

- 1 Upscale Design, Process Development and Economic
- 2 Analysis of Industrial Plants for Nanomagnetic
- **3** Particle Production for Environmental and
- 4 **Biomedical Use**
- Paulo A Augusto ^{1,*}, Teresa Castelo-Grande ², Diana Vargas ¹, Alvaro Pascual ¹, Lorenzo
 Hernández ¹, Angel M Estevez ¹ and Domingos Barbosa ²
- 7 ¹ Departamento de Ingeniería Química y Textil, Facultad de Ciencias Quimicas, Universidad de Salamanca,
 8 Plaza de los Caídos, 1-5, 37008 Salamanca, Spain
- 9 ² LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of
- 10 Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- 11 * Correspondence: pauloaugusto@usal.es

12 Supplementary material

13 It is important to notice that it is impossible to know precisely the amount of some of the 14 expenses related to any plant, unless they are already built. Therefore, in the design and planning 15 stage estimations are always the best solutions. There are several scientifically accepted methods in 16 literature which describe the best ways to achieve this estimation, and we have followed then (e.g. 17 [S1] and [S2]). However, it is important to notice that some methods diverge on the approach, and 18 thus we must adopt the method which best suits the case under evaluation: a plant for biotechnology 19 applications (BA) imposes different requisites than a plant for environmental applications (EA). 20 Hence, we have applied for each expense or profit the best estimation considering the type of plant, 21 which sometimes leads to different estimation methods being applied for the same expense or profit

22 section on each of the plants under study.

23 A-Calculations Regarding the Size of the Plant

24 (a) Income

• Environmental Applications Plant (EA)

26 The total income, due to selling the magnetic particles will be:

27 28

$$V(\frac{\epsilon}{year}) = 80400 \frac{kg}{year} * 380 \frac{\epsilon}{kg} = 30552000 \frac{\epsilon}{year}$$

V = q * P

- 29 where V is the total income, q the maximum capacity of the plant and P the price of the particles
- Biotechnological Applications Plant (BA)
- 31 The total income, in this case, is:

32
$$V(€/year) = 6300 \frac{kg}{year} * 11904.76 \frac{€}{kg} = 75\ 000\ 000\ €/year$$

- 33 (b) Costs
- 34 To determine the first estimate of the costs, we will use the following formula [S1]:
- $C = M_1 + M_5 + 1.5M_2 + 0.3I$
- 36 where C is the total cost, M1 the raw material costs, M5 the general services costs, M2 the man labor
- 37 costs and I the immobilized costs.
- 38 (b1) Raw Materials

39	• EA
40	In the defined process the raw materials will be $FeSO_4 \cdot 7H_2O_7$, NH ₄ OH and H ₂ O.
41	For water we will use 31,909.68 m³/year which supposes a cost 97.74 €/m³ (includes price of
42	purification stage), thus the total cost will be 3,118,716 €/year.
43	In the case of FeSO₄·7H₂O, this will be supplied at the price of 4,823.41 €/tonne, and as 289,62
44	tonnes/year are required, the total cost will be 1,396,950 €/year.
45	The requirements on NH₄OH are 24,030.79 tonnes/year at the price of 199.20 €/tonne, therefore
46	the associated cost will be 4,787,016 €/year.
47	The total raw materials cost (M₁) will be 9,302,682 €/year.
48	• BA
49	In this case the raw materials will be FeCl ₂ ·4H ₂ O, CH ₃ COONa, starch and H ₂ O.
50	For water we will use 728,623 liters/year, assuming a cost of about 12.10 €/L (includes price of
51	purification stage–much more demanding than in EA), thus the total cost will be 8,816,338.30 €/year.
52	In this case, the FeCl₂·4H₂O will be supplied at the price of 181 €/kg, and as 16,292 kg/year are
53	needed, this represents a total cost of 2,948,852 €/year.
54	44,642 kg/year of CH ₃ COONa are needed, which represent a cost of 2,392,811.20 €/year (53.60
55	kg/year is the price of acquisition of this raw material).
56	In what starch is concerned, 18,247.04 kg/year are required, and if we multiply by its price (179
57	€/kg) we get its cost (3,266,220.16 €/year).
58	On the other end, we also produce as sub-product acetic acid. The selling price of this reagent is
59	$47 \notin$ kg. As we will produce 32,665.47 kg/year of this subproduct, the total profit on selling acetic acid
60	will be 1,535,277.09 €/year. For practical reasons, we will consider this income in this section, which
61	implies that we decrease this amount in the total raw materials cost.
62	The total raw materials cost (M₁) will be 15,888,944.60 €/year.
63	(b2) General Services
64	In general services we consider costs such as electricity, steam, compressed air, etc. This cost
65	usually is calculated as 10–20% of the total costs. We have assumed 20% ($M_s = 0.2 \text{ C}$) for both plants.
66	(b3) Direct Manpower (Mz)
67	The required manpower will be at this stage evaluated by the Andres method [S1]:
68	Hh (1.22 $\pm z^{-0.82}$
08	$\frac{Hh}{Tm * op} = 61.33 * q^{-0.82}$
69	where <i>Hh</i> is the manpower per hour required, <i>Tm</i> is total production (tonne/year), <i>op</i> the number of
70	process sections of the plant, and q the maximum capacity of the plant (tonne/day).
71	• EA
72	The plant will work continuously during the year, 24 hr per day and 7 days per week, 11 months
73	per year. It will have 3 shifts of work, 5 days per week, the total number of process sectors 4.
74	Therefore, the total number of manpower-hour per year is 64,962 Hh/year, which corresponds
75	to a total cost of M ₂ = 1,544,788 \in /year and a total number of direct manpower of 24 workers.
76	• BA
77	The plant will work semi-continuously during the year, 24 hr per day and 5 days per week, 48
78	weeks per year. The total number of process sectors is 4.
79	The total number of manpower-hour per year is 1,591 Hh/year, which corresponds to a total cost
80	of $M_2 = 909,748 \notin$ /year and a total number of direct manpower of 21 workers.
81	(b4) Immobilized Capital
82	The immobilized capital is composed by three different types of costs: the fixed active (IA), the
83	previous studies (I _B) and the start-up costs (I _C).
84	

85	$I = I_A + I_B + I_C$
86	• EA
87	Its total is 39,371,134 €, according to the values of the different types of costs, detailed in the next
88	sections.
89	• BA
90	Its total is 135,648,400 €, according to the values of the different types of costs, detailed in the
91 02	next sections.
92 93	(b41) Fixed active costs This type of costs are the enterprise goods that may not be call in the short time and that are not
93 94	This type of costs are the enterprise goods that may not be sell in the short time and that are not destined for sale: e.g. instrumentation, office material, etc. For its estimation we will use the "giro
95	coefficient method" [S1]
96	$g = \frac{V}{I_A}$
97	where V is the sales income and g a coefficient that changes according to the type of factory. For
98	chemical industries it has the general value of 0.97.
99	• EA
100	In this case, IA is equal to 31,496,907 €.
101	• BA
102	In this case, IA is equal to 77,319,588 €.
103	(b42)
104	• EA
105	The costs associated with the preliminary studies, as we are dealing with an industry of new
106	products and high-production rate, is estimated as being 12% of the total immobilized ($I_B = 0.12$ I).
107	• BA
108 109	The costs associated with the preliminary studies, as we are dealing with an industry of improved products and low production rate is estimated as being 25% of the total immehilized (In-
110	improved products and low-production rate, is estimated as being 35% of the total immobilized ($I_B = 0.35 I$).
111	(b43) Start-up costs
112	This is a value that also depends on the immobilized, and the fixed active costs. For both cases
113	it will correspond to 8% of the total immobilized capital (I $_{\rm C}$ = 0.08 I).
114	(b5) Total Costs
115	Environmental Applications (EA)
116	Applying all the data, which is justified as follows, we may determine the value of the total costs
117	to be 29,289,005 €/year.
118	Biotechnological Applications (BA)
119	Applying all the data, which is justified as follows, we may determine the value of the total costs
120	to be 72,435,108 €/year.
121	B-Calculations Regarding Economic Impact and Profitability
122	The majority of estimations are based on details given in [S1] and [S2]
123	II.1–Production Cost
124	The total Production cost will be the sum of the Fabrication Cost (M) and the Management Cost (G)
125	II.1.1–Fabrication Cost
126	(a) Cost of Raw Materials/Income of Salling Subproducts

126 (a) Cost of Raw Materials/Income of Selling Subproducts

•

ΒA

128

Table S1.-Costs of Raw Materials/Income of Selling Subproducts (Environmental Applications).

Deres Martanial	Price	Quantity (tonne/year)	Cost/Income (€/year)
Raw Material	(€/tonne)		
FeSO ₄ ·7H ₂ O	4,823.41	289.62	1,396,950 (cost)
NH4OH	199.20	24,030.79	4,787,016 (cost)
H ₂ O	97.74	31,909.68	3,118,716 (cost)
		Total: 9,302,682 €/year	

129

130

Table S2.-Costs of Raw Materials/Income of Selling Subproducts (Biotechnology Applications).

Raw Material Price (€/kg)		Quantity (kg/year)	Cost/Income (€/year)	
FeCl ₂ ·4H ₂ O	181	16 292	2,948,852 (cost)	
CH ₃ COONa	53.60	44 642	2,392,811.20 (cost)	
Starch	179.00	18,247.04	3,266,220.16 (cost)	
H ₂ O	12.10	728,623	8,816,338.30 (cost)	
Acetic Acid	47.00	32,665.47	1,535,277.09 (income)	
	Tot	tal: 15 888 944.60 €/year		

131 (b) Direct Human Labor

132 As previously pointed out, the plants will be working continuously or semi-continuously and

133 therefore shifts must be applied in several of the work positions, which implies an extra payment to

134 workers, when working by night.

135 In Tables S3 and S4 are presented the labor costs for the direct human labor.

Table S3.-Labor costs for the Environmental Applications case (direct human labor).

Ich	Number of Workers	Annual	Extra	Social Security (€/year)	Total (€)		
Job		Salary (€)	Annual (€)				
Mechanic	10	21,890.98	11,436	6,437	397,639.80		
Plumber/Builder	6	21,890.98	11,436	6,437	238,583.90		
Electrical Technician	4	21,890.98	11,436	6,437	159,055.90		
Laboratory Technician	4	21,890.98	11,436	6,437	397,639.80		
Operator Zone 1	3	19,211.04	11,436	5,080	1,071,811.20		
Total = 2,264,730.60 €/year							

¹³⁶

Job	Number of Workers	Annual	Extra	Social Security (€/year)	Total (€)		
JOD		Salary (€)	Annual (€)				
Mechanic	7	26,911.50	15,667.90	7,236.50	348,711.70		
Plumber/Builder	7	26,911.50	15,667.90	7,236.50	348,711.70		
Electrical Technician	7	26,911.50	15,667.90	7,236.50	348,711.70		
Laboratory Technician	22	18,149.60	11,893.70	5,710.70	786,587.10		
Operator Zone 1	6	32,700.50	19,034.70	8,467.50	361,216.10		
Total = 2,193,938.15 €/year							

Table S4.-Labor costs for the Biotechnology Applications case (direct human labor).

139 (c) Indirect Human Labor

140 In Tables S5 and S6 are presented the labor costs for the indirect human labor.

141

138

Table S5.-Labor costs for the Environmental Applications case (indirect human labor).

Tah	Number of Workers	Annual Salary	Extra Annual	Social Security (€/year)	Total (€)
Job		(€)	(€)		
Cleaning Personnel	3	14,892.40	10,038	4,379	87,928.10
Security	5	19,211.00	10,038	4,686	169,675.20
Commercial	1	19,211.00	10,038	4,686	33,935.00
Receptionist	2	19,211.00	10,038	4,686	67,870.10
Maintenance	1	19,211.00	10,038	4,686	33,935.00
Nurse	2	31,124.80	16,275	7,532	109,863.60
		Total = 503,207.	10 €/year		

142

 Table S6.-Labor costs for the Biotechnology Applications case (indirect human labor)

Tel	Number of Workers	Annual Salary	Extra Annual	Social Security (€/year)	Total (€)		
Job		(€)	(€)				
Cleaning Personnel	3	15,646.20	9,094.80	4,379.00	87,360.00		
Security	2	18,149.60	11,893.70	5,710.60	71,507.90		
Commercial	2	18,149.60	11,893.70	5,710.60	71,507.90		
Receptionist	1	18,149.60	11,893.70	5,710.60	35,754.00		
Maintenance	1	18,149.60	11,893.70	5,710.60	35,754.00		
Nurse	5	32,700.50	19,034.70	8,467.50	301,013.40		
Total = 602,897.20 €/year							

143 (d) General Services

144 In this section are included costs such as refrigeration, etc. In the case of Environmental 145 Applications, they are easier to compute and are presented in Table S7. For Biotechnological 146 Applications we are able to estimate this cost to be 20% of the total production costs, which makes a

147 total of 9,048,525 €/year (BA).

148

Service	kg/h	€/kg	h	€		
Superheated Steam	32	0.00664	7,920	1,682.80		
Refrigerated Water	1	0.00266	7,920	21.10		
Total 1,703.90 €/year						

Table S7.-General Services of the Environmental Applications Plant.

150 (e) Supplies

151 In this section are considered the items that are not included in the manufacturing process, 152 mainly disposable material, etc. It is usually estimated to be valuing between 0.5% and 2% of the total 153 immobilized, depending on the complexity of the plant. In this case it is supposed to be 0.6% for EA

154 and 1.5% for BA, which corresponds to 41,745.34 €/year and 432,988.47 €/year, respectively.

155 (f) Maintenance

In this section are included the periodic maintenance of instrumentation and equipment. For chemical-environmental applications we may assume a lower estimate as corresponding to 3% of the total Immobilized, hence, 208,726.68 €/year. For biotechnological industries it usually corresponds to

- 159 6% of the fixed capital, and thus, in this case, 863,263.18 $\ensuremath{\in}$ /year.
- 160 (g) Laboratory

161 For the laboratory work is usually assumed 30% of the direct human labor, thus, in this case it 162 represents $679,419.18 \notin$ /year for EA and $658,181.45 \notin$ /year for BA.

163 (h) Chief Personnel

164 In Tables S8 and S9 are presented the chief personnel costs.

165

Table S8.-Labor costs for the Environmental Applications case (chief personnel)

Tab	Number of Workers	Annual Salary	Extra Annual	Social Security (€/year)	Total (€)		
Job		(€)	(€)				
IC Technician	5	31,124.80	16,275	9,152	282,759.10		
Manager	1	31,124.80	16,275	9,152	56,551.80		
Process Engineer	1	31,124.80	16,275	9,152	56,551.80		
Managing Director	1	39,464.50	20,634	11,604	71,702.50		
Total = 467,565.20 €/year							

166

	Number of Workers	Annual	Extra	Social Security (€/year)	Total (€)
Job		Salary (€)	Annual		
			(€)		
Managing Director	1	41,462.40	24,134.80	13,045.80	78,643.00
Process Engineering	1	31,902.90	19,034.70	10,289.00	61,226.60
Environmental and Safety Engineering	1	31,902.90	19,034.70	10,289.00	61,226.60
IC Technician	5	31,902.90	19,034.70	10,289.00	306,132.90
	Total = 507,22	29.10 €/year			

168 (i) Amortization

This section takes into account the life span of the equipment. We take as life span the usual
figures concerning each type of equipment. Therefore, this cost is estimated as 128,720.60 €/year (EA)
and 73,880.00 €/year (BA).

172 (j) Taxes

This section takes into consideration taxes related to the chemical plant (general worldwide), not
including the taxes due to profits. It usually is estimated as 1% of the Immobilized. Hence, in our case
is estimated to be 69,575.60 €/year (EA) and 288,659.00 €/year (BA).

176 (k) Insurance

177 In this section we consider the insurance of the plant (equipment, facilities, etc.). It is usually 1%
178 of the Immobilized, so, in our case it is estimated to represent a cost of 69,575.60 €/year (EA) and
179 288,659.00 €/year (BA).

- 180 (l) Total Cost of Fabrication
- 181 TOTAL FABRICATION COSTS: 19,791,507.20 €/year (EA) and 30,902,005.70 €/year (BA).
- 182 II.1.2–Management Costs
- 183 (a) Commercial Costs

The commercial costs are estimated to be 20% of the total fabrication costs, thus representing a
total value of 3,958,301.40 €/year (EA) and 6,180,401.10 €/year (BA).

186 (b) Financial Costs

187 In this item we consider the amount of money that could be earned, if instead of investing it in 188 each plant, it would be invested in a fixed deposit in a bank or other competing alternatives. For 189 Environmental Applications we consider the medium tax value (of the banks) of 0.4%, and thus we 190 get a total cost of 49,257.00€/year. For Biotechnological Applications several alternative opportunities 191 are usually available, therefore, we will assume a very conservative value of 15%, and thus we get a 192 total cost of 5,776,170.20 €/year.

193 (c) Management

In this section we consider the administrative management costs, or alternatively (depending on
the type and dimensions of the plant) the cost of a full sector of the plant dedicated to management.
For Environmental Applications it is estimated to be 4.5% of the total fabrication costs, therefore
giving a value of 890,617.80 €/year. For Biotechnological Applications a simpler sector of

167

198 management is required, therefore in Table S10 are presented the costs related to this sector that give

199 a total of 479,412.30 €/year.

Tala	Number of Workers	Annual Salary	Extra Annual	Social Security (€/year)	Total (€)
Job		(€)	(€)		
Administrative	5	22,999.21	10,557.74	7,236.54	203,967.45
Recepcionist	1	18,149.58	9,746.12	5,710.64	33,606.34
Commercial	2	18,149.58	9,746.12	5,710.64	67,212.68
Secretary	2	18,149.58	9,746.12	5,710.64	67,212.68
Manager	1	32,700.52	15,667.94	10,288.98	58,657.44
Accountant	1	26,911.47	13,376.70	8,467.50	48,755.67
		Total = 479,41	2.30 €/year		

Table S10.-Management Personnel labor costs for the Biotechnology Applications case

201 (d) Research, Development and Technical Services

202 The costs on R&D may be estimated as 3–4% of the Immobilized, depending on the level of 203 novelty of the product. For Environmental Applications 3% is more appropriate, and thus the R&D 204 costs for this type of plant is 208,726.70 €/year. For Biotechnological Applications, and due to the 205 higher novelty, we define 4% as more appropriate, and thus the R&D costs for this type of plant is 1 206 154,635.90 €/year. Considering Technical Services for the Environmental Applications, the hiring of a 207 person is considered enough, like detailed in Table S11 (Total Costs 33,935.40 €/year), while for 208 Biotechnological Applications the costs of technical services must be calculated as 10% of the total 209 selling income (Total cost of 750,000 €/year).

210

200

Table S11.-Technical services labor costs for the Environmental Applications case

Job	Number of Workers	Annual Salary	Extra Annual	Social Security (€/year)	Total (€)				
		(€)	(€)						
Administrative	1	19,211.44	10,038	4,686	33,935.44				
Total = 33,935.40 €/year									

211 (e) Total Cost of Management

```
212 TOTAL COST OF MANAGEMENT: 5 140,838.40 €/year (EA) and 14 340,619.50 €/year (BA).
```

213 II.1.3–Total Cost of Production

```
214 Total Cost of Production = Total Cost of Fabrication (II.1.1) + Total Cost of Management (II.1.2),
```

215 thus:

- 216 TOTAL COST OF PRODUCTION: 24,932,345.60 €/year (EA) and 45,242,625.20 €/year (BA).
- 217 II.2–Invested Capital

218 The Invested Capital is the sum of two parts: the immobilized and the working capital

219 II.2.1–Fixed Immobilized Capital

This is the amount of invested money that will not be recovered, and is calculated as the sum of
parts (a) to (h) that are detailed in what follows. They give a total of 4,772,888 €/year (EA) and 12
332,331.20 €/year (BA)

223 (a) Equipment and Instrumentation

- For Environmental Applications the total cost of equipment is 876,200 €/year while for
 Biotechnological Applications it reaches the 1,714,802.20 €/year.
- 226 (b) Assembly and Start-up

Usually the costs for assembly and startup of the devices and equipment are determined as a
percentage of the total equipment cost, therefore will be a total of 1,180,970 €/year (EA) and 1,668,069
€/year (BA).

230 (c) Tubing and valves

The cost of tubing and valves is estimated as 60% of the total equipment costs, and hence will be a total of 525,720 €/year (EA) and 1,028,881.30 €/year (BA).

233 (d) Measuring and Control Devices

Costs of this section are usually estimated between 15–30% of the total equipment costs, depending on the level of control required for the plant. For Environmental Applications we consider to be 15% the appropriate value, while for Biotechnological Applications is more appropriate to consider 30%, and therefore the total costs are 131,430 €/year (EA) and 514,440.70 €/year (BA).

238 (e) Thermal Isolation

239 The cost for the thermal isolation will be considered to be 4% of the total equipment costs in the 240 case of Environmental Applications (35,048 €/year) and 7% of the total equipment costs in the case of 241 Biotechnological Applications (120,036.20 €/year) as thermal isolation in BA is superior to EA (higher 242 temperatures must be maintained and operated).

243 (f) Electrical Installation

The cost for the electrical installation, usually corresponds to a percentage of the total equipment costs. For the Environmental Applications we calculate it as 15% of the equipment cost (131,430 \notin /year), while for Biotechnological Applications it is calculated as 20% of the equipment cost, as more equipment and area is covered (342,960.40 \notin /year).

248 (g) Land Property and Buildings

This is calculated by adding the cost of the land as a percentage of the total equipment costs. For the Environmental Applications Plant it is assumed 5% of the equipment costs, that added to the cost of the land gives a total of 1,541,610 €/year. For the Biotechnological Applications Plant it is assumed 15% of the equipment costs, that added to the cost of the land gives a total of 6,257,220.30 €/year.

253 (h) Auxiliary Facilities

For this type of cost, usually it is estimated a value of 40% of the total equipment cost, that gives a total value of 350,480 €/year (EA) and 685,920.90 €/year (BA).

- 256 II.2.2–Other Costs
- 257 (a) Design and Engineering

This part contemplates all the design and engineering works done for the construction of the
plant. Usually it is estimated as about 10.4% (including VAT) of the total Fixed Capital, and therefore
will be a total of 497,244.20 €/year (EA) and 1,284,794.60 €/year (BA).

261 (b) Contract of Works

It is supposed to be 6% of the fixed capital, thus will be a total of 286,373.30 €/year (EA) and
739,939.90 €/year (BA).

In this section are included all the unexpected extra costs that may appear. It is usually estimated as being a percentage of the Fixed Capital, depending on the level of estimative costs we have made and the unexpected problems we foresee to be handling. For the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year) and 17% for the case of Environmental Applications about 32.35% are considered (including VAT) (total of 685,117.20 €/year)

269 Biotechnological Applications (total of 2,096,496.30 €/year).

270 (d) Preliminary Research, Studies and Startup

In the case of Environmental Applications, the costs related to this section are calculated as 15%
 of the Fixed Capital (total 715,933.20 €/year). For the case of Biotechnological Applications, they are

computed as 43% of the total Immobilized (total 12,412,336.20 \notin)/year).

274 Fixed Immobilized Capital

In tables S12 and S13 we present a sum-up of all the parts of the calculated total Fixed Immobilized Capital for the two types of Plants.

277

Table 12.–Fixed Immobilized Capital (for EA plant).

		Type of Cost	Cost (€)
	Fixed Capital: P.E.M	Equipment and Instrumentation	876,200
		Assembly and Start-up	1,180,970
		Tubing and valves	525,720
		Measuring and Control Devices	131,430
		Thermal Isolation	35,048
		Electrical Installation	131,430
		Land property and buildings	1,541,610
Immobilized Capital		Auxiliary facilities	350,480
	Total Cos	4,772,888	
	Design	497,244.20	
	Сог	286,373.30	
	Contingency		685,117.20
	Preliminary Rese	715,933.20	
	Total of	6,957,555.9	

10 of 12

279

Table S13Fixed Immobilized Capital (for BA plant).							
		Type of Cost	Cost (€)				
		Equipment and Instrumentation	1,714,802.20				
		Assembly and Start-up	1,668,069.20				
		Tubing and valves	1,028,881.30				
		Measuring and Control Devices	514,440.70				
	Fixed Capital: P.E.M	Thermal Isolation	120,036.20				
		Electrical Installation	342,960.40				
		Land property and buildings	6,257,220.30				
Immobilized Capital		Auxiliary facilities	685,920.90				
	Total Cos	12,332,331.20					
	Design and Engineering		1,284,794.60				
	Contract of Works		739,939.90				
	Contingency		2,096,496.30				
	Preliminary Resea	12,412,33.20					
	Total of	28,865,898.10					

280 II.3–Working Capital

- 281 This is the part of the Capital that may be recovered.
- 282 II.3.1–Raw Materials and Auxiliaries
- 283 To compute this cost we may apply

$$M'_1 * \left(\frac{q}{12}\right)$$

- where M'_1 is the cost of raw materials by unit of product and *q* the annual production quantity. This gives a final cost of 775,223.50 \notin /year (EA) and 1,324,078.70 \notin /year (BA) for this section of the costs.
- 286 II.3.2–Materials in Manufacturing

This cost may be computed with the knowledge of the manufacturing cycle. In the case of the
Environmental Applications Plant corresponds to 0.012 months and therefore the associated costs
will be 9,895.80 €/year, while for the Biotechnological Applications Plant we assume 0.033 months
and an associated cost of 42,490.30 €/year.

291 II.3.3–Reserve of the Manufactured Product in the Warehouse

The costs corresponding to this section are computed as 1,649,292.30 €/year (EA) and 2,575,167.10 €/year (BA), as they are obtained as the fabrication cost per month.

294 II.3.4–Sales Pending Collection

Corresponds to the credit that is given to buyers. In our case it corresponds to 1,273,000 €/year
(EA) and 3,125,000 €/year (BA)–calculated as the income (of the selling of the product) per each 15 days.

- 298 II.3.5–Available in ATM's and Banks for Immediate Payments
- It corresponds to 1,649,292.30 €/year (EA) and 2,575,167.10 €/year (BA). They are estimated in a similar way as the reserve of the manufactured product in the warehouse.

Materials 2020, 13, 2477

- 301 II.3.6–Calculation of Working Capital
- 302 TOTAL WORKING CAPITAL: 5,356,703.80 €/year (EA) and 9,641,903.30 €/year (BA)

303 II.4–Total Invested Capital

- 304 TOTAL INVESTED CAPITAL = WORKING CAPITAL + IMMOBILIZED
- 305 TOTAL INVESTED CAPITAL: 12,314,259.70 €/year (EA) and 38,507,801.40 €/year (BA)

306 II.5–Total Sell Income

This was already calculated previously and is equal to 30,552,000 €/year (EA) and 75,000,000 €/year (BA).

309 II.6–Profitability

310 II.6.1–Gross Annual Profit

This is computed as the difference between Costs and Sells, and in this case gives a value of 5,619,654.40 €/year (EA) and 29,757,374.80 €/year (BA).

- 313 II.6.2–Gross Annual Profitability
- 314 Is computed as the Gross Annual Profit divided by the Invested Capital. In our case it gives a 315 value of 45.6% (EA) and 77.3% (BA).
- 316 II.6.3–Net Annual Profit

317 Is equal to the Gross Annual Profit minus the Taxes. In our case as the Society Tax is 25% in 318 Spain, we get a total Net Annual Profit of 4,214,740.80 €/year (EA) and 22,318,031.10 €/year (BA).

- 319 II.6.4–Net Annual Profitability
- 320 In our case it gives 34.2% (EA) and 58.0% (BA)

321 References:

322 [S1]–Vian-Ortuño Á. El pronóstico económico en química industrial. EUDEMA, S. A., Madrid, Spain,

323 1991.

- 324 [S2]–Sinnot R. Diseño en Ingeniería Química. Reverté, Barcelona, Spain, 2012.
- 325
- 326 End of supplementary material.