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Abstract: In this study, a novel test system for estimating bending and torsion fatigue under selectable
kinematic and dynamic loading modes was constructed. Using S355J2 steel specimens, a series of
tests were conducted to determine material sensitivity to different load paths and loading modes.
The experimental results were supplemented with the results of numerical analyses, on the basis
of which the components of strain and stress tensors for subsequent analyses were determined in
the entire working part of the specimen. An original method for determining specific strain energy
components was used. The experimental results showed the grouping of data according to the mode
of loading chosen. This could signify that the selected fatigue models are sensitive to certain loading
scenarios. We performed in-depth data analysis and complex numerical simulations, formulating
likely explanations for the observed effect.

Keywords: energy fatigue model; elasto–plastic strain energy; constitutive models; bending and
torsion; kinematic and dynamic loading

1. Introduction

Non-monotonic alternation of stress states may lead to permanent changes in the structure of
materials and is often the cause of the limited functionality of components. The vast majority of
machines and engineering structures are subjected to complex and time-varying operational loads [1–6].
Generally, the loads can be dynamic, i.e., caused by forces and moments varying in time. They can
also be kinematic loads, caused by time-varying displacements and rotations. In both cases, a complex
field of strain and stress arises in the structure. Industrial examples, where such loading scenarios
are important, include heavy vehicles used for landscaping, such as diggers or crushers. Operation
of such equipment requires completing target kinematic displacement against a uncontrollable and
unpredictable dynamic reaction from soil or processed material. A reverse case example can be found
in many torsionally loaded shafts, where the kinematic response is stochastic, such as large bore drills
in the oil and gas industry.

The fatigue properties of construction materials under uniaxial loads are best described in the
literature [7–9]. However, due to the fact that in reality complex loading states occur in machines
and structures, it is more desirable to test the complex state of loading complexity [10–12]. The issues
that are currently raised in the literature regarding fatigue of materials are the analysis of the
correlation between the material microstructure and fatigue life [13,14] as well as issues on the
border of fracture mechanics and surface quality [15,16]. Under the influence of non-proportional
loadings, the principal stress and strain directions change cyclically [17,18] and, as proven by various
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studies [17,19], the fatigue life of a given structure can be significantly reduced. A number of studies
on a certain group of materials [20] showed a clear impact of material non-proportional hardening
sensitivity on the observed fatigue life.

Most experimental studies conducted under multiaxial fatigue load conditions were performed
for independent tension: compression and torsion [21,22]. The results of material testing under other
loading conditions, for example, for bending with torsion, appear much less frequently in the literature.
In most cases, the tests were performed phase-aligned with controlled values of bending and torsional
moments amplitudes (dynamic load) [23–27]. Testing of materials subjected to bending and torsional
loads, with controlled kinematic load, is much less common; however, some studies [28,29] analyzed
essentially aligned kinematic loads causing bending and torsion. Literature sources on material
testing in both possible load control variants (dynamic and kinematic) is lacking. In this context,
the knowledge of fatigue of materials subjected to phase-dependent kinematic or dynamic loading
seems to be underdeveloped, especially given potential significance to many structures and mechanisms.
As a part of a research program, material specimens were tested with controlled, with independent
kinematic or dynamic loads. A custom-built fatigue testing machine was implemented to facilitate this
project. Similar to typical tensile–compression tests with torsion, fatigue tests were performed for both
out-of-phase loads and in-phase loads for bending and torsion alone and combinations thereof.

The main objective of this study was to examine the fatigue properties of S355J2 steel using an
energetic description. In this work, fatigue tests were conducted on specimens in kinematic and dynamic
scenarios with four paths of loadings. The cyclic stress–strain response of the fatigue-tested specimens
were analyzed using finite element method (FEM) analysis with the Chaboche model of cyclic plasticity.
We determined the effectiveness of the most popular energy models for many variants of cyclic loads
based on the original method of determining specific strain energy components to describe fatigue
life. The fatigue lives of these specimens were compared between kinematic and dynamic loading
test conditions.

2. Materials and Methods

2.1. Test Specimen

Steel grade S355J2 was supplied for testing in the form of drawn bars with a diameter φ = 16 mm.
The chemical composition of this material was previously published [26], whereas its relevant
mechanical properties are listed in Table 1. The test specimen is shown in Figure 1. The chosen
shape of specimens ensured that the maximum normal and tangential stresses occurred in the smallest
cross-section area, making it the most probable location of fatigue crack initiation.

Figure 1. Test specimen. All dimensions are provided in millimeters.
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Table 1. Mechanical properties of S355J2 steel.

σy σu E ν K
′

n
′

C1 C2 C3 D1 D2 D3
MPa MPa GPa – MPa – MPa MPa MPa – – –

155 535 213 0.29 1325 0.204 309,760 91,832 26,515 4971 930 0

2.2. Fatigue Machine

The custom-built test stand we used in our research is presented in Figure 2. The fatigue machine
rests on a desktop base plate, supported by a frame structure. The test specimen is gripped between a
tool holder and a column clamp. Each loading lever (bending and torsional) is connected to the holder
tool and through a swivel joint, linked with an actuator that provides excitation.

 

Laser displacement sensors 

Column clamp 

Lever (bending) 

Specimen 

Holder tool 

Lever (torsion) 

Laser target 

Actuator 

Swivel joint 

Strain gauges 

Base plate 

Figure 2. Fatigue testing machine.

A schematic diagram of the control and conditioning system used in the experiments is shown in
Figure 3. It is based in NI cDAQ hardware (National Instruments, Austin, TX, USA).
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Figure 3. Fatigue machine control and conditioning system.

A test specimen (Figure 1) was mounted in a tool holder that allows bending and torsional loads
to be applied independent of each other. A computerized control system enabled the implementation
of any load path and two work modes: kinematic and dynamic. In the former, the loads are delivered
as displacements, causing independently controllable torsion XT or bending XB, as well as a any
combination of both. The maximum permissible range of lever movements was set to ±9 mm.
However, experiments were conducted in the range of±3 mm. Control and acquisition of displacement
values were achieved with dedicated laser displacement sensors, monitoring each load lever. In the
second dynamic mode of operation, the specimen was loaded dynamically using independently
controlled moment of force: torsion MT and bending MB. In this case, the permissible range of lever
displacement was also limited to ±9 mm. The values of bending and torsional moments specified in
the experiment were within the range of ±28 Nm. The control and acquisition of the moment values
were carried out using appropriately calibrated strain gauges located on the load levers. The specimen
neck (its smallest diameter, see Figure 1) caused a concentration of the maximum elastic and plastic
strains. The average components of the εi,j strain tensor at a selected measuring point can be measured
using resistance strain gauges. However, this required sticking a flat strain gauge on the saddle surface
of the specimens’ neck. Even with relatively small strain gauges, their deformation and averaged
measured deformation values must be considered. We decided to calculate the values of strain tensor
components by indirect means, as described in detail below. The control and measurement system
also acquired strain value data at the specimen neck. These data were used for preliminary calibration
to determine the relationship between lever displacements and strain measured at the neck, which
aided in later numerical modelling work.

2.3. Research Methodology

In the conducted experiments, we assumed that the respective ratios of bending and torsion
displacements or moments of force amounted to unity. All loading paths used in experiments were
fully reversed, as shown in Figure 4, as follows: path I, bending; path II, torsion; path III, proportional
in-phase bending with torsion; and path IV, out-of-phase bending with torsion. As the experimental
tests were conducted using kinematic and dynamic modes, two different criteria for specimen failure
were adopted. For kinematic loads, the number of cycles to specimen failure was defined as the
durability corresponding to a 20% change in the measured bending or torsional moment. For dynamic
loads, the fatigue life was defined as number of cycles until a 20% change in the displacement of the
bending or torsional lever was achieved. All tests were conducted at an excitation frequency of 20 Hz.
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Figure 4. Loading paths.

2.4. Experimental Results

Table 2 summarizes the obtained values of fatigue life for specimens tested under controlled
dynamic or kinematic loads. Specimens marked as H were subjected to kinematic loading, whereas
specimens marked as P were subjected to dynamic loading.

Table 2. Experimental test results for S355J2 steel specimens.

No. XB XT MB MT Loading Path N f

mm mm Nm Nm (See Figure 4) Cycles

Kinematic Load

H1, H2 3 3 3 13,540, 11,360
H3, H4 2.5 2.5 3 22,100, 23,760
H5, H6, H7 2.2 2.2 3 32,780, 74,800, 49,100
H8, H9 2.8 2.8 3 14,760, 19,400
H10, H11 2 2 3 77,720, 73,440
H12, H12, H13 3 3 4 16,380, 10,720, 10,500
H15, H16 2.8 2.8 4 14700, 18,180
H17, H18 2.5 2.5 4 26,200, 26,740
H19, H20 2.2 2.2 4 77,840, 70,080
H21, H22 2 2 4 152,380, 95,040
H26 3 0 1 27,580
H28, H29 0 3 2 535,540, 611,720
P2 20 0 1 192,520
P4 25.64 0 1 23,780
P5 0 24.59 2 197,190
P6 0 25.27 2 211,900
P7 0 27.38 2 17,760
P8 0 22.74 2 547,680
P9, P10, P11 18.36 18.36 3 77,320, 88,240, 36,600
P17, P18 14.84 14.84 3 219,500, 263,720
P40, P41 18.6 18.6 4 38,360, 63,100
P46 14.79 14.79 4 1,002,160

2.5. Numerical Determination of Strain and Stress State Components

For construction materials in an elastic state, stress can be easily calculated directly on the basis
of strains (or vice versa, strains on the basis of stress). In this case, the generalized Hooke law can be
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used. However, this approach ceases to be adequate as soon as the first plastic strain appears. In this
case, the relationship between the strain and stress is strictly dependent on the load trajectory. Then, a
constitutive model of cyclic plasticity must be used. Constitutive models, despite their diversity in
terms of scope of applications and phenomena they embrace, always consist of three basic components.

• The plasticity condition in which the von Mises equation is the most commonly used

f (s, α, σy) =
3
2
(s− α) : (s− α)− σ2

y = 0, (1)

where s is the stress deviator, α is the back stress tensor, σy is the radius of the plasticity surface
(the limit of cyclic plasticity in uniaxial tensile test), the mark “:” represents the scalar product of
two tensors, and denotes a tensor.

• Associated flow rule, which allows the determination of the increase in plastic strain, which,
according to Drucker’s postulate [30], is normal to the plasticity surface

dεp =
1
H
(ds : n)n, (2)

where ds is the stress deviator increase, n is the normal vector for plasticity surfaces n =
√

3
2
(s−α)

σy
,

and H is the plasticity module.
• The hardening rule. In most cases, to calculate fatigue, the kinematic hardening rule is used,

allowing the position of plasticity surface α to be determined after each increment in the stress
deviator s. For example, for the non-linear Chaboche model [30,31], the hardening rule takes the
following form:

dα =
3

∑
i=1

(
2
3

Cidεp − Di

(
2
3

dεp : dεp
) 1

2
αi

)
, (3)

where Ci and Di (Table 1) are the parameters of the cyclic strain curve function [32,33]

σa = σy +
3

∑
i=1

Ci
Di

tanh Diε
p
a . (4)

To determine the components of the strain and stress state in specimens prior to experiments, a
finite element method simulation was conducted on a numerical model of the test stand, produced in
ANSYS 2019 R1 software (Ansys, Canonsburg, PA, USA). This allowed the computation of the field of
stress σ(t, x, y, z) and strain ε(t, x, y, z) tensors in the specimen when subjected to loadings in form of
moments or displacements.

The numerical model of the fatigue machine consisted of two levers, a holder tool, and a test
specimen (Figure 5). These virtual components were supported and loaded to reflect the kinematics of
fatigue machine operation. Although some minor geometrical features of the design were simplified,
clamping and loading remained unaffected compared to the actual test stand. A detailed view in
Figure 5 depicts the FEM model mesh structure (Table 3) for the virtual specimen, which consisted of
245,561 finite elements distributed over the neck region of the specimen. The finite element mesh was
optimized using standard ANSYS procedures. The FEM model uses a diverse finite element mesh that
was optimized for the given calculation model.
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Figure 5. Numerical model of clamping/loading system of the fatigue machine.

Table 3. Analysis detalies.

Quantity Total Neck Region

Elements 116,142 111,883
Nodes 260,223 245,561

Elements types WED15, TET10 (>95%)
Loading cycles 7 (3 increasing)
Substeps 80/cycle (560 total)

The cyclic properties and other necessary material data required to introduce the Chaboche
constitutive model were determined on the basis of the cyclic strain curves of the S355J2 steel specimens.
The loading conditions of the specimen, implemented in experiments under kinematic or dynamic
loading, ensured that only normal strains εyy and shear strains εxy (and their corresponding stress values)
reached significant values (Figures 6 and 7). Other strain and stress values were significantly smaller.
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Figure 6. Numerical obtained hysteresis loops for in-phase kinematic load.
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Figure 7. Numerically calculated hysteresis loops for out-of-phase dynamic load.

As the chosen shape of the specimen (Figure 1) guided the fatigue fracture location (within the
neck region), further analysis only considered the states of the strain and stress in the selected, most
stressed point on the surface of the specimen, as indicated by numerical simulations.

2.6. Energetic Description of the Experimental Results

The comparison between the fatigue life of specimens tested with two different load modes
(kinematic and dynamic) required the selection of the correct fatigue parameter. Among many models
found in the literature [32,34–37], five common energetic models were used:

• Smith–Watson–Topper model

The Smith–Watson–Topper (SWT) ∆WSWT parameter [38] is based on a product of maximum
stress σn,max and principal strain range ∆ε1 located on the principal strain range plane

∆WSWT = σn,max
∆ε1

2
. (5)

• Chu model

Chu [39] proposed a fatigue parameter using tensile work σn,max
∆ε
2 complemented by torsion

work τn,max
∆γ
2 :

∆W∗ = max
(

τn,max
∆γ

2
+ σn,max

∆ε

2

)
. (6)

• Liu model

For multi-axial loads, Liu [40] proposed a model adopting two different basic modes of fatigue
damage. The first is caused by normal stresses, characterized by virtual energy ∆W(I). The second
mode is produced by shear stress, characterized by virtual energy ∆W(I I). Fracture is expected on a
plane where the value of the virtual energy reaches its maximum. The calculation of the ∆W(I) value is
preceded by a search for the plane on which the work on the normal strain is the highest. Subsequently,
work on shear strain is calculated.

∆W(I) = (∆σ∆ε)max + (∆τ∆γ). (7)
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Virtual work is calculated similarly ∆W(I I). In this case, the value of the work on the shear strain
is considered first:

∆W(I I) = (∆σ∆ε) + (∆τ∆γ)max. (8)

• Glinka model

Glinka et al. [41] proposed a fatigue parameter calculated as the sum of normal and tangential
stress work on corresponding strains, determined by the plane of maximum shear strains:

W∗ =
∆γ12

2
∆σ12

2
+

∆ε22

2
∆σ22

2
. (9)

The authors, aiming to include the impact of mean stresses in the parameter in Equation (9),
proposed modifications in [42]:

W∗ =
∆γ

2
∆τ

2

 σ
′
f

σ
′
f − σn,max

+
τ
′
f

τ
′
f − τn,max

 , (10)

where σ
′
f , τ

′
f are the fatigue strength coefficients for tensile compression and torsion, respectively.

• Ellyin model

The Ellyin model [43,44] proposes both plastic strain energy ∆Wp and positive elastic strain
energy ∆W+:

∆W = ∆Wp + ∆W+. (11)

For selected cases of proportional and non-proportional loads, the energy is calculated using the
following formula:

∆W =
∫ t+T

t
σijdε

p
ij +

∫ t+T

t
H(σi)H(dεe

i)σidεe
i , (12)

where σij and ε
p
ij are a stress tensor and plastic strain tensor, respectively; σi and εe

i are the stress and
elastic parts of the principal strains, respectively; and H(x) is the Heaviside function.

2.7. Calculation and Identification of Specific Strain Energy Components

When applying the Ellyin model, which refers directly to the elasto-plastic strain energy density,
it was necessary to calculate it properly using the strain and stress tensor time curves determined
previously through numerical simulations.

Previous studies [19,45] presented an application case for the methodology described in [46].
Through the proposed instantaneous power, defined as:

p =
δW
dt
≡ σij

dεij

dt
= σij ε̇ij, (13)

a consecutive time sequence of instantaneous steady states can be presented with the following
equation:

p(t) = σij(t)ε̇ij(t). (14)

where δW is an increment of work of the internal forces on the infinitesimal elongation/shortening
increments. Figure 8 presents the method of calculating the strain energy density for cyclic elasto-plastic
loadings. The computational methodology is illustrated on an example of uniaxial tension-compression;
however, it is analogous to bending and torsion with respect to the change in the selected strain or
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stress tensor values. The specified extent of loading variations consists of two ranges: A–C, which is
the primary range, and C–E, which is the complementary range. Within the first, another distinction
can be made between the tension relief (A–B) and compression (B–C) ranges. Similar to the primary
range, the complementary range also comprises both a compression relief range (C–D) and a tension
range (D–E). The area cut off by the power time course, as a result of the work of internal forces
during a relief phase, is represented by WI . This is followed by the WI I corresponding to the strain
energy density related to the work of external forces throughout the compression phase and the WI I I
representing the work of internal forces during the relief after compression phase. Finally, WIV denotes
the strain energy density related to the work of the external forces while the material was undergoing
the tension phase. Notably, the sum of the areas that ware cut off by of the power time course is not
equal for regions located above and below the time axis. By adding WI I and WIV and subtracting the
result by the sum of WI and WI I I , the plastic strain energy density can be calculated for the specified
pair of ranges (hysteresis loop).

(WI I + WIV)− (WI + WI I I) = Wp. (15)

Figure 8 presents the location of areas WI , WI I , WI I I , and WIV in relation to the hysteresis loop
formed by applied loading.

Figure 8. Method of calculating the elastic–plastic strain energy density by integrating the time course
of instantaneous power.

This method of identification and calculation of the total strain energy density components [46],
as described above, can be applied to the results of the FEM simulations.

Figure 9 depicts an example of a stabilized hysteresis loop and instantaneous power time courses
for bending pσ and torsion pτ in the numerical simulations. These were conducted in-phase in
kinematic loading mode. Figure 10 shows the corresponding numerical data results from out-of-phase
kinematic load simulations.
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Figure 9. Stabilized calculated hysteresis loops for kinematic in-phase load and calculated instantaneous
power (bending) pσ and torsion pτ .
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Figure 10. Stabilized calculated hysteresis loops for kinematic out-of-phase load and calculated
instantaneous power (bending) pσ and torsion pτ .

Figure 11 illustrates an example of the instantaneous power time course for bending pσ and
torsion pτ , captured in simulations, under dynamic in-phase loading. In addition, Figure 12 presents
the corresponding results for dynamic out-of-phase loading simulations.

-1 -0.5 0.5 1

10
-3

-150

-100

-50

50

100

150

, MPa

yy
 vs 

yy

xy
 vs 

xy

0.02 0.04 0.06 0.08 0.1

t

-6

-4

-2

0

2

4

6

8

10

p
, 

p

p

p

Figure 11. Stabilized calculated hysteresis loops for dynamic in-phase load and calculated instantaneous
power (bending) pσ and torsion pτ .
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Figure 12. Stabilized calculated hysteresis loops for dynamic out-of-phase load and calculated
instantaneous power (bending) pσ and torsion pτ .

3. Results and Discussion

Tables 4 and 5 summarize the results of the numerical calculations of the elastic–plastic strain
energy Equation (11) and the fatigue energy parameters from Equations (5) to (10). ASTM E739 standard
recommendations were used to assess suitability of the selected fatigue parameter for describing the
performed fatigue tests. Following ASTM standard guidelines [47], a linear regression model was
adopted (presented in a double logarithmic system) to assess the suitability of the selected fatigue
parameter

lg N f = A + B lg W, (16)

where N f is durability expressed in cycles, W is the value of the strain energy or fatigue energy
parameter, and A and B are parameters calculated for this regression model. Table 6 summarizes
the calculated values of the model parameters in Equation (16) and the values of the correlation
coefficient $xy.

Table 4. The elastic–plastic strain energy per cycle.

No. Bending Torsion

∆W p
yy ∆W+

yy ∆W p
xy ∆W+

xy ∑ ∆W p ∑ ∆W+ ∆W

MJ MJ MJ MJ MJ MJ MJ

Kinematic Load

H1,H2 4.213 0.048 2.048 0.004 6.261 0.053 6.314
H3,H4 2.693 0.072 1.330 0.011 4.024 0.084 4.108
H5,H6,H7 1.901 0.09 0.951 0.017 2.852 0.107 2.96
H8, H9 3.581 0.059 1.748 0.006 5.329 0.065 5.395
H10, H11 1.442 0.098 0.728 0.021 2.17 0.119 2.289
H12, H13, H14 3.935 0.145 1.623 0.052 5.558 0.197 5.755
H15, H16 3.323 0.148 1.376 0.052 4.699 0.200 4.9
H17, H18 2.484 0.151 1.038 0.052 3.523 0.203 3.727
H19, H20 1.758 0.1512 0.745 0.0522 2.503 0.2034 2.706
H21, H22 1.344 0.147 0.575 0.051 1.919 0.199 2.118
H26 3.269 0.216 0 0 3.269 0.216 3.485
H28, H29 0 0 1.176 0.161 1.176 0.161 1.337
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Table 4. Cont.

No. Bending Torsion

∆W p
yy ∆W+

yy ∆W p
xy ∆W+

xy ∑ ∆W p ∑ ∆W+ ∆W

MJ MJ MJ MJ MJ MJ MJ

Dynamic Load

P2 0.111 0.091 0 0 0.111 0.091 0.203
P4 0.282 0.130 0 0 0.282 0.130 0.412
P5 0 0 0.092 0.072 0.092 0.072 0.165
P6 0 0 0.103 0.075 0.103 0.075 0.179
P7 0 0 0.141 0.086 0.141 0.086 0.227
P8 0 0 0.066 0.064 0.066 0.064 0.130
P9, P10, P11 0.094 0.075 0.060 0.035 0.155 0.110 0.265
P17, P18 0.025 0.058 0.010 0.030 0.035 0.089 0.125
P40, P41 0.131 0.075 0.074 0.035 0.205 0.110 0.316
P46 0.055 0.052 0.031 0.025 0.086 0.078 0.165

Table 5. Values of fatigue energy parameters.

No. N f SWT Liu (I) Liu (I I) Chu Glinka Ellyin

Cycles MJ

Kinematic Load

H1,H2 13,540, 11,360 1.426 8.750 6.660 2.188 3.658 6.314
H3,H4 22,100, 23,760 1.045 6.315 4.833 1.582 2.554 4.108
H5,H6,H7 32,780, 74,800, 49,100 0.849 5.053 3.785 1.263 1.996 2.96
H8,H9 14,760, 19,400 1.269 7.739 5.884 1.935 3.203 5.395
H10, H11 77,720, 73,440 0.721 4.258 3.182 1.064 1.640 2.289
H12, H13, H14 16,380, 10,720, 10,500 1.801 7.221 6.961 1.947 5.285 5.755
H15,H16 14,700, 18,180 1.604 6.430 6.186 1.732 4.683 4.9
H17,H18 26,200, 26,740 1.334 5.350 5.127 1.438 3.865 3.727
H19, H20 77,840, 70,080 1.092 4.377 4.174 1.174 3.116 2.706
H21, H22 152,380, 95,040 0.939 3.764 3.578 1.008 2.633 2.118
H26 2758 1.370 5.481 4.646 1.406 3.283 3.485
H28, H29 535,540, 611,720 0.353 1.412 2.809 0.703 2.384 1.337

Dynamic Load

P2 192,520 0.224 0.894 0.736 0.227 0.386 0.203
P4 23,780 0.360 1.438 1.190 0.366 0.678 0.412
P5 197,190 0.089 0.357 0.708 0.177 0.465 0.165
P6 211,900 0.094 0.378 0.749 0.187 0.496 0.179
P7 17,760 0.111 0.446 0.884 0.221 0.602 0.227
P8 547,680 0.076 0.304 0.603 0.151 0.387 0.130
P9, P10, P11 77,320, 88,240, 36,600 0.192 1.173 0.844 0.293 0.330 0.265
P17, P18 219,500, 263,720 0.128 0.782 0.568 0.195 0.208 0.125
P40, P41 38,360, 63,100 0.278 1.111 1.048 0.297 0.637 0.316
P46 1,002,160 0.178 0.711 0.671 0.190 0.378 0.165

Table 6. The correlation coefficient $xy and the regression curve of Equation (16) for parameters A, B.

Kinematic Load Dynamic Load

Relation $xy A B $xy A B

SWT (5) −0.91 4.65 −2.36 −0.49 4.08 −1.24
Chu (6) −0.97 5.08 −3.38 −0.77 2.88 −3.45
Liu (I) (7) −0.96 6.24 −2.33 −0.47 4.93 −1.07
Liu (I I) (8) −0.92 6.89 −3.44 −0.80 4.63 −4.12
Glinka (9) −0.62 5.54 −1.97 −0.51 4.45 −1.57
Ellyin (11) −0.97 5.87 −2.37 −0.79 3.40 −2.46

Values of $xy differ depending on the mode used for specimens loading. For kinematic loads,
the values are similar and not less than 0.9, with the exception of the Glinka model, where $xy = 0.62.
For dynamic loads, the values of $xy are significantly lower, in the range of 0.47 to 0.8.
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All considered energy models achieved good correlation with experimental data regardless of
loading path, but only within each loading mode used in the experiments (either kinematic or dynamic).

Figures 13a,b, 14a,b, and 15a,b show the calculated values of energy parameters (Equations (5)–(9))
and strain energy (Equation (11)) as a function of fatigue life. For all energy models, we noticed that
the values obtained in kinematic loading mode were clearly separated from the results acquired in
dynamic loading mode. Both groups formed distinct scatter bands in charts, which seemed to be
broadly parallel to each other.

All models described above use the work of stress on strains. However, only the Ellyin model
considers the hysteresis loop directly in the calculation of strain energy. The SWT, Liu, Chu, and Glinka
models propose the use of certain values describing the state of stress and strain that are relatively
easy to calculate. However, according to Liu [40], their relationship with the plastic strain energy is
abstract. It is especially obvious for non-proportional loads, for which these models were not originally
intended for use.
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Figure 13. (a) Smith Watson Topper model in Equation (5), (b) Chu model in Equation (6). Tests at
kinematic load: K90BT, out of phase; K0BT, in phase; KB, bending; KT, torsion. Dynamic loads:
D90BT, out of phase; D0BT, in phase; DB, bending; DT, torsion.
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Figure 14. (a) Liu (I) model Equation (7), (b) Liu (I I) model Equation (8). Tests at kinematic load:
K90BT, out of phase; K0BT, in phase; KB, bending; KT, torsion. Dynamic loads: D90BT, out of phase;
D0BT, in phase; DB, bending; DT, torsion.



Materials 2020, 13, 2470 15 of 20

104 105 106

N
f
, cycles

0.1

1

10
W

*,
 M

J
Glinka energy model

DB

DT

D90BT

D0BT

KB

KT

K90BT

K0BT

(a)

104 105 106

N
f
, cycles

0.1

1

10

W
, 
M

J

Ellyin energy model

DB

DT

D90BT

D0BT

KB

KT

K90BT

K0BT

(b)

Figure 15. (a) Glinka parameter in Equation (9), (b) Ellyin energy parameter in Equation (11). Tests at
kinematic load: K90BT, out of phase; K0BT, in phase; KB, bending; KT, torsion. Dynamic loads: D90BT,
out of phase; D0BT, in phase; DB, bending; DT, torsion.

Evaluating the results presented in Tables 5 and 6, we observed that the values of Liu’s energy
parameters were always greater than strain energy calculated from Ellyin’s models. This was noticeable
for both loading modes: kinematic and dynamic. For the former, the SWT, Chu, and Glinka energy
parameter values were smaller than strain energy calculated from Ellyin’s equations. For the latter
mode, a different situation occurred. In this case, both SWT and Chu’s parameters return values close
to Ellyin’s, whereas results calculated according to Glinka are noticeably larger.

Comparing the durability under different load methods (kinematic and dynamic), we found that
the value of elastic–plastic strain energy or any energy parameter can be significantly different for the
same achieved fatigue life.

Searching for the underlying reasons for the difference in strain energy between kinematic
and dynamic loading modes, we directly analyzed the time courses of the moment of force and
displacements of bending and torsion levers. Figures 16 and 17 depict the total work imputed into
the excitation system: levers, holder, and specimen. The rigid design of the test stand ensured that
only an insignificant amount of that energy was spent outside of the specimen, dissipated through
inter-component clearances, fastened connections, bearings, etc.

Figure 16 presents the curves fkin,dyn(XB,T , MB,T , N f ) showing the relationship between the life N f
of the specimen, displacement XB,T , and the moment of force MB,T recorded at the levers. Two example
specimens were selected, H5 (kinematic mode) and P11 (dynamic mode), which exhibited similar
fatigue life. The curve marked in red fkin(XB, MB, N f ) and the curve marked in green fkin(XT , MT , N f )

correspond to bending and torsion lever in kinematic mode, respectively. This chart also depicts the
dynamic mode results, where the black curve fdyn(XB,T , MB,T , N f ) indicates bending and the blue
curve fdyn(XT , MT , N f ) denotes torsion.

Figure 17b illustrates that the tests conducted under kinematic load (lines in red and green)
returned a near constant value of amplitudes of moments of force for approximately 5/6 of the the
fatigue test duration, only to start dropping near the end of the test. The amplitude of displacements
(Figure 17a) did not change throughout the experiment in this mode of loading (kinematic). Throughout
the first 5/6 of the test, instantaneous strain energy was constant; however, as the moment of force
decreased in the final stage of the experiment, so did the strain energy.

A similar effect was observed for tests under dynamic loading. However, in this case, the observed
effects were different. Figure 17a depicts an increase in the amplitude of both lever displacements
(black and blue curves) at a constant value of moment loads (Figure 17b). Notably, in both figures,
the black lines correspond to the bending and blue to the torsion. Here, at the conclusion of the tests,
the amplitude of displacements increased. Since the values of the moment of force amplitude did not
change (Figure 17b), the value of the strain energy must increase when dynamic load mode is used.
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Figure 16. Change in recorded values of bending and torsional moments of specimen No. H5 during
the entire test period under kinematic load (red and green) and change in the value of the machine
lever displacement for dynamic load for specimen no. P11, black and blue.

103 104 105

N
f
, cycles

2

2.1

2.2

2.3

2.4

2.5

2.6

X
B

, 
X

T
, 
m

m

H5 - bending

H5 - torsion

P11 - bending

P11 - torsion

(a)

103 104 105

N
f
, cycles

14

15

16

17

18

19

20

21

M
B

, 
M

T
, 

N
m

H5 - bending

H5 - torsion

P11 - bending

P11 - torsion

(b)

Figure 17. (a) Change in the fatigue testing machine lever displacement throughout the entire duration
of the specimen test. Red and green correspond to the specimen subjected to kinematic loading,
whereas black and blue correspond to the fatigue testing machine lever displacement for the specimen
subjected to dynamic loading, (b) The moments load the specimen throughout the entire test period.
Red and green correspond to the specimen subjected to kinematic loading, whereas black and blue
correspond to the specimen subjected to dynamic loading.

Among the considered energy fatigue parameters, none consider the temporal transiency of strain
tensor and the corresponding stress tensor. As a consequence, the values of strain energy (stress work
on strains) were calculated with these models for a given time instance. Thus, the results ignore the
changes in the values of the strain and stress tensor components during the fatigue process, affecting
the strain energy or any energy parameter calculations.

The numerical constitutive cyclic-plasticity model (Chaboche) used in calculations does not
consider an important transiency in material properties caused by damage accumulation or crack
initiation, propagation, etc. As a result, the obtained strain and stress tensor values are likely impacted.



Materials 2020, 13, 2470 17 of 20

A second limitation of the considered energy fatigue models is related to their spatial sensitivity
(local effect). This is understood as the need to calculate strain energy only at the most stressed
point in the smallest cross-section of the specimen. This, in addition to sampling at an arbitrarily
determined time instance, cannot provide complete information on the distribution of strain energy in a
representative volume of the specimen. This volume can be considered to be subjected to plastic strains.

Figure 18a depict the distribution of mesh nodes at the specimen neck during in-phase kinematic
loading. The numerical model expressed the highest levels of stress at the two opposing node regions
located on both sides of the neck (marked in red). The plastic stain distribution for this loading case is
illustrated in Figure 18b.

(a) (b)

Figure 18. (a) Distribution of the most stressed mesh nodes calculated according to the von Mises
criterion for in-phase kinematic loading; (b) Area of occurrence of plastic strains finite element method
(FEM) calculated for the Chaboche cyclic plasticity model for in-phase kinematic loading.

In comparison, Figure 19a demonstrates the corresponding distribution of mesh nodes during
out-of-phase kinematic loading. Here, the highest stress concentration at the nodes form a ring
encircling the narrowest cross-section of the neck. This region corresponds directly to the plastic strain
distribution region, as presented in Figure 19b. Similar maximum stress patterns and plastic strain
regions were observed for dynamically loaded numerical simulations.

 

(a) (b)

Figure 19. (a) Distribution of the most stressed mesh nodes calculated according to the von Mises
criterion for in-phase kinematic loading; (b) Area of occurrence of plastic strains FEM calculated for
the Chaboche cyclic plasticity model for out-of-phase kinematic loading.
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The numerically obtained values of strain energy and energy parameters were expected to be
correctly estimated by a single regression model, regardless of loading path and irrespective of loading
mode (dynamic or kinematic). Only the former of these assumptions was fulfilled, suggesting that the
evaluated common fatigue models might be not entirely applicable in every load case.

4. Conclusions

• We conducted experimental research of the bending and torsional properties of S355J2 steel under
two different modes of load application, which showed the significant limitations of some popular
energy parameters used to determine fatigue durability.

• Despite similarities observed in the fatigue life of specimens tested under kinematic and dynamic
modes of load application, neither energy parameters nor strain energy calculations allowed for
the common regression model to be implemented for all results. Kinematic and dynamic data
required separate regression models.

• The energy parameters published in the literature were in good agreement with data obtained
from different loading paths, but only within specific groups of results obtained from either the
kinematic or dynamic mode of loading.

• Among the possible reasons for such behavior, we identified the three most likely causes:

1. The constitutive model of cyclic plasticity (Chaboche) influences the numerically obtained
values of strain and stress tensors. The used model assumes that these values are stable and
do not change in time, in contrast to actual fatigue damage. This can significantly influence
the energy parameter and strain energy values.

2. The described popular fatigue models consider only a singular arbitrary chosen time instance
in fatigue life to compute either the energy parameter or strain energy. This results omit the
time dependency in strain energy.

3. The spatial sensitivity (local effect) of fatigue parameters proposed by many authors is a
limitation affect the accuracy of the results. This is because when calculating many energy
parameters as a single parameter, only the most stressed location is considered. As a
consequence, certain parts of plastic strain energy deposited in the specimen are omitted.

• The custom-designed and built fatigue test stand will enable further investigations into bending
and torsion fatigue behavior of materials under many load paths, including random loads and
both kinematic and dynamic load application mode.

• As energy models do not consider the change in energy over time associated with the initiation
and development of fatigue damage, the variability of energy parameters must be considered
during the fatigue test and an algorithm must be developed for estimating energy values over a
specific section, area, or volume depending on the analyzed load variant. This will be our future
research objective.

• Future work will consider the sensitivity of structural materials to non-proportional hardening
under these two loading modes.
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