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Abstract: Structural glass beams and fins are largely used in buildings, in the form of primary
load-bearing members and bracing systems for roof or facade panels. Several loading and boundary
conditions can be efficiently solved by means of bonded composites that involve the use of laminated
glass sections. Additionally, the so-obtained glass members are often characterized by high slenderness.
To this aim, several literature studies were dedicated to the lateral–torsional buckling (LTB) behavior
of laterally unrestrained (LU) glass elements, with the support of full-scale experiments, analytical
models, or finite element (FE) numerical investigations. Standardized design recommendations for LU
glass members in LTB are available for designers. However, several design issues still require “ad hoc”
(and often expensive) calculation studies. In most of the cases, for example, the mechanical interaction
between the structural components to verify involves various typologies of joints, including continuous
sealant connections, mechanical point fixings, or hybrid solutions. As a result, an accurate estimation
of the theoretical LTB critical moment for such a kind of laterally restrained (LR) element represents a
first key issue toward the definition and calibration of generalized design recommendations. Careful
consideration should be spent for the description of the intrinsic features of materials in use, as well as
for a combination of geometrical and mechanical aspects (i.e., geometry, number, position of restraints,
etc.). In this paper, the attention is focused on the calculation of the elastic critical buckling moment
of LR glass beams in LTB. Existing analytical approaches of the literature (mostly developed for
steel constructional members) are briefly recalled. An additional advantage for extended parametric
calculations is then taken from finite element (FE) numerical analyses, which are performed via
the LTBeam or the ABAQUS software codes. The actual role and the effect of discrete mechanical
restraints are, thus, explored for selected configurations of practical interest. Finally, the reliability of
simplified calculation approaches is assessed.

Keywords: structural glass beams; laminated glass sections; lateral–torsional buckling (LTB); discrete
mechanical lateral restraints; analytical methods; finite element (FE) numerical modeling; design

1. Introduction and State of the Art

Structural glass is largely used in building, in the form of load-bearing components [1].
While harmonized European standards for structural designs are still in preparation [2–4], the last few
years showed a huge spread of technical guidelines, codes of practice, and documents in support of
designers [5–7].

For structural applications, glass members are typically characterized by a laminated resisting
cross-section, in which viscoelastic bonding interlayers are required to offer a certain mechanical
coupling to the involved glass components (Figure 1a). Accordingly, for a given geometry,
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the load-bearing response of glass layers can vary significantly (Figure 1b). Among the available
interlayers [8], it is in fact generally recognized that that the mechanical response of a general laminated
section is strictly related to the actual properties and bonding efficiency of these films [9,10]. As a
result, refined methods of analysis and characterization should be generally taken into account, in the
elastic stage [10–12] or in presence of possible degradation effects [13–15].
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for laminated glass sections in LTB was explored in [22], toward the definition of reliable and 
standardized design buckling verification approaches [23–26]. These documents and most of the 
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Figure 1. Laminated glass element: (a) cross-section examples and (b) corresponding stress distributions,
depending on the shear coupling efficiency of the interlayers.

As far as glass beam-like elements are used to support and brace orthogonal facades or roofs,
careful consideration in design should be spent to prevent premature lateral–torsional buckling (LTB)
phenomena. Several research studies, in this regard, were dedicated to monolithic or laminated glass
beams. Extended experimental investigations were reported in [16–21] for various LTB configurations
of practical interest. The use of simplified, equivalent thickness-based formulations for laminated
glass sections in LTB was explored in [22], toward the definition of reliable and standardized design
buckling verification approaches [23–26]. These documents and most of the literature efforts, however,
are generally focused on laterally unrestrained (LU) glass beams that roughly represent the actual
load-bearing configuration of real fins (i.e., Figure 2).
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Figure 2. Example of (a) laterally restrained (LR) glass beams with discrete mechanical restraints and
(b) typical loading configurations associated with positive or negative bending effects.

A limited number of background documents is currently available for laterally restrained (LR)
glass members in LTB that can take advantage of the presence of possible bracing contributions, toward
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premature failure mechanisms. According to Figure 2a, for example, mechanical restraints can be
used for fork-end supported, laminated glass fins acting as a bracing system for the interconnected
orthogonal panels. The typical design loading conditions to assess are schematized in Figure 2b,
where most of the imposed actions are expected to result in positive bending effects for the beams,
while potential negative bending effects (i.e., due to suction wind) should also be taken into account.
As long as the geometrical and mechanical features of the glass members and restraints in use are
properly assessed, the LTB performance of LR systems according to Figure 2 is rationally expected
to differ from a LU member with similar features. The LR features, moreover, can have substantially
different efficiency, depending on the geometry of the members to verify.

Studies of the literature were reported in [27–29] for LR glass beams with continuous adhesive
joints, giving evidence of the expected effects (and related calculation approaches) due to the presence
of linear connections. In [29], the attention of finite element (FE) numerical analyses focused on LR
glass beams with an adhesively restrained top edge, considering downward (i.e., positive bending
moment effects) or upward (negative) design loads, as well as related LTB phenomena, in combination
with various LR configurations. Luible and Schärer [30] also explored, via full-scale experiments
and FE analyses, the LTB performance of glass beams (both monolithic and laminated) with discrete
mechanical lateral restraints. The chosen geometrical configuration for the connectors in use (i.e., eight
special round aluminum devices, glued to the edge of glass specimens), however, was associated with
a mostly rigid and continuous LR effect. The actual contribution and the potential of local restraints for
glass beams in LTB were also preliminary explored in [31].

In this paper, the elastic critical buckling moment of LR glass beams in LTB is investigated,
with careful consideration of the effects of discrete mechanical restraints (i.e., Figure 2). As known,
the knowledge of critical buckling loads for load-bearing systems generally represents poor information
for accurate design purposes. Often, however, the availability of simplified (but accurate) calculation
approaches can offer robust support to designers. Moreover, the accurate estimation of the expected
critical buckling loads represents a key design step toward the definition (or calibration) of standardized
calculation procedures and recommendations of practical use [25]. To this aim, extended parametric
analytical and FE numerical calculations are presented in this paper, for a wide set of geometrical and
mechanical configurations of technical interest. The major advantage is preliminary derived from
analytical methods of the literature [32,33], as well as from the LTBeam software [34] (even specifically
developed for LR steel members). The LTB performance of LR glass beams having different geometrical
features and their sensitivity to variations in the number and position of discrete mechanical restraints
are, thus, assessed. More extended parametric calculations are, thus, carried out with the support of
ABAQUS software [35], so as to allow for a more refined and/or generalized description of the typical
LR configurations in the field of structural glass applications.

To this aim, Section 2 firstly summarizes the current approach for the LTB design of LU glass
members. In Section 3, the reference (steel-related) calculation methods are described. In Section 4,
the attention is focused on the characterization of selected point fixings in use for glass applications,
giving evidence of the expected stiffness parameters and the reliability of simplified, spring-based
methods. Finally, Sections 5 and 6 summarize the major outcomes of the extended parametric
calculations for LR glass members.

2. LTB Design of Structural Glass Beams

2.1. General Approach for Laterally Unrestrained (LU) Beams

For most existing design standards, guidelines, and regulations for structural beams in LTB,
the reference calculation methodology assumes that the member to verify is laterally unrestrained (LU),
with fork-torsional end supports (Figure 3). The possible effects due to adjacent or interconnected
constructional members (i.e., roof panels, etc.) are, hence, fully disregarded, in favor of an LTB
verification of independent members.
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Based on literature studies and international design standards for steel structures [36], buckling
failure phenomena of structural members according to Figure 3 can be conventionally prevented
by means of standardized empirical verification methods, which, in most cases, are developed on
standardized design buckling curves. The effective LTB design resistance Mb,Rd of the member in
Figure 3 can be in fact estimated so as to satisfy the following limit condition:

Mb,Rd = χLT
Wy fyk

γM1
≥My,Ed, (1)

where My,Ed is the design bending moment, Wy is the elastic resistant modulus for the t × b resisting
cross-section, fyk is the ultimate (tensile) resisting stress, and γM is a material partial safety factor.

A key input parameter in Equation (1) is represented by the buckling reduction coefficient χLT

(χLT ≤ 1) and, thus, by the normalized slenderness ratio of the structural member to verify.

λLT =

√√
Wy fyk

M(E)
cr

, (2)

with

M(E)
cr = Mcr,0 =

nπ2EIz

L2

√
Iw

Iz
+

L2GIt

π2EIz
, (3)

Euler’s theoretical buckling moment.
In Equation (3), E and G denote the Young’s and shear moduli, respectively, Iz signifies the

moment of inertia about the minor z-axis, and It is the torsional moment of inertia for the monolithic
t × b cross-section, with Iw being its warping stiffness (where Iw→0 for rectangular cross-sections).
At the same time, n = 1 is the integer value able to minimize—for a general set of geometrical and
mechanical properties—the expected Mcr,0 value.

As long as Equations (2) and (3) are known, the required buckling reduction coefficient in Equation
(1) is given by

χLT =
1

ϕLT +

√
ϕ2

LT − λ
2
LT

≤ 1. (4)

The latter equation, as known, is sensitive to several aspects, such as λLT, as well as to the
amplitude of initial geometrical imperfections, to the effects of possible residual stresses, and/or to
load eccentricities. In Equation (4), all these initial defects are conventionally accounted for as

ϕLT = 0.5
[
1 + αimp

(
λLT − α0

)
+ λ

2
LT

]
, (5)
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where αimp and α0 are appropriate imperfection factors (see [36] for the reference values in use for
steel sections).

In similarity to LU steel members in LTB, design buckling curves were proposed in [25] for LU
beams composed of glass. In particular, assuming the characteristic bending tensile resistance of
glass f yk = σRk in (Equation (1)), with γM = 1.4, it was shown in [25] that reliable LTB calculations
can be carried out as long as the above imperfection factors are set to αimp = 0.45 and α0 = 0.20
(for equivalent initial sine-shaped imperfections of maximum amplitude, u0,max = L/400). As long as
the design constant bending moment My,Ed in Equation (1) is replaced by a mid-span concentrated
load F or a uniformly distributed load q, the same design approach can still be adopted for glass
members in LTB [25]. The standardized verification method is also implemented—with appropriate
safety factors—in the set of design recommendations provided in [5] for glass structures. The basic
assumption of the design approach is schematized in Figure 4.
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Worthy of interest is that the above LTB verification approach can be practically extended to
laminated glass sections, by accounting for the viscoelastic foils (under well-defined time/temperature
conditions) via an equivalent secant shear modulus Gint [37–39]. A key step, however, is represented
by the reliable calculation of the section properties (especially Iz and It). Among others, the equivalent
glass thickness teq can be derived from Table 1; Table 2 (with t1, t2 and tint representing the thicknesses
of glass and interlayers).

Table 1. Flexural equivalent section properties for laminated glass beams in LTB, according to [25].

2 glass layers 3 glass layers
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Table 2. Torsional equivalent section properties for laminated glass members, according to [25].

2 glass layers 3 glass layers
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2.2. Laterally Restrained Beams with Continuous Adhesive Connections

As long as the glass beam in Figure 3 is characterized by the presence of lateral restraints agreeing
with Figure 5a, more accurate calculation approaches are required for reliable predictions. From a
mechanical point of view, the resisting cross-section for the LR member in LTB is schematized in
Figure 5b.

Materials 2020, 13, x FOR PEER REVIEW 6 of 27 

 

Table 2. Torsional equivalent section properties for laminated glass members, according to [25]. 

 

2 glass layers 3 glass layers 

 
 𝐼୲ 𝐼୲,ଵ + 𝐼୲,ଶ + 𝐼୲,୧୬୲ 2𝐼୲,ଵ + 𝐼୲,ଶ + 𝐼୲,୧୬୲ 𝐼୲,୧ 𝑏𝑡୧ଷ 3⁄   (i= 1, 2) 𝐼୲,୧୬୲ 𝐽ୱ,୐୘  ൬1 − 𝑡𝑎𝑛ℎ  (0.5 𝜆୐୘ 𝑏)0.5 𝜆୐୘ 𝑏 ൰ 𝐽ୱ,୐୘ 4𝑏 𝑡ଵ𝑡ଶ𝑡ଵ + 𝑡ଶ (0.5𝑡ଵ + 0.5𝑡ଶ + 𝑡୧୬୲)ଶ 4𝑏 𝑡ଵ𝑡ଶ𝑡ଵ + 𝑡ଶ (𝑡ଵ + 𝑡ଶ + 2𝑡୧୬୲)ଶ 

𝜆୐୘ ඨ𝐺୧୬୲𝐺 𝑡ଵ + 𝑡ଶ𝑡ଵ𝑡ଶ𝑡୧୬୲ ඨ𝐺୧୬୲𝐺 2𝑡ଵ + 𝑡ଶ4𝑡ଵ𝑡ଶ𝑡୧୬୲ 
2.2. Laterally Restrained Beams with Continuous Adhesive Connections 

As long as the glass beam in Figure 3 is characterized by the presence of lateral restraints 
agreeing with Figure 5a, more accurate calculation approaches are required for reliable predictions. 
From a mechanical point of view, the resisting cross-section for the LR member in LTB is schematized 
in Figure 5b. 

It was shown in [27–29] that adhesive joints in use for structural glass applications are typically 
associated with limited stiffness parameters. The presence of (even weak) continuous flexible joints 
according to Figure 5a, however, can have marked effects on the actual LTB response of a given glass 
beam. Compared to a basic LU member, the response of the LR element is in fact associated with a 
modified buckled shape, which can further modify the number of half sine-waves, as long as the 
adhesive linear restraints are progressively able to prevent possible lateral deformations [27–29]. 

  

(a) (b) 
Figure 5. LR glass beams with continuous flexible lateral restraints: (a) example of a beam-to-plate 
adhesive joint, in accordance with [27], and (b) reference cross-section. Figures reproduced from [27] 
with permission from Elsevier, Copyright© license number 4813131416995, April 2020. 

In terms of LTB design procedure, the presence of the continuous adhesive restraint in Figure 5 
manifests in the increase of the critical buckling moment 𝑀cr,R ≥ 𝑀cr,0  (with “R” denoting the 
presence of lateral restraints), as well as in a modification of the fundamental buckling shape, 

Figure 5. LR glass beams with continuous flexible lateral restraints: (a) example of a beam-to-plate
adhesive joint, in accordance with [27], and (b) reference cross-section. Figures reproduced from [27]
with permission from Elsevier, Copyright© license number 4813131416995, April 2020.

It was shown in [27–29] that adhesive joints in use for structural glass applications are typically
associated with limited stiffness parameters. The presence of (even weak) continuous flexible joints
according to Figure 5a, however, can have marked effects on the actual LTB response of a given glass
beam. Compared to a basic LU member, the response of the LR element is in fact associated with
a modified buckled shape, which can further modify the number of half sine-waves, as long as the
adhesive linear restraints are progressively able to prevent possible lateral deformations [27–29].

In terms of LTB design procedure, the presence of the continuous adhesive restraint in Figure 5
manifests in the increase of the critical buckling moment Mcr,R ≥Mcr,0 (with “R” denoting the presence
of lateral restraints), as well as in a modification of the fundamental buckling shape, compared to
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Figure 4. Given the shear stiffness contribution ky of the linear restraint (with kθ = 0), it was, thus,
proven in [27] that Mcr,R for a general cross-section can be reliably calculated as

Mcr,R = zMky

(
L

nRπ

)2

+

√EIz

(
nRπ
L0

)2

+ ky

(
L

nRπ

)2EIw

(nRπ
L

)2
+ GIt + z2

Mky

(
L

nRπ

)2, (6)

where nR ≥ 1 is the integer number of half-sine waves able to minimize Equation (6), while zM is the
distance between the lateral restraint and the longitudinal axis of the beam (Figure 5b).

It is important to note that, as long as Mcr,R is modified in Equation (6), the normalized slenderness
ratio λLT in Equation (2) is also modified. Accordingly, the susceptibility of a given LR glass member to
LTB phenomena (i.e., Equation (4)) can be reasonably different from that of an identical LU geometry.
In any case, it was shown in [27] that Equations (1)–(5) and Figure 4 can be still adopted for LTB
design purposes, as long as the actual Mcr,R value is properly estimated (Equation (6)) and possible
global imperfections for the element to verify do not exceed the reference equivalent amplitude
(u0,max = L0/400).

2.3. Laterally Restrained Beams with Discrete Mechanical Connections

When discrete mechanical restraints according to Figure 2 or Figure 6 are used for glass beams,
further design issues must be unavoidably assessed, compared to Sections 2.1 and 2.2.
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(b) schematic representation of minimum distance requirements for the glass holes.

The actual role and LTB efficiency of discrete restraints agreeing with Figure 6a (that could
be variably spaced and positioned along the span of a glass member) should in fact be properly
characterized. Under ordinary design loads, moreover, major calculation troubles for resistance
verifications may usually derive from the presence of glass holes, which should respect appropriate
geometrical prescriptions (Figure 6b). In the multitude of mechanical devices that are commercially
available for structural glass applications, the goal of design practice is, in fact, to avoid premature
cracks in glass, as well as to facilitate the installation stage. Stiff metal connectors agreeing with
Figure 6a, as such, generally use soft layers and gaskets that are interposed to the edges of glass,
in order to accommodate local relative displacements and to protect the edges from potential stress



Materials 2020, 13, 2492 8 of 27

peaks. From an LTB calculation perspective, all the above aspects manifest in the form of additional
local stiffness (of devices) and flexibility (due to gaps/gaskets) that should be properly taken into
account, even for the prediction of the theoretical critical buckling moment Mcr,R.

3. LTB Theoretical Background and Solving Methods for LR beams with Discrete
Mechanical Restraints

In the last few decades, several research projects focused on the LTB analysis of (non-glass)
load-bearing members with discrete mechanical restraints. Most efforts were specifically aimed at steel
load-bearing systems, offering accurate theoretical formulations and simplified analytical approaches
in support of designers [32,33,40–42]. A brief overview of suitable methods is proposed in this section.

Among the available calculation tools that could be extended to LR glass members in LTB, the first
issue is related to the accurate prediction of the theoretical critical moment Mcr,R. In addition to the
basic variations in the intrinsic material properties, compared to steel girders, glass beams are in
fact expected to have relatively higher length-to-thickness and length-to-height ratios, thus further
enforcing their susceptibility to possible LTB phenomena. Further key parameters to account for in
LTB calculations of LR glass members are then represented by the following mechanical restraints in
use (rotules, etc.).

• their number (generally nb > 1),
• the spacing s and position (with the respect of minimum edge-distance of glass holes, etc.),
• the detailing features, for devices that are specifically designed for glass applications (i.e., Figure 6),
• finally, the presence of gaps and soft gaskets at the glass-to-restraint interface, as typically in use

to prevent local stress peaks in the region of holes.

3.1. Reference Theoretical Formulation for I-section Steel Beams

Extended studies for the LTB analysis of steel beams with discrete restraints were carried out
in [32,33]. Following Figure 7, the critical buckling moment of a simply supported, doubly symmetric
I-section steel beam with span L and a number nb of discrete, elastic lateral restraints (with infinitely
rigid stiffness K) is generally recognized to be

Mcr,R = MT =
π2EIz

s2

√
Iw

Iz
+

s2GIt

π2EIz
, (7)

where Equation (8),

s =
L

nb + 1
, (8)

denotes the uniform distance of the nb discrete restraints; thus, Equation (9),

Mcr,R = (nb + 1)·Mcr,0, (9)

is the upper theoretical limit for the expected buckling resistance, compared to Equation (3).
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The above formulation assumes that the so-called “threshold” moment MT represents the bending
moment for which the LR beam buckles in (nb + 1) half-sine waves. In other words, the stiffness K
of nb ≥ 1 restraints is so high that a fully rigid lateral bracing can be offered to the beam to verify,
i.e., with null lateral displacements at the locally restrained nodes. As such, the same MT value is
equivalent to the critical moment of an LU beam segment with identical cross-section properties but
total span s (see Equation (8)).

Major issues for the LTB analysis of a general steel girder (see [32,33]) are thus represented
by the “rigidity efficiency” of the discrete restraints in use and, thus, by the detection of possible
intermediate configurations in which certain nodal displacements could be expected in the region
of discrete restraints. McCann et al. [33], for example, solved a linear Rayleigh–Ritz analysis and
proposed an extended formulation for the LTB analysis of general LR steel beams. According to [33], it
was shown that, once K exceeds the “threshold” stiffness value KT, the lateral restraints in use have a
full bracing effect; thus, Equation (10),

K ≥ KT, (10)

reflects a critical buckling moment Mcr,R agreeing with Equation (7). To this aim, the threshold stiffness
value must be estimated as

KT =
(EIz

s3

)62 (1 + κs)

A0 + A1a
, (11)

with the equations below denoting the normalized distance between the discrete restraints and the
section shear center (with hs representing the total height of the I-shaped profile in Figure 7).

κs =
κ

(nb + 1)2 , (12)

κ =
L GIt

π2EIw
, (13)

a∗ =
2a
hs

, (14)

Finally, according to [33],
A0 = 0.45 + 2.8 νb,T κs, (15)

A1 = 6.3 νb,T + 2.2 κs − 1, (16)

νb,T =
1

1 + cos[(π/nb + 1)]
. (17)

More in detail, vb,T in Equation (17) is respectively equal to 1.0 for nb = 1, 0.667 for nb = 2, and 0.586
for nb = 3, while it tends progressively to the lower limit vb,T = 0.5 for higher nb values.

Following Figure 7, a key condition for Equations (7)–(17) is that the discrete restraints in use are
positioned at a height a above the shear center of the cross-section object of analysis (with positive
distance values for bracing systems on the compression side), such that the following equation
applies [33]:

a ≥ alim =
hs + κs

4
√

1 + κs
. (18)

3.2. Linear Interpolation Approaches

According to Equation (7), it is rationally expected that the critical buckling moment of a given LR
member in LTB can increase significantly, as long as rigid lateral restraints (with nb ≥ 1 and s < L) are
able to prevent possible displacements of the involved nodes. At the same time (see Equations (7) and
(9)), Mcr,R.progressively decreases for K < KT, and finally returns to the limit condition represented by
the LTB response of a simple LU beam (see Equation (3)).
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Several research studies were carried out over the years for the LTB assessment of LR steel
girders, where relatively stiff purlins of other bracing systems were used to provide stabilization.
Major calculation troubles arise when node-displacing critical modes can occur, since closed-form
solutions cannot be analytically derived for the reliable prediction of the critical moment Mcr,R. McCann
et al. [33], in this context, proposed a conservative, linear approximation for intermediate stiffnesses
(i.e., 0 < K < KT), so that the corresponding Mcr,R value could be reliably estimated as

Mcr,R = Mcr,0 +
K
KT

(MT −Mcr,0), (19)

with Mcr,0 and MT representing the unrestrained and threshold critical values given by Equations (3)
and (7), respectively. Past comparative calculations and validation studies discussed in [32,33] proved
that Equation (19) can be suitable for the LTB design of general steel beams. However, the same studies
highlighted that a higher degree of accuracy can be expected, especially for steel members with a
braced compression flange and with a single restraint (nb = 1) at the mid-span section.

An alternative linear fitting approach was suggested by Trahair [43], for LR beams with a single
restraint (nb = 1). The latter, however, can be applied with accuracy to beams with a discrete restraint
on the shear center (i.e., a∗ = 0 in Equation (14)). Many other approximation proposals are also
available in the literature, and they are specifically validated for a given number, position, and stiffness
of discrete restraints in steel members. Parametric studies were discussed in [42], for steel members
under various loading and LR conditions of technical interest for design. Extended parametric analyses
were presented in [29] for steel beams under various LR configurations, but giving evidence of the
intrinsic advantages or limits for several linear interpolation approaches of the literature.

In this research paper, parametric calculations are, thus, proposed for several LR glass members
in LTB. As a reference toward more refined calculations, the linear interpolation approach in Equation
(19) is taken into account.

3.3. LTBeam Tool for Steel Beams

The LTBeam tool is firstly considered as an alternative calculation method. The software, more
in detail, was developed at CTICM (Centre Technique Industriel de la Construction Metallique,
www.cticm.com [34]), as part of a past European research project. The original goal of this tool is to
compute the elastic critical moment Mcr,R of LR steel beams with general cross-sectional features, in any
number of different load cases and boundaries, according to the finite element (FE) method.

For a given cross-section (both mono- or double-symmetric), the assigned beam to verify is
discretized into a maximum of 300 FE elements. Non-steel members can also be efficiently investigated,
once the flexural, torsional, and warping cross-section properties are defined in the input parameters,
together with the Young’s modulus and Poisson’s ratio for the material in use. The presence of LR
mechanical restraints (up to nb = 2), finally, can be described in the form of equivalent elastic springs
with input stiffness and position. When alternative calculation methods are not available, an intrinsic
advantage of the LTBeam tool is that the expected KT value in Equation (19) can be numerically derived
by iteration, i.e., as the minimum stiffness K that leads Mcr,R to coincide with the threshold critical
moment MT for the member object of analysis.

3.4. General FE Numerical Method

When the input geometrical details for the system to verify do not match with the approaches
summarized in Sections 3.2 and 3.3, commercially available computer software codes can be adapted
to specific configurations.

In this paper, for example, a set of parametric linear buckling analyses were developed with the
ABAQUS/Standard software (“buckle–linear perturbation” step). Through the parametric investigation,
the same modeling technique was taken into account to describe various LTB configurations
characterized by different number, position, and stiffness of discrete restraints, among a wide series of

www.cticm.com
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beam geometries. The typical FE model consisted of S4R four-node, quadrilateral, stress/displacement
shell elements with reduced integration and large-strain formulation (S4R type of ABAQUS element
library; see Figure 8a). A regular mesh pattern was used, with lmesh, the characteristic size of
quadrilateral elements, comprised between 2 mm and 5 mm, depending on the global dimensions
b × L of the studied beams. Given the goal of linear bifurcation analyses, glass was described as an
isotropic, indefinitely linear elastic material.
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Figure 8. Preliminary finite element (FE) numerical model for linear bifurcation analyses on LR glass
beams in LTB (ABAQUS).

Boundary conditions for the simply supported, fork-end supported beams in LTB were described
via equivalent nodal constraints, so as to reproduce the reference set-up in Figure 3. Restraints were
used for both the shear center of the beam end sections (uy = 0, uz = 0),and all the end section nodes
(uy = 0), as shown in Figure 8b. Accordingly, bending moments My were introduced at the barycentrical
node of the end sections in Figure 8. A “coupling” kinematic constraint was used to redistribute the
so-defined bending moments on the section height b.

According to several literature contributions on LR steel members in LTB, the bracing effect of
discrete mechanical restraints was numerically reproduced in a simplified way, i.e., by means of a
number nb of linear elastic springs (“axial” type) with stiffness K. These springs were introduced to
brace the compression edge of the examined glass beams, at a given distance zb from the shear center.
Single restraints (nb = 1) were placed at the mid-span section of the selected geometries (xb = L/2).
In presence of multiple restraints (nb > 1), an equal spacing s was taken into account (Equation (8)).
The detailing of holes in glass, finally, was disregarded for the elastic LTB analysis of the so-assembled
spring-based models.

4. Mechanical Characterization of LR Glass Beams with Discrete Restraints

4.1. Design Issues

When the calculation approaches summarized in Section 3 are taken into account for LTB
calculations, an open issue for glass members is certainly related to the actual effects of real mechanical
restraints. According to Figure 6, most of them are in fact characterized by geometrical and mechanical
features that often hardly match with idealized nodal elastic springs.

As such, a preliminary attempt of this project was, thus, dedicated to the assessment of nominal
features for some of the discrete restraints that are actually used for structural glass fins in roofs and
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facades. In addition to the multitude of commercially available solutions, the attention was focused
on the selected configuration in Figure 9. The latter includes a stainless-steel device (AISI 316 alloy
type) and is intended for glass fins up to 19 mm in total thickness. Two 100-mm-spaced holes are used
to fix the steel plates to the glass section. Two lateral rigid bars for the spider device allow then the
connection between the glass fin and the orthogonal plates (point fixing rotules). To avoid local stress
peaks in glass, Teflon®(polytetrafluoroethylene, PTFE) washers are interposed onto the glass beam
and the metal components. Such a design solution is in line with the point fixing practice of glass
structures, where various low-modulus soft layers can be used. Possible alternatives involve nylon,
polyoxymethylene (POM), ethylene propylene diene monomer (EPDM), or other rubber materials [1].
Dedicated studies, accordingly, should be generally spent for the characterization of different restraint
solutions. Usually, the above details result from accurate design and resistance verification steps [1].
Given that the low-modulus materials in use can be sensitive to time loading and temperature,
their mechanical properties should be properly assessed, with the support of literature documents
or experiments [44–49]. For preliminary LTB estimates, however, these soft layer properties can be
assumed as equivalent linear elastic terms.
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Figure 9. Example of two-way spider mechanical restraint for glass members: (a) global assembly with
rotules; (b) axonometry detail; (c) nominal dimensions (top and side views, values in mm).

4.2. FE Buckling Analysis and Stiffness Estimate for LR Glass Members

To solve the above issue and assess the reliability of simplified spring-based FE calculations,
the modeling approach described in Section 3.4 was, thus, further elaborated to include a more refined
description of restraint details. The example in Figure 10, in particular, was developed by taking
inspiration from Figure 9. From a mechanical point of view, the latter represents a single discrete
restraint (nb = 1) composed of two point fixings (nd = 2) with a certain local stiffness Kd.

For the FE analysis, a set of solid brick elements were, thus, used to reproduce the device
components. The materials in use (glass and steel) were described via linear elastic constitutive laws,
with E = 70 GPa, ν = 0.23 for glass [50] and Es = 197 GPa, νs = 0.3 for steel [51]. Two spider plates
similar to Figure 9 were firstly introduced in the FE assembly (see Figure 10a). The 100-mm-spaced
bolts were reproduced via kinematic constraints (“beam MPC” option from the ABAQUS library) able
to offer a rigid axial and rotational restraint to the involved opposite faces, in the region of holes (see the
detail “A” in Figure 10a). At the same time, a frictionless surface contact interaction was interposed at
the adjacent glass-to-steel surfaces (i.e., where soft, frictionless gasket layers are used).
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Figure 10. FE numerical modeling of glass beam in LTB (nb = 1, xb = L/2): (a) restraint detail,
with evidence of (b) mechanical characterization of gaskets (detail “B”), and with (c) example of local
FE model for the stiffness analysis of a “detail B” point-fixing (ABAQUS).

The lateral rigid bars of the spider device in Figure 9, finally, were schematized in the form of
squared-shape geometries. Compared to the nominal device in Figure 9, an average cross-sectional
area was taken into account, given that the length and height of these bars was respected. Above these
bars (see the detail “B” in Figure 10a), two point fixings were in fact introduced in the form of solid
discs. For each one of them, the middle axis was placed at a distance of 94 mm from the external face
of the beam. The steel plates and the corresponding lateral bars were ideally “tied”, thus enabling
possible relative deformations.

Special care was dedicated to the description of the mechanical interaction between the spacer
bars and the above point fixings. To this aim, a combined “axial + rotational” connector was introduced
between each spider bar and the corresponding top plate (detail “B” of Figure 10a). Such an assumption
was chosen to characterize the nominal geometrical detail in Figure 10b, where the device and the
glass hole (of the braced orthogonal glass plate) must interact via the interposed gap and soft gasket.
The schematic drawing in Figure 10b, in this regard, adequately reproduces the theoretical behavior
for the examined point fixing detail and a given glass beam in LTB. The connector, as usual, does not
react in tension. Otherwise, on the compression side, it is expected to progressively enable possible
lateral displacements of the beam. At first, the assigned gap allows a certain accommodation of local
deformations (Kd = 0). When the contact initiates between the bolt device and the adjacent soft layer,
a certain stiffness Kd is indeed offered against possible lateral deformations of the beam. This local
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stiffness contribution, however, could be susceptible to local crushing of the soft layer, thus requiring
specific design of geometrical details.

The reliable calculation of Mcr,R for a given LR member, according to Section 3, requires that the
global elastic stiffness K for the spider device should be estimated first.

For practical LTB calculations, it is assumed that each detail agreeing with Figure 10a,b
(where nb = 1 and nd = 2) is the result of multiple local stiffness contributions Kd (if nd > 1) that can be
placed at different xb positions of the span L for the LR beam to verify. The cumulative stiffness K due
to the mechanical restraint in Figure 10 is, thus, expected to be

K =

nd∑
d=1

Kd, (20)

where Equation (21),

Kd =
Fy

uy
, (21)

represents the equivalent stiffness for a single point fixing. The latter depends on the Young’s modulus
of the soft layer in use (Esoft), its thickness tsoft, and the contact surface in compression (Asoft), in the
region of interaction between the bolt and the glass hole. Accordingly, dedicated experimental analyses
or refined FE calculations should support the accurate characterization of local mechanical behaviors
(Figure 10c). As long as the calculations are limited to the linear elastic regime, however, an approximate
prediction of this local stiffness Kd can be obtained as

Kd ≈
Esoft Asoft

tsoft
, (22)

with
Asoft ≈ tsoft 0.8D, (23)

and D the nominal diameter of the bolt.
It is, thus, clear that, as long as the input parameters in Equations (22) and (23) are modified,

a markedly different prediction can be achieved for the total stiffness K in Equation (20). The latter,
in addition, can have different bracing effects and efficiency, depending on the geometry of the LR
beam to verify.

The example in Figure 11, in this regard, shows the typical deformed shape for a selected geometry
(t = 20 mm, b = 200 mm, L = 2000 mm) and a single LR device according to Figure 10a (nb = 1, nd = 2,
xb = L/2, zb = 55 mm). The deformed shape in Figure 11 specifically refers to a total elastic stiffness
K = 40 kN/m (with KT = 144 kN/m, Mcr,0 = 18.69 kNm and MT = 37.38 kNm).
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with LR details according to Figure 10.
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From the deformed shape in Figure 11 (weak restraint), it is possible to notice that the spider
device does not affect the global LTB response of the glass beam. In other words, as long as the total
stiffness K is limited, compared to KT, local deformations are still allowed for the restrained nodes.
From Table 3, moreover, it is possible to see the variation of critical moment estimates for the same
beam geometry, as long as K increases. The collected values are obtained from the linearized analytical
approach, the LTBeam tool, and the refined FE model in Figure 11.

Table 3. Comparison of critical buckling moment variations for the selected beam geometry from
Figure 11 (nb = 1 and nd = 2), as a function of K (3D = three-dimensional).

Mcr,R/Mcr,0

K
(kN/m)

Analytical
(Equation (19))

LTBeam
(Spring-based Model)

FE
(Model with 3D Restraints)

40 1.278 1.350 1.383
80 1.554 1.632 1.655
120 1.725 1.870 1.858

As long as K increases, the bracing effect of local restraints manifests in a progressive increase of
Mcr,R, within the limit values Mcr,0 and MT. The comparison of analytical, LTBeam, and more refined
FE calculations in ABAQUS shows that the first approach tends to underestimate the expected bracing
effect, while the general trend of numerical calculations is mostly in good correlation. For the selected
example, the spring-based estimates show less than a 2% scatter from the more accurate FE model
with three-dimensional (3D) restraints.

A relevant calculation issue is, thus, represented by the threshold stiffness value KT described in
Equation (19), given that Equations (11)–(17) were specifically proposed in [32,33] for doubly symmetric
I-section steel members. The reference analytical approach can be further adapted to rectangular t × b
glass sections, as long as it is assumed that the warping stiffness in Equation (13) reduces to

Iw ≈ I∗w =
Iz
(
b2

)
4

=
b3t3

48
. (24)

Consequently (with G≈ E/3 the shear modulus of glass), the original Equation (13) can be
expressed as

k ≈
16L
π2b2 . (25)

Once k is estimated from Equation (25), the final KT value can, thus, be calculated via Equation
(11). Compared to the exact formulation (i.e., Equation (13) or iterative calculations with the LTBeam
tool, see Section 3.3), it is important to note that Equation (25) can result in rough threshold stiffness
predictions for a given LR glass member. Therefore, careful consideration should be spent, at the
design stage, to account for these intrinsic approximations.

In this regard, comparative calculation examples are proposed in Figure 12a for selected LR
configurations, while the corresponding percentage scatter ∆KT (as obtained from Equation (25) or
more accurate predictions) is shown in Figure 12b. The latter, given the assumption of Equation (25),
can result in both positive or negative scatter (depending on the distance a*), and even in severe scatter.
The combination of geometrical properties for the beam to verify, as well as the position of restraints,
can both contribute to affect the final KT result. According to Figure 12c, however, it is possible to see
that the approximation in KT calculated from Equation (25) can be efficiently addressed (for various
glass beam geometries and restraint positions), as long as the suggested interpolation function is taken
into account.
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Figure 12. Comparative calculation of threshold stiffness KT for LR glass beams, with evidence of (a)
expected accuracy, (b) corresponding percentage scatter ∆KT deriving from the adapted calculation
approach (Equation (25), with selected results grouped by L/b and a*), and (c) correction proposal.

5. Analytical and FE Numerical Parametric Investigation

In accordance with Sections 3 and 4, a series of parametric calculations were carried out on a wide
set of geometrical and mechanical configurations. The critical buckling moment Mcr,R of monolithic
glass beams subjected to a constant, positive bending moment My agreeing with the set-up in Figure 3
was predicted. Key input variations for the parametric study included modifications of the following:

• span L for the selected glass beams (with L = 2000, 3000, 4000 mm),
• cross-sectional dimensions t × b (with t = 20, 30, 40 mm and b = 100, 200, 300 mm),
• position zb of restraints (with zb = 0, b/4, or b/2),
• stiffness K of restraints (K = var).

Through the calculation steps, moreover, three different methods were assessed:

• simplified analytical calculations given by the modified linearized approach (i.e., Equation (19),
with KT from Equation (11) and k given by Equation (25) and Figure 12c).

• LTBeam estimates: for each glass member, the equivalent section properties and LR features were
considered for the software input,

• FE (ABAQUS) models: based on Section 3.4 and Figure 8, where spring-based, axial connectors
were used for the description of lateral restraints.

For all the above methods, the Young’s modulus of glass was set to E = 70 GPa, with ν = 0.23 as
the Poisson’s ratio [50].

Stiffness K and Position zb of Single Discrete Restraints (nb = 1)

A first series of comparative calculations was carried out for glass beams characterized by the
presence of a single discrete restraint. Figure 13 shows the typical variation of critical moment Mcr,R

for a given beam geometry (t = 20 mm, b = 200 mm, L = 2000 mm), as long as K is modified.
Together with the critical buckling moment, as expected, the deformed shape of the beam is

progressively modified with K, from a single half-sine wave (weak lateral restraint, K→0) toward a
double half-sine wave shape that is characterized by null displacements of locally restrained nodes
(K→KT), as shown in Figure 14. Given that both the geometrical properties of the beam’s object of
analysis and the restraint features can affect the final LTB predictions, additional calculations were,
thus, carried out with the three selected methods earlier defined.
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Figure 14. Typical LTB deformed shape for a selected LR glass beam (L = 2000 mm, b = 200 mm,
t = 20 mm) with discrete lateral restraints (nb = 1, with xb = L/2 and zb = b/2): (a) example of LU beam
(K→0) and (b) LR limit condition (K→KT), using ABAQUS.

Typical results are reported in Figure 15, in non-dimensional form, where the parameters in
Equations (26) and (27),

RM =
Mcr,R

Mcr,0
, (26)
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RK =
K
KT

, (27)

denote the theoretical resistance increase and the stiffness efficiency for the discrete restraints in
use, respectively.Materials 2020, 13, x FOR PEER REVIEW 18 of 27 
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Figure 16, finally, presents the major outcomes of an extended analysis carried out on glass beams
in LTB with a single discrete restraint (0 ≤ K ≤ KT). The collected results are compared in the form of
RM values (Equation (26)), as obtained for beam geometries grouped by span (L = 2000, 3000, 4000 mm),
height (b = 100, 200, 300 mm), and thickness (t = 20, 30, 40 mm). Possible variations in the position of
single restraints from the beam shear center are also taken into account (zb = 0, b/4, or b/2, with xb = L/2).
When both the beam geometry and the restraint stiffness K are modified, it is interesting to note in
Figure 16 a relatively stable trend for the RM estimates from the numerical software or the “modified”
linearized analytical approach.

For a more accurate quantification of the expected percentage scatter due to the intrinsic
approximation from the analytical calculations, however, the percentage value in Equation (28)
can be taken into account

∆Mcr,R = 100·
xnum − xan

xan
. (28)

According to Figure 17, it is thus possible to note that the linearized analytical predictions are in
rather good correlation with more detailed FE methods, for relatively stiff restraints (K > 0.8KT, for the
examined systems).

The theoretical buckling moment of the selected LR beams is always underestimated by the
linearized approach, as also expected. However, the percentage scatter from Equation (28) is less than 2%
for most of the examined configurations. For intermediate K values (see Figure 17), the underestimation
of LR bracing effects is maximized in the range of K = 0.3–0.4KT, with up to 7–8% scatter. As a result,
the use of a linear approximated formulation is proven to offer reliable (and not severely conservative)
predictions for the critical buckling moments for LR glass beams with single discrete restraints.
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6. Analysis of Glass Beams with Multiple Discrete Restraints

At a subsequent stage, the parametric analysis was extended to LR glass beams characterized
by the presence of multiple discrete restraints. Major results are grouped in Sections 6.1 and 6.2, as a
function of nb (with 2 ≤ nb ≤ 5).

6.1. Two Restraints (nb = 2)

For glass beams with two equally spaced discrete restraints, most of the FE results and analytical
calculations were proven to agree with the examples in Figure 18a. Therefore, it is possible to note that
the linearized approach has a more pronounced underestimation of the corresponding FE estimates.
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Figure 18. Comparative LTB calculations for LR glass beams with nb = 2 discrete lateral restraints
(with K = var): effects on (a) theoretical buckling resistance and critical deformed shapes (from (b)
LTBeam or (c) ABAQUS respectively).

At the same time, the FE calculations give evidence of two different variations in the slope of
numerical trends. As long as the restraints are weak, compared to the beam configuration, an increase
in critical moment is appreciable, but no marked variations are expected for the global LTB response of
the member (Figure 18b). Rigid restraints, on the other hand, are associated with a fully rigid bracing
system and a typical LTB deformed shape with null local displacements for the nb restrained nodes
(Figure 18c). The intermediate configurations, accordingly, are characterized by a moderate increase
of the expected critical buckling moment, as well as by a global LTB deformed shape that presents a
partial bracing effect for the regions of LR supports (Figure 18b). Parametric calculations were, thus,
repeated for all the previously defined beam geometries, so as to assess the expected scatter due to the
approximation induced by the simplified analytical calculations. The so-obtained results are proposed
in Figure 19, grouped by beam geometry.
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Figure 19. Comparative RM calculations for LR glass beams in LTB (nb = 2, K = var).

Differing from Section 5, a relatively high scatter was observed between the so-calculated critical
buckling moments, especially in the presence of relatively weak restraints.In Figure 20, the scatter
values given by Equation (28) are grouped by span L for the selected beams. As shown, the linearized
approach underestimates, by up to 10–15%, the critical moment for RK values higher than 0.7 (i.e., rigid
restraints). The percentage scatter linearly increases (with up to a maximum of 60–70%) in the presence
of relatively weak restraints (RK = 0.1–0.2). Worthy of interest, in Figure 20, is the stable trend of the
comparative dots, even for discrete restraints having different positions zb on the beam height. In this
regard, the linearized approach could still be used for LTB elastic calculations, as long as the general
trend of Figure 20 is taken into account.
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6.2. More Than Two Restraints (nb = 3, 4, 5)

At the final stage of the study, the attention was focused on LR glass beams characterized by a
relatively high number of restraints (up to nb = 5, for the selected spans). In accordance with Figure 21,
the parametric study gave evidence of relatively rough calculations from the linearized formulation.Materials 2020, 13, x FOR PEER REVIEW 23 of 27 
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Figure 21. Comparative LTB calculations for LR glass beams with nb > 1 discrete lateral restraints
(with K = var): effects on (a–c) theoretical resistance and (d) selected critical deformed shapes (ABAQUS).
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Even in the presence of relatively stiff restraints (i.e., RK > 0.7), the percentage scatter due to
the analytical model was found on the order of 15%–20%, compared to FE estimates. Such a scatter
(see Figure 21) was found to rapidly increase to 80%–90% for the numerical predictions for weak
restrains (RK ≈ 0.4), before progressively tending to 0 for extremely weak restraints (with negligible
effects for LTB purposes). In parallel, the expected fundamental buckling shape was also found to be
progressively modified, moving from the LTB response of a simple LU configuration (i.e., Figure 18d)
toward a fully restrained deformed shape characterized by (nb + 1) half-sine waves.

Among the selected configurations, Figure 22 shows that the presence of relatively weak restraints
involves a progressively larger percentage scatter underestimation of critical buckling moments,
compared to numerical methods. With respect to Figure 17; Figure 20 (where the maximum expected
scatter was found in 8% and 70% of cases for glass beams with nb = 1 or nb = 2 weak restraints,
respectively), such a percentage value increased to ~90%, ~115%, and ~150% for members characterized
by nb = 3, 4, or 5 discrete restraints. In the presence of stiff devices (i.e., RK > 0.4), as shown in Figure 22,
the calculated scatter variation is mostly linear with RK. Accordingly, the comparative results herein
summarized could still offer a reliable feedback for simplified but still accurate critical buckling moment
estimates on LR glass members in LTB.
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6.3. Final Considerations

In conclusion, this research study highlighted some of the major issues that should be accounted
for in the LTB analysis of structural glass members with discrete mechanical lateral restraints.

As long as the reliability of simplified analytical or numerical approaches that could be used
for the calculation of the theoretical critical buckling resistance or LR glass beams are preliminarily
addressed, it is important to further highlight that the same attention should be focused on the
non-linear analysis of the same LR braced systems. As known, the knowledge of theoretical buckling
loads is in fact a key step for design, but still poor information, compared to the actual load-bearing
LTB response and resistance that LR glass members could offer. Major effects are expected, in this
sense, from the shape and amplitude of initial geometrical imperfections to account for in non-linear
LTB calculations. Moreover, another influencing parameter is expected to derive from the region of
holes in glass members, where the stress peaks in LTB should be locally assessed, toward the overall
validation of the standardized design approach recalled in Figure 3. Finally, the LTB response of LR
glass members subjected to loading and boundary configurations differing from Figure 3 should also
be separately investigated.

7. Conclusions

The assessment of the lateral–torsional buckling (LTB) behavior of structural glass members
represents a key step for design, given the relatively high slenderness of load-bearing members that
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are typically used in constructions. In addition to such a design issue, most of the literature studies
and design recommendations are available in documents and standards for laterally unrestrained (LU)
glass members only, thus fully disregarding the effect (and potential) of discrete mechanical restraints
that act as lateral bracing systems for laterally restrained (LR) glass members. In addition, an accurate
estimation of the theoretical LTB critical moment for such LR systems represents a first key step for
design. Often, however, the availability of simplified (but accurate) calculation approaches can offer
robust support for designers.

In this paper, the attention was, thus, on the calculation of the elastic critical buckling moment
of LR glass beams in LTB. A major advantage was taken from existing analytical approaches of the
literature (even mostly developed for steel constructional members), as well as finite element (FE)
numerical analyses, which were performed via the LTBeam tool and the ABAQUS computer software.

Based on parametric calculations carried out on a wide series of geometrical and mechanical
configurations of technical interest, the actual role and the effect of discrete mechanical restraints were
explored for selected LR glass beams. Practical expressions were proposed to assess the expected
stiffness contribution of selected mechanical point fixings in use for glass applications. In this regard,
the reliability of simplified, spring-based numerical models was validated for selected configurations.

Moreover, the comparative analyses showed that the stiffness, number, and position of discrete
mechanical restraints can have marked effects on the expected LTB estimates, with respect to traditional
LU glass members. In addition, the use of a linearized analytical formulation (which was further
adapted in this paper for LR glass beams) was found to offer rather good predictions, especially for
members with single mechanical restraint (with a maximum 7–8% underestimation of theoretical critical
moment). In the presence of two discrete restraints, the scatter of analytical estimates was observed to
be still reliable for relatively stiff (or very weak, and thus negligible) restraints, while underestimates
up to 60% were generally collected for intermediate stiffness configurations. Finally, the analysis of LR
glass beams with multiple discrete restraints (up to five) typically resulted in even more pronounced
scatter increases, as well as relatively high percentage errors (up 15–20%) for LR glass members with
relatively stiff connectors. Furthermore, the trend of the so-calculated scatter was found to be relatively
stable for several combinations of geometrical and mechanical parameters of technical interest. As such,
the comparative studies herein summarized could represent useful feedback for practical LTB estimates.
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