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Abstract: Zinc oxide nanoparticles were prepared from Zn5(CO3)2(OH)6 precursor, capped with
poly(vinylpyrrolidone) (PVP), and annealed at 600 ◦C. The obtained powders were characterized
by a powder X-ray diffraction (PXD), transmission electron microscopy (TEM), scanning electron
microscopy (SEM), UV–visible spectroscopy (UV–vis), Raman spectroscopy, infrared spectroscopy (IR),
thermal analysis (TGA/DTA), and third-order nonlinear (NL) optical measurement. Morphological
evaluation by TEM and SEM measurements indicated that the precursor micro-particles are ball-shaped
structures composed of plates with a thickness of approximately 10 nm. ZnO thin films, as well as
ZnO/polymer multilayer layouts, were obtained by wet chemical methods (spin- and dip-coating).
Surface topography and morphology of the obtained films were studied by SEM and AFM microscopy.
Films with uniformly distributed ZnO plates, due to the erosion of primary micro-particles were
formed. The fabricated specimens were also analyzed using a spectroscopic ellipsometry in order to
calculate dielectric function and film thickness.

Keywords: ZnO; nanoparticles; thin films; wet chemical methods; poly(vinylpyrrolidone);
optical properties

1. Introduction

Through the last two decades, zinc oxide has received a broad attention due to its application in
various advanced fields of science and industry such as: electronics, optics, photonics, and biotechnology.
Applicability of ZnO is related to the size reduction of metal oxide structures which in turn reveals an
advantageous impact on its versatile properties. ZnO is a wide band gap (3.37 eV) semiconductor with
high exciton binding energy (60 meV), high thermal and mechanical stability at room temperature
and piezoelectric properties [1,2]. Due to that properties ZnO is used in fabrication of nanoscale
optoelectronic devices, sensors, lasers or transducers. Significantly, zinc oxide is currently extensively
studied in photocatalysis as an efficient and promising material for water treatment technology [3],
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and in photovoltaics, as an effective material for the development of different types of solar cells [4–7].
Furthermore, ZnO nanostructures exhibit antiseptic properties, they are nontoxic, environmentally
friendly, biocompatible and have been widely used in daily applications, such as pharmacy and
cosmetics [8,9]. Hence, they are promising materials for production of biochemical sensors, advanced
biomedical applications, or even for agricultural industry in plant protection [10,11], without risk to
human health.

There are a large number of zinc oxide nanoparticle fabrication methods, such as: commercially
used mechanochemical processing, physical vapor synthesis, or other laboratory scale methods
(precipitation, thermal decomposition, or hydrothermal synthesis) [12]. Considering the oxide layers,
they can be fabricated by physical methods such as: evaporation (molecular beam epitaxy (MBE),
electron beam evaporation) or sputtering processes (e.g., magnetron and radio-frequency sputtering),
and pulsed laser deposition (PLD), or by chemical techniques such as dip- and spin-coating methods,
chemical bath deposition, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), atomic
layer deposition (ALD), ultrasonic spray method, etc. [13–16]. Dip-coating and spin-coating deposition
techniques offer the opportunity for facile fabrication of thin films of uniformly dispersed nanoparticles
on the substrates, even for large areas, and allow to produce a wide variety of composite materials at
mild conditions. Zinc oxide film in combination with another layer, e.g., polymer film can find many
applications, including mentioned above solar cell systems.

In this study, ZnO powders were synthesized by precipitation and decomposition of a basic zinc
carbonate. The precursor powder was also utilized in the deposition process carried out using wet
chemical deposition techniques. Obtained material were used to fabricate ZnO/polymer multilayer
systems. For this purpose, poly(vinylpyrrolidone) (PVP) was chosen. PVP has been widely used
as a biomaterial for many years in science research as well as in industry and it is known as a
bulky, amphiphilic, non-toxic, and biocompatible polymer [17,18]. Furthermore, PVP is often used
in nanoparticle synthesis as a surface stabilizer, growth modifier, dispersant, and reducing agent
depending on the synthesis conditions [19]. The mentioned type of ZnO/PVP composites/interlayers
have been fabricated and considered as the potential biosensors for superoxide anion radicals (SOR),
for characterizing the antioxidant properties of fluids [20,21] and to enhance the efficiency of polymer
solar cells [22]. The reports on ZnO/PVP composites have mainly described synthesis of ZnO particles
capped with PVP (used as a surfactant) or preparation of composite films by solution casting technique.
In both cases, the ZnO particles were homogeneously distributed in the PVP polymer matrix. Our aim
was to develop a new simple and inexpensive procedure for thin film fabrication, by wet techniques,
applying subsequent deposition of individual components with well separated ZnO grains. The new
method provides possibility of composition control and modification by additional components,
resulting in property tuning of new hybrid inorganic−organic materials.

In this study, small ZnO particles as well as ZnO/PVP layers were prepared and characterized.
We have expanded the relationships between the morphology of these materials and different linear
and NL optical properties as luminescence, optical limiting and optical switching responses.

2. Materials and Methods

2.1. Materials

Zn(NO3)2·6H2O, NaHCO3 (POCh, Gliwice, Poland), and poly(vinylpyrrolidone) (PVP) K30,
Mw ~ 40 000 g/mol) (SigmaAldrich, Saint Louis, MO, USA) and solvents were of analytical grade and
used as purchased.

2.2. Synthesis of ZnO Powders

In the first stage basic zinc carbonate precursor was synthesized in reaction of Zn(NO3)2·6H2O
with NaHCO3 by slow addition of 50 mL 0.12 M NaHCO3 aqueous solution to the 160 mL mixture of
0.50 g Zn(NO3)2·6H2O, 0.12 g PVP and deionized water, over 30 min at 70 ◦C, subsequently followed
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by 1.5 h heating, with constant stirring. Final mixture was cooled to the room temperature, the white
suspension centrifuged and washed with water, ethanol, and acetone. The basic zinc carbonate was
placed in a horizontal tube or muffle furnace, at the ambient atmosphere, heated at 20 ◦C/min or
10 ◦C/min rates up to 600 ◦C and annealed for 1 h or 2 h. The furnace was allowed to cool naturally.

2.3. Thin Layer Fabrication

All films were deposited onto silicon plates (10 mm × 10 mm × 1 mm) by a spin- (Laurell 650SZ,
North Wales, PA, USA) or dip-coating (Qualtech QPI-168, Denver, CO, USA) techniques. Prior to
the deposition process, the substrates were thoroughly cleaned to prevent the appearance of various
types of micro-contaminants in the film. The silicon wafer was pre-cleaned with organic solvents
(acetone and ethanol) and three times-distilled water. On the as-prepared substrates, sonicated ethanol
suspensions of precursor powders were deposited and obtained films were heated at 500–600 ◦C for
1–3 h. Fabricated ZnO thin films were used to prepare ZnO/PVP multilayer systems. For this purpose,
PVP ethanol solution was deposited by spin-coating on ZnO/Si base using different process parameters.

2.4. Characterization Methods

Powder X-ray diffractograms (PXD) were collected using using X’Pert Pro θ–2θ diffractometer
(Malvern Panalytical Ltd, Malvern, UK) with CuKα radiation. Phase identification was performed by
search–match procedures with an access to the ICDD powder diffraction file (PDF) and in accordance
with the JCPDS cards. Scanning electron microscopy (SEM) studies were performed with a Quanta 3D
FEG (FEI, Hillsboro, OR, USA) (EHT = 30 kV) instrument. Obtained powders and films deposited at Si
were placed onto carbon tabs attached to aluminum SEM stubs and analyzed in the microscope without
coating treatment. Transmission electron microscopy (TEM) analysis was performed on a carbon-coated
copper grid and examined with a Tecnai F20 X-Twin (FEI, Hillsboro, OR, USA) instrument. Atomic
Force Microscopy (AFM) analysis of films was performed using a Veeco microscope (Veeco, Plainview,
NY, USA) (scan size 2–10 µm; scan rate 1 Hz, tapping mode). Thermal properties were studied by
thermogravimetric-differential thermal analysis (TG-DTA) techniques, under a flowing air atmosphere
using STA 409PC TG-DTA instrument (Netzsch, Selb, Germany), in the 20–700 ◦C range and heating
rate of 5 ◦C/min. The FT-IR spectra of powders were collected using a FT-IR Vertex 70V (Bruker
Optik, Ettlingen, Germany) spectrometer in the ATR mode in the spectral range of 100–4000 cm−1.
Raman spectra of ZnO material were recorded using a SENTERRA II Compact Raman Microscope
(Bruker Optik, Ettlingen, Germany) in the range 50–4400 cm−1. The Raman scattering was excited
by a laser operating at 532 nm, and detected using a CCD detector. UV–vis spectra of ZnO samples
were registered in solid state by diffuse reflectance spectroscopy (DRS) technique (V-750 UV–visible
Spectrophotometer, JASCO, Tokyo, Japan). The band gap of ZnO was determined using modified
Kubelka–Munk function. The photoluminescence properties of powders were characterized on a
self-constructed equipment with Nd:YAG, LCS-DTL-374QT laser (355 nm, Russia). The spectroscopic
ellipsometry (SE) technique was used to determine the optical constants and the thicknesses of prepared
films. Ellipsometric azimuths, Ψ and ∆, as well as the depolarization factor (%Depol) were measured
for three angles of incidence (65◦, 70◦, and 75◦) in the NIR-Vis spectral range (413–1240 nm; 3–1 eV) by
the V-VASE device (J. A. Woollam Co., Inc., Lincoln, NE, USA).

Nonlinear optical coefficients (n2 and β) were determined using the D4σ Z-scan technique inside
the 4f imaging system (Figure 1) by a mode-locked Nd:YAG laser (λ = 355 and 532 nm, τ = 10 ps, 10 Hz
repetition rate) [23,24].
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It should be noted that the beam splitter BS1, at the entry of the setup allows to monitor the
fluctuations (through the lens L3) occurring in the incident laser beam, independently from the
absorption that may occur inside the nonlinear material (NLM). Gaussian beam images truncated
through a circular aperture (radius of 1.13 mm) at the input of the system (object plane) are registered
by a single-shot CCD camera (situated in the image plane of the 4f setup) as a function of the sample
position (z), while NLM moves in the focal plane. Open- and closed-aperture Z-scan normalized
transmittance can be numerically processed from the obtained images, which allow simultaneous
measurements of the NL refractive index (n2) and the NL absorption coefficient (β). In the D4σ
technique, in contrast to traditional closed-aperture Z-scan method [25], the n2 value is obtained from
the acquired CCD images by measuring the laser beam waist relative variations (BWRV) in the image
plane. Whereas, β is determined using the well-known open-aperture Z-scan procedure [25,26].

The determinations of n2 and β are supported with simulations of the image formation inside the
4f system [24,27]. The classic measuring procedure considers the linear absorption coefficient (α) and
was built to take into account the response of the material described by an effective cubic nonlinearity
depending only on β and n2. It should be noted that thermo-optical effects are considered insignificant
in the picosecond range (10 ps) and low repetition rate (10 Hz) [28]. The transmittance of the sample is

T(z, u, v) = [1 + q(z, u, v)]−1/2 exp
[
j∆ϕeff

NL(z, u, v)
]
, (1)

where q(z, u, v) = βLI(z, u, v), and ∆ϕeff
NL(z, u, v) = 2πn2LIeff(z, u, v)/λ—the effective value of the

NL phase shift, Ieff(z, u, v) = I(z, u, v) log[1 + q(z, u, v)]/q(z, u, v)—the effective intensity, Le f f =(
1− e−αL

)
/α—the effective thickness of the NLM.

The NL phase shift can be deduced from the signals of the BWRV obtained in low and high intensity
regimes. More experimental details and related data processing are described elsewhere [23,24]. ZnO
suspensions were placed inside 1 mm quartz cell. It should be mentioned that the thickness of cell is
much smaller than the Rayleigh range (z0 = 9.5 mm) of the laser beam in the focal region. Moreover,
the response of the fused silica composing the cell is considered during the measurement process in
a way that the NL phase induced in the wall’s glass is deduced from the total phase measured with
the solution.

3. Results and Discussion

3.1. Synthesis and Characterization of Powders

A series of synthesis were carried out by varying the reagents molar ratio (Zn(NO3)2·6H2O/

NaHCO3: 1:1.5, 1:2., 1:3.5), the amount of PVP (0.1–1 g), heating time (0.5–1.5 h) and calcination time
(1–2 h). During the synthesis process the following chemical reaction occurs [29,30]

5 Zn(NO3)2·6H2O + 10 NaHCO3→ Zn5(CO3)2(OH)6 + 8 CO2 + 32 H2O + 10 NaNO3
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Zn5(CO3)2(OH)6→ 5 ZnO + 2 CO2 + 3 H2O

Properties of powders obtained in typical syntheses, described in detail above, resulted in the
most symmetrical and smallest particles. The particles sizes differences slightly depend on the applied
reagents molar ratio and amount of capping agent (larger amounts of PVP caused aggregation of
particles in bulk). PVP acts as a capping agent for metallic salts due to the steric and electrostatic
stabilization of the amide and methylene groups. Proposed scheme of interactions between PVP and
precursor ions is presented in Figure 2.

Materials 2020, 13, 2559 5 of 17 

 

 
Figure 2. Proposed scheme of the interactions between PVP and the precursor ions. 

Most probably metal ions are bound by the ion – dipole interactions with the amide groups in 
the polymer chain. This effect of stabilization can be related to the precursor synthesis reaction and 
to the calcination process, during which PVP affects the formation of the ZnO NPs nuclei. Without 
the capping agent small nanoparticles with high surface energy would become larger via the Ostwald 
ripening process. After calcination the PVP and all undesired constituents are decomposed and pure 
ZnO powder is formed [31–33].  

Morphology of the obtained precursor micro-sized structures, in the form of balls resembling 
stars, was similar for all syntheses variants (Figure 3a). TEM micrographs indicate the erosion of ball-
like microparticles, assisted with ultrasonification, resulted in the separated carbonate (Zn-Carb) 
plates with the thickness of ca. 10 nm (Figure 3b,c).  

 
Figure 3. SEM (a) and TEM (b,c) micrographs of Zn-Carb particles obtained in typical synthesis. 

Calcination process resulted in two main different types of powders obtained in the separate 
experiments at the same conditions. We have distinguished ZnO particles with well-preserved 
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product, however a comparison of both types of powders was also examined. 

Figure 2. Proposed scheme of the interactions between PVP and the precursor ions.

Most probably metal ions are bound by the ion – dipole interactions with the amide groups in the
polymer chain. This effect of stabilization can be related to the precursor synthesis reaction and to
the calcination process, during which PVP affects the formation of the ZnO NPs nuclei. Without the
capping agent small nanoparticles with high surface energy would become larger via the Ostwald
ripening process. After calcination the PVP and all undesired constituents are decomposed and pure
ZnO powder is formed [31–33].

Morphology of the obtained precursor micro-sized structures, in the form of balls resembling
stars, was similar for all syntheses variants (Figure 3a). TEM micrographs indicate the erosion of
ball-like microparticles, assisted with ultrasonification, resulted in the separated carbonate (Zn-Carb)
plates with the thickness of ca. 10 nm (Figure 3b,c).
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Calcination process resulted in two main different types of powders obtained in the separate
experiments at the same conditions. We have distinguished ZnO particles with well-preserved
morphology of the precursor—type A (Figure 4a,b) and ZnO with modified morphology to cylindrically
shaped particles of 20–50 nm width and 50–200 nm length—type B (Figure 4c). It should be noted that
intermediate forms were detected as well (Figure 4d). Powder B was fabricated as a primary product
in a reproducible way. Majority of the analyzes have been performed for the type B product, however
a comparison of both types of powders was also examined.Materials 2020, 13, 2559 6 of 17 
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Figure 4. SEM micrographs of ZnO powders A type (a,b), B type (c) and intermediate forms (d).

Thermal analysis measurements were carried out for the precursor obtained in non-typical
synthesis, but with higher amount of PVP mass (0.5 g). The TGA/DTA curves of the precursor (Figure 5)
indicates ca. 32% total weight loss in the calcination process. The first endotherm is observed in
the range 25–295 ◦C (26.7% weight loss), while the second one between 295–490 ◦C (4.1% weight
loss), and the third in the range 590–700 ◦C (0.9% weight loss). It would be difficult unambiguously
identify the decomposition products in each stage due to the similar decomposition temperatures
of the precursor and PVP. The amount of polymer present on the surface of precursor can be only
estimated. Calculated weight loss during basic zinc carbonate decomposition process is 25.9% and
corresponds to the release of carbon dioxide and water molecules. X. Wang et al. proved that thermal
decomposition process of Zn5(CO3)2(OH)6 was the three-stages process with the total weight loss
26.11% [34]. According to others, thermal analysis of PVP indicated two-stages decomposition of the
polymer—first observed in the range of 20–250 ◦C, whereas the second between 300–500 ◦C [17,35].
Therefore, in further studies we used a slightly higher calcination temperature (600 ◦C).
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Values of the precursor powders X-ray diffraction reflections recorded as 2θ angles were detected
at: 12.99◦, 21.85◦, 24.08◦, 28.02◦, 30.11◦, 30.98◦, 32.72◦, 33.46◦, 35.10◦, 35.79◦, 38.69◦, 41.34◦, 43.02◦, 47.13◦,
51.09◦, 53.37◦, 54.78◦, 57.87◦, 59.31◦, 63.19◦, 68.52◦, and 69.47◦, pointing on basic zinc carbonate and,
specifically, on hydrozincite - Zn5(CO3)2(OH)6 in accordance with the JCPDS card (no. 19-1458) [36–38].
The crystal faces attributed to the peaks are presented on Figure 6. Powders after calcination
revealed characteristic peaks at 2θ values: 31.91◦, 34.56◦, 36.39◦, 47.69◦, 56.74◦, 63.01◦, 66.52◦, 68.10◦,
69.24◦, and 72.69◦, what clearly corresponds to ZnO wurtzite structure (JCPDS card no. 36-1451)
(Figure 6) [37,39]. The XRD results for powders type A and B were analogous.
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FT-IR spectrum of the precursor sample (Figure 7a) exhibits carbonate bands corresponding to the
stretching (1382 cm−1, 1499 cm−1) and bending (707 cm−1, 833 cm−1) CO3

2− vibrations, and a broad
weak band centered at 3326 cm−1 which can be assigned to OH stretching modes [39,40]. According to
the group theory, ZnO wurtzite structure is classified to the P63mc (C4

6v) space group, what indicates
the existence of the following optic modes: Γosc = A1 + 2B1 + E1 + 2E2. The B1 modes are silent,
the A1 and E1 vibrations (split into transverse (TO) and longitudinal optical (LO) phonons) are both
Raman- and infrared-active, whereas the E2 vibrations are only Raman-active [41,42]. Hayashi et al.
reported the ZnO FT-IR spectrum where three distinct absorption bands between TO and LO phonon
frequencies were noted [43]. However, the spectrum can be varied due to the particles morphology and
three- or two-band superposition or even a broad single band was observed [44]. Here, after precursor
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calcination carbonate bands disappeared and characteristic broad band of Zn–O bond vibrations for
zinc oxide wurtzite structure occurs at 378 cm−1. The Raman spectrum (Figure 7b) exhibits frequencies
of the first- and the second-order Raman spectra, with the band located at 439 cm−1 considered as a
characteristic stretching Zn-O bond vibrations of wurtzite ZnO [41].
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The UV–vis diffuse reflectance spectrum indicates sharp absorption edge distinctive for ZnO
nanoparticles, observed at 372 nm (Figure 8). As the reflectance, not absorbance spectrum had been
received, the band gap determination could not be performed directly from the Tauc equation and the
Kubelka–Munk function had to be used for this purpose. The K-M function F(R) is directly proportional
to the absorption coefficient (α) and inversely proportional to the scattering factor (S), with R is the
reflectance [45]

F(R) =
α

S
=

(1−R)2

2R
(2)
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For determination the band gap using Tauc relation, the following type of equation is advisable [46]

(αhν)1/n
≈ B

(
hν− Eg

)
(3)
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where k is an absorption constant, Eg is the band gap and exponent n is determined by the transition
type (n = 1/2 for ZnO featuring direct allowed transitions). Since the K-M function is proportional to
the absorption coefficient, the relation can take the following form

(F(R)hν)2 = B
(
hν− Eg

)
(4)

The original reflectance spectrum had been transformed by plotting the ((F(R)hv)2) function
versus the photon energy (hv) [47]. The band gap was determined by extrapolating the slope to 0 and
was amounted to 3.20 eV, similar to other reports [48].

While the spectroscopic analysis results presented in this work were similar to different types of
powders, photoluminescence measurements varies for types A and B particles (Figure 9). Intensive
emission band in the UV region, observed for type B samples placed at 381 nm (shifted by 9 nm to the
absorption onset), corresponds to the near band-edge emission [49]. This band noted for the A type
particles, revealed quite weak intensity. Observed significant difference in bands intensities can be
related to the differences in particles size. Similar phenomenon of the luminescence quantum efficiency
decrease was detected, when the particles size have increased [50,51]. In this case, other factors can also
cause the observed differences [52,53]. In the visible region the broad emission band at 524 nm occurs
for both types of powders. Despite the origin of the ZnO green luminescence is still not completely
understood, it is suggested to be attributed to the zinc vacancies [54].Materials 2020, 13, 2559 9 of 17 
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Figure 9. PL spectra of ZnO type A (red) and type B (blue) powders.

The results of the NL optical measurement of ZnO particles suspended in chloroform are listed
in Tables 1 and 2 for a concentration of 1g/l, using excitations at 532 nm and 355 nm, respectively.
At 532 nm and for types A and B, the NL absorption is insignificant, and below the resolution of the
measuring system (Table 1). The results indicate that n2 coefficients revealed similar values as that
obtained in chloroform solution, while considering the measurement uncertainties (although there is a
slight decrease in n2 for type A). The NL refraction profiles of A and B type related to the particles
suspended in chloroform are shown in Figure 10. The data and the corresponding simulation of the
D4σ Z-scan fitting of both the BWRV profiles indicate the positive NL refractive responses. It should be
mentioned that the main responses are due to the fused silica cell and to the solvent effect, while both
materials reveal positive n2. The peak–valley shape of BWRV (unlike the signature generated with
classic Z-scan profiles) informs, that a self-focusing effect (positive NL refractive index) takes place in
the studied solutions. As mentioned above, the values of n2 given in Table 1 are those corresponding to
the solutions alone inside the fused silica cell where the response of the glass was considered. The n2

value (6.2± 1.0) × 10−20 m2/W was obtained for pure solvent under the same experimental conditions
(wavelength, pulse duration, intensity).
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Table 1. Results of the nonlinear optical measurement of ZnO particles in chloroform at 532 nm.

Sample α

(cm−1)
E

(µJ)
I0

(GW/cm2)
n2 × 10−20

(m2/W)
β

(cm/GW)

chloroform 0 15 92 6.25 ± 1.0 < 0.004
A-type 0.42 15 95 4.6 ± 1.0 < 0.004
B-type 1.20 15 92 6.5 ± 1.3 < 0.004

Table 2. Results of the nonlinear optical measurement of ZnO particles in chloroform at 355 nm.

Sample α

(cm−1)
E

(µJ)
I0

(GW/cm2)
n2 × 10−20

(m2/W)
β

(cm/GW)

chloroform 0 5 65 7.5 ± 2.6 0.15 ± 0.05

A-type 0.59 5 64 5.5 ± 2.5 0.08 ± 0.02

B-type 2.12 5 66 9.6 ± 2.7 0.31 ± 0.10
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At 355 nm, the NL absorption coefficient is not negligible even for the solvent (β = 0.15 cm/GW).
The normalized transmittance profiles, of the nonlinear absorption of both ZnO types (Figure 11a)
revealed the significant increase of β for B component, when compared to type A, or to pure solvent.
These results clearly confirm the structure differences of A and B particles, at this wavelength. The latter
indicated the NL refractive response of the two mixtures (Figure 11b), because n2 value measured for B
is twice n2 for A.

In summary, the NL response at 355 nm for both morphologies is higher than measured at 532 nm.
Considering the absolute values, one can notice that the NL refractive index of ZnO NPs with modified
morphology (cylindrical shaped particles—type B) should be about two times higher than that of ZnO
particles with preserved morphology (type A). The latter can be related to the observed enhanced
green luminescence of ZnO particles. This result is similar to the one reported for other luminescent
nanoparticles (graphene quantum dots) [55], where nonlinear coefficients were significant only at
355 nm, i.e., very close to the linear absorption band. Additionally, no NL response was present in the
visible or the near IR range.

Concluding the synthesis of ZnO particles, we would like to explain that despite the many
experiments performed in order to elaborate the shape determining synthesis conditions, we were
unable to find parameters which have main impact on formation of the type A and type B particles
and it will be the subject of further research.
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Figure 11. Nonlinear absorption (a) and refraction (b) of A and B-type suspension of ZnO particles in
chloroform at 355 nm (red square: A-type; blue circles: B-type). Solid and dashed (blue and red) lines
are fittings.

3.2. Thin Layer Fabrication and Characterization

ZnO thin films deposited using dip- and spin-coating at various deposition conditions: precursor
concentration (0.05–0.3% w/v), deposition speed (5–30 mm/min), number of repetitions (30–60), were
calcinated, resulting in the uniform films composed of separated zinc oxide nano-plates at Si substrate
(SEM images, Figure 12). AFM images of Zn-Carb films with Rq and Ra parameters (root-mean-square
roughness and average roughness) (Figure 13) indicate the lowest surface roughness parameters for
films deposited at the highest speed and rep values (Figure 13a).
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Prior to PVP deposition on the ZnO layer several trials of polymer spin-coating were carried out
in order to control the thickness of the PVP film. For this purpose, PVP ethanol solution (2.5% or
5%) was prepared, stirred for 15 min and used for spin-coating process (conditions listed in Table 3).
The thickness of PVP layers were determined by ellipsometric measurements. The layers obtained
by means of the spin-coating technique (due to the conditions during deposition) exhibit thickness
non-uniformity. This fact was considered during ellipsometric data recording; i.e., apart from the
azimuths Ψ and ∆, the depolarization factor (%Depol) was measured. The Ψ and ∆ parameters are
defined as reported [56,57]

ρ∼= tanΨei∆, (5)

where ρ ∼ is the ratio of the Fresnel reflection coefficients for two orthogonal components of the
electric field of the polarized light beam reflected from the surface [56,57]. The depolarization factor,
related to the thickness non-uniformity or patterned substrates can be calculated from the following
formula [56,57]

%Depol = 100%
(
1− α2

− β2
− γ2

)
, (6)

where: α = cos(2Ψ), β = sin(2Ψ)cos(∆), and γ = sin(2Ψ)sin(∆).

Table 3. Spin-coating conditions of PVP films, film thickness, and thickness non-uniformity.

No. PVP
Concentration (%)

Spin-Coating
Parameters

Film Thickness
(nm)

Thickness
Non-Uniformity (%)

1 2.5 Step 1: 5000 rpm 30 s
Step 2: 5000 rpm 30 s

133 ± 1 13.1 ± 0.4
2 5 317 ± 1 8.8 ± 0.1

3 2.5 Step 1: 2000 rpm 20 s
Step 2: 5000 rpm 30 s

138 ± 1 14.2 ± 0.4
4 5 349 ± 1 8.7 ± 0.2
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For isotropic non-depolarizing samples, the value of %Depol equals zero. To determine thicknesses
of the synthesized PVP films, as well as their optical constants, the four-medium (Si\SiO2\PVP\ambient)
optical model of a sample was considered. The refractive index n(λ) of the PVP film was parameterized
using a Sellmeier-type dispersion relation [56,57]

n2 = ε∞ +
A0

E2
0 − E2

(7)

In Equation (4), ε∞=1, A0, E0, and E are the high-frequency dielectric constant, magnitude,
oscillator energy, and photon energy, respectively. The optical constants of Si and SiO2 were taken
from the database of optical constants [56]. It was assumed that the PVP films summarized in Table 3
exhibit the same optical constants. Therefore in the fitting procedure using the WVASE32® software
(J.A. Woollam Co., Inc., Lincoln, NE, USA), the multiple sample analysis approach was applied [56–60].
The model quantities were varied to minimize the standard reduced mean squared error χ2 [56,57].

The measured Ψ and ∆ azimuths and depolarization factor %Depol, and sample optical model
data are presented in Figure 14a,c. The values of the refractive index, in the measured spectral range, are
between 1.532 and 1.563 (for A0 = 161.4 ± 0.3 eV2), whereas the shape of n exhibits normal dispersion
relation (Figure 14d). Determined thicknesses of PVP films in the range 133–349 nm (Table 3), indicate
the tendency to decrease with the concentration decrease and speed rate increase. The proportional
relationship between film thickness and spin coating parameters, as well as with solution concentration,
has been demonstrated in many studies on polymer thin films [61–63]. The non-zero values of %Depol
(Figure 14c) confirm the assumption, that the layers demonstrate non-uniform thickness. The coatings
prepared at higher concentrations exhibit the lower value of thickness non-uniformity (about 9%),
in relation to twice diluted solutions (13–14%). Moreover, the roughness parameters (Ra = 0.49 nm and
Rq = 0.36 nm; Figure 14b) indicate quite smooth surface of PVP films. This fact confirms the validity of
omission of the rough layer in the optical model of a sample.
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Figure 14. (a,c) The measured and calculated Ψ and ∆ azimuths and depolarization factor %Depol for
Si/SiO2/PVP No.2 (Table 3). The value of χ2 = 10.6. (b) The AFM image of Si/SiO2/PVP no. 2 (Table 3).
(d) The refractive index (n) of the PVP film.
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In the next experiment ZnO layer was covered by the PVP film using conditions in which the
thinnest film was obtained (sample 1). The surface roughness parameters (Ra and Rq) are equal to
1.53 nm and 1.87 nm respectively, what is evident from the AFM images (Figure 15a). These values
are 3–4 times larger than the one obtained for the pure PVP films (Figure 14b). Due to the latter for
ellipsometric measurements the rough layer was considered. The model of the ZnO/PVP multilayer
system (Si\SiO2\ZnO + PVP\PVP\rough layer\ambient) is presented in Figure 15b. During the
deposition of PVP on ZnO NPs-coated Si the polymer filled the spaces between the ZnO plates. Thus,
the coating assembled on the Si substrate can be divided into two layers ZnO NPs + PVP and pure
PVP film. To describe optical constants of the ZnO NPs + PVP film (nZnO+PVP) and the rough layer
(nrough) the Bruggeman type of effective medium approximation (EMA) model was used [56,57]

(1− fPVP)
n2

ZnO − n2
ZnO+PVP

n2
ZnO + 2n2

ZnO+PVP

+ fPVP
n2

PVP − n2
ZnO+PVP

n2
PVP + 2n2

ZnO+PVP

= 0, (8)

fambient

n2
ambient − n2

rough

n2
ambient + 2n2

rough

+ (1− fambient)
n2

PVP − n2
rough

n2
PVP + 2n2

rough

= 0, (9)

Materials 2020, 13, 2559 14 of 17 

 

In Equations (5) and (6), fPVP and fambient are the fraction of PVP in the ZnO + PVP film and fraction 
of void in the rough film, respectively, while nZnO, nPVP and nambient are optical constants (the refractive 
index) of ZnO (taken from [56]), PVP (taken from the previous experiment; Figure 14d) and void, 
respectively. The value of fambient was set to 0.5. The recorded ellipsometric azimuths and 
depolarization factor for the ZnO/PVP multilayer system and as well as data obtained from the six-
medium optical model of a sample are presented in Figure 15b,c. The thicknesses of ZnO + PVP and 
PVP films determined from ellipsometric data are: 35 ± 4 nm and 95 ± 4 nm, respectively. The 
thickness of the rough layer 5 ± 3 nm is comparable to the value of the maximum roughness, while 
the thickness non-uniformity is 19.9 ± 0.2%. The sum of the two above-mentioned thicknesses (130 ± 
8 nm) appeared to be close to the value for the separate PVP film—131 nm (the PVP film No. 1 in 
Table 3). The high thickness of the PVP fraction in the ZnO NPs + PVP layer (85 ± 4%) indicate the 
formation of the separated zinc oxide nano-plates (SEM images—Figure 12).  

 
Figure 15. (a) AFM image and (b) optical model of the ZnO/PVP multilayer system model. (c,d) The 
measured and calculated Ψ and Δ azimuths as well as depolarization factor %Depol for the 
Si/SiO2/ZnO + PVP sample. The value of χ2 = 29. 

Presented ZnO/PVP multilayer system can be used in various technologies, because the 
significant improvements to enhance the performances of polymer bulk heterojunction (BHJ) solar 
cells is still essential. Reported poly(vnylpyrrolidone) incorporation at the interface of a ZnO layer 
and polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methyl 
ester (PC70BM) forms photoactive layer in the inverted polymer solar cells. PVP layer revealed 15% 
enhancement in power conversion efficiency (PCE) [64]. 

4. Conclusions 

Regardless to the conditions of ZnO powders synthesis, different types of particles were 
obtained: ZnO microparticles with well-preserved morphology, cylindrical shaped particles, and 
intermediate forms, with the cylindrical shaped particles being observed most often. It seems difficult 
to propose unequivocally what caused the differences, but we supposed it can be caused by CO2 
migration during the thermal decomposition of carbonate. The measurements indicated that all types 
of samples were hexagonal wurtzite crystal structure. The optical properties of particles were 
correlated with their structure by photoluminescence and NL optical measurements. PL spectra 
enhancement of NL refractive index enabled the correlation of optical properties with the size of 
structures. Deposition and calcination of the precursor on Si substrates led to formation of uniform 
films composed of separated nano-plates. ZnO/Si layers with PVP deposited by spin-coating 
technique revealed a decrease of thickness along with a concentration decrease and speed rate 

Figure 15. (a) AFM image and (b) optical model of the ZnO/PVP multilayer system model.
(c) The measured and calculated Ψ and ∆ azimuths as well as depolarization factor %Depol for
the Si/SiO2/ZnO + PVP sample. The value of χ2 = 29.

In Equations (5) and (6), fPVP and fambient are the fraction of PVP in the ZnO + PVP film and
fraction of void in the rough film, respectively, while nZnO, nPVP and nambient are optical constants
(the refractive index) of ZnO (taken from [56]), PVP (taken from the previous experiment; Figure 14d)
and void, respectively. The value of fambient was set to 0.5. The recorded ellipsometric azimuths
and depolarization factor for the ZnO/PVP multilayer system and as well as data obtained from the
six-medium optical model of a sample are presented in Figure 15b,c. The thicknesses of ZnO + PVP and
PVP films determined from ellipsometric data are: 35 ± 4 nm and 95 ± 4 nm, respectively. The thickness
of the rough layer 5 ± 3 nm is comparable to the value of the maximum roughness, while the thickness
non-uniformity is 19.9 ± 0.2%. The sum of the two above-mentioned thicknesses (130 ± 8 nm) appeared
to be close to the value for the separate PVP film—131 nm (the PVP film No. 1 in Table 3). The high
thickness of the PVP fraction in the ZnO NPs + PVP layer (85 ± 4%) indicate the formation of the
separated zinc oxide nano-plates (SEM images—Figure 12).

Presented ZnO/PVP multilayer system can be used in various technologies, because the significant
improvements to enhance the performances of polymer bulk heterojunction (BHJ) solar cells is
still essential. Reported poly(vnylpyrrolidone) incorporation at the interface of a ZnO layer and
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polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methyl ester
(PC70BM) forms photoactive layer in the inverted polymer solar cells. PVP layer revealed 15%
enhancement in power conversion efficiency (PCE) [64].

4. Conclusions

Regardless to the conditions of ZnO powders synthesis, different types of particles were obtained:
ZnO microparticles with well-preserved morphology, cylindrical shaped particles, and intermediate
forms, with the cylindrical shaped particles being observed most often. It seems difficult to propose
unequivocally what caused the differences, but we supposed it can be caused by CO2 migration
during the thermal decomposition of carbonate. The measurements indicated that all types of samples
were hexagonal wurtzite crystal structure. The optical properties of particles were correlated with
their structure by photoluminescence and NL optical measurements. PL spectra enhancement of NL
refractive index enabled the correlation of optical properties with the size of structures. Deposition and
calcination of the precursor on Si substrates led to formation of uniform films composed of separated
nano-plates. ZnO/Si layers with PVP deposited by spin-coating technique revealed a decrease of
thickness along with a concentration decrease and speed rate increase. Fabricated ZnO/PVP multilayer
systems revealed a thickness of 130 nm determined by spectroscopic ellipsometry measurements.
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