Co_3O_4	SS	1 M KOH	-	603 at 100 mA \cdot cm ⁻² _{geo}	[4]
Co ₃ O ₄	Pt	1 M KOH	-	410	[5]
Ni _{0.6} Co _{2.4} O ₄	Ni foil	0.1 M KOH	1.57	-	[3]
Zn _x Co _{3-x} O ₄	Au	1 M NaOH	-	330	[6]
ZnCo ₂ O ₄	Ni foam	1 M KOH	-	390	[5]

References

- 1. Yan, F.; Guo, D.; Kang, J.; Liu, L.; Zhu, C.; Gao, P., Zhang, X.; Chen, Y. Fast fabrication of ultrathin CoMn LDH nanoarray as flexible electrode for water oxidation. *Electrochim. Acta* **2018**, *283*, 755–763.
- Ramírez, A.; Hillebrand, P.; Stellmach, D.; May, M.M.; Bogdanoff, P.; Fiechter, S. Evaluation of MnOx, Mn₂O₃, and Mn₃O₄ electrodeposited films for the oxygen evolution reaction of water. *J. Phys. Chem. C* 2014, *118*, 14073–14081.
- Lambert, T.N.; Vigil, J.A.; White, S.E.; Davis, D.J.; Limmer, S.J.; Burton, P.D.; Coker, E.N.; Beechem, T.E.; Brumbach, M.T. Electrodeposited Ni_xCo_{3-x}O₄ nanostructured films as bifunctional oxygen electrocatalysts. *Chem. Commun.* 2015, *51*, 9511–9514.
- 4. Wu, L.K.; Hu, J.M. A silica co-electrodeposition route to nanoporous Co₃O₄ film electrode for oxygen evolution reaction. *Electrochim. Acta* **2014**, *116*, 158–163.
- 5. Kim, T.W.; Woo, M.A.; Regis, M.; Choi, K.S. Electrochemical synthesis of spinel type ZnCo₂O₄ electrodes for use as oxygen evolution reaction catalysts. *J. Phys. Chem. Lett.* **2014**, *5*, 2370–2374
- Han, S.; Liu, S.; Wang, R.; Liu, X.; Bai, L.; He, Z. One-step electrodeposition of nanocrystalline Zn_xCo_{3-x}O₄ films with high activity and stability for electrocatalytic oxygen evolution. *Acs Appl. Mater. Interfaces* 2017, 9, 17186–17194

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).