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Abstract: The WCCo/PCD (Diamond Dispersed Cemented Carbide—DDCC) manufactured with the
use of PPS (pulse plasma sintering) are modern materials intended for cutting tools with the benefits
of tungsten carbides and polycrystalline diamonds. Nevertheless, the cutting performance of DDCC
materials are currently not recognized. Thus this study proposes the evaluation of technological
effects of a precise groove turning process of hard-to-cut AlSi13MgCuNi alloy with DDCC tools.
The conducted studies involved the measurements of machined surface topographies after grooving
with different cutting parameters. In addition, the tool life and wear tests of DDCC inserts were
conducted during grooving process and the obtained results were compiled with values reached
during machining with cemented carbide tools. It was also proved that grooving of AlSi13MgCuNi
alloy with DDCC inserts enables 5 times longer tool life and almost 3-fold increase of cutting path
compared to values obtained during grooving with H3 and H10 cemented carbide inserts. Ultimately,
the feed value of f = 0.15 mm/rev and cutting speed in a range of 800 m/min ≤ vc ≤ 1000 m/min
during grooving with DDCC inserts can be defined as an optimal machining parameters, enabling the
maximization of tool life and improvement in surface quality.

Keywords: WCCo/PCD (DDDCC); machining; Al-Si alloy; tool wear; surface topography

1. Introduction

The aluminum alloys are widely applied in various industries due to their ability to combine
strength and lightness [1]. In comparison with other construction materials, Al is characterized by a
low melting temperature, in the range between 590 and 660 ◦C [2], excellent electrical [3] and thermal
conductivity [4] and high processing ability by casting, stamping, drawing, spinning, rolling and
hammering [5,6]. The mechanical properties, particularly hardness and strength, of these alloys can be
improved by alloy additions such as copper, manganese, magnesium, zinc, silicon and others [1,7–9].
It is the basis for the fundamental classification of aluminum in functional terms [10]. The 2xxx (Cu
addition), 7xxx (Sn) and 6xxx (Mg and Si) aluminum alloy classes are generally used for the automotive
industry and massive loaded aviation constructions, as compressors inserts, ribs or fan discs working at
temperatures of 200–300 ◦C [11]. The 3xxx (Mn) alloys are characterized by excellent thermal stability
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at high temperatures and retaining their mechanical properties [12]. This series of aluminum alloys are
commonly employed in the manufacturing process of beverage cans [13].

In the case of 4xxx alloys series, which are generally used at temperatures lower than 230 ◦C,
the primary alloying element is silicon (Si) [2,14]. Silicon is a common impurity in commercial
aluminum alloys (0.01% to 0.15%) but is also used as a factor for reducing the cracking tendency in
other alloys (0.5% to 4.0%) [2,15]. These alloys constitute the first group of Al-Si alloys. The next group
of Al-Si alloys consists up to 12% Si content and is the most popular material for casting, cladding for
brazing sheet [2], rods, wires for welding [16], as well as pistons of combustion engines [17,18]. The last
group of aluminum-silicon alloys contains up to 23% of Si. These casting alloys are used for wear
applications, for engine blocks [2] pistons, brake discs, brake drums, piston sleeves [1]. Besides,
Al-Si alloys are applied widely in the casting industry because of thermal expansion coefficient at
the low level, high strength-to-mass ratio and acceptable abrasion [19,20]. Alloys containing from 5%
to 12% are characterized by high ductility and impact resistance, whereby are used in bridge railing
supports [2]. As an addition to aluminum alloys, silicon impedes the kinetics of the chemical formation
of the undesirable intermetallics [21]. Silicon is intentionally added to some alloys to avoid the
dimensional instability problem [22] or, including magnesium, to keep precipitation hardening [2,23].
According to Pio et al. [24] and Jigajinni et al. [25], the mechanical properties of Al-Si alloys can also be
enhanced by grain refinement using boron, titanium or strontium additions. Aluminum alloys have
also high corrosion resistance; however, in case of aluminum-silicon, the effect of silicone particles
induces an opposite effect on corrosion resistance due to its cathodic properties to the aluminum
matrix [2,26]. However, the intensity of silicon content increases the eutectic fraction, which affects the
increase of electrochemical corrosion [27].

Machining of Al-Si alloys is characterized by a large chip-tool contact area, excessive forces,
process power and high temperatures in the cutting zone [1,28]. Moreover, the machining process
indicates long and stringy chips [29] with a high thickness ratio [30], which results in low surface
finishing [1]. Barzani et al. [31] observed that the build-up intensity decreases with an increase in silicon
content, which is associated with changes in the plasticity of the Al-Si alloy. It was also noted that the
intensity of adhesion during turning of the high-silicon alloy Al-11.3Si-2Cu with a cemented carbide
inserts KU 10/TiN depends on the presence of certain alloying elements. The underlying mechanisms of
tool wear during cutting of high-silicon Al-Si alloys are—abrasion as a result of scratching of the cutting
tool, as well as microchipping of the cutting edge, associated with build-up-edge removal [32,33].
According to Kamiya et al. [34], the wear intensity of the K10 cemented carbide cutting insert increases
with an increasing percentage content of silicon in the Al-Si alloy (and with the growth of cutting speed),
which is caused by increasing the number of crushed silicon particles during cutting, affecting the
tool abrasion intensity. Andrewes et al. [35] observed that a higher build-up-edge (BUE) occurs for a
diamond-coated chemically vapour deposited (CVD) insert than in polycrystalline diamond (PCD)
cutting tools. According to results, micro-unevenness and scratches on the surface of the applied
diamond coating induce an increase in adhesion intensity.

During cutting of Al-Si alloy, hard particles such as silicon, acting as chip breakers, produce short
chips, margin built-up-edge and excellent surface finish, although contribute to the decline in tool
life [2]. During the cutting of aluminum alloys, forces can be lower, surface quality upgraded and flank
wear decreased by application of sharp cutting edges (low values of cutting edge radii) and flank/rake
faces of cutting tools with a low surface roughness [36,37]. The cutting forces are relatively low
compared with ones reached during machining of steel but the energy required to cut is higher due to
high cutting speeds and increases with hardness and mechanical strength [38]. Braga et al. [39] reported
that cutting power grows with the increase of feed rates and machining length during drilling of Al alloy
with 7 wt.% of Si. An increase in cutting temperature of aluminum alloys can cause microstructural
transformation, high residual stresses in the machined surface, geometrical errors of a machined
parts and can also increase the alloy ductility [40–43]. The highest values of temperatures during
machining were observed in the machining of workable or cast alloys [44,45]. In the case of silicon
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contents, the machining temperature can reach from 350 to 750 ◦C [46] which can indicate increased
flank wear and higher stresses on the machined surfaces [44]. The high thermal conductivity of Al
provide quick heat spread across the whole workpiece, which results in thermal expansion of the fixture
system. One of the most critical machining factors is surface integrity [47]. The surface roughness is
mainly dependent on alloy hardness and microstructural characteristics [48]. The higher the hardness,
the lower the surface roughness, because the material adhesion to the cutting edge is reduced [11].
Additionally, low chip breakability causes damage to surface integrity [49]. However, according to
Manna et al. [50], in the case of hard particle additions, such as Si, build-up-edge and pullout of hard
particles may occur. Moreover, the affinity of aluminum alloys with cutting tools materials such as
TiC, TiN or Al2O3 induces material accumulation on the cutting tool. These phenomena result in
deterioration of the surface quality during cutting in different cooling/lubricating conditions [51,52].
According to Kamiya et al. [53] the appearance of Si in the Al-Si alloy has a significant influence on
surface roughness. Growth of the silicon content in the Al-Si alloy, in the range of 2% ≤ Si ≤ 12%
significantly reduced the value of the surface roughness parameter Ra. Furthermore, Barzani et al. [31]
confirmed these results and showed that for most of the set values of cutting speed and feed, the smallest
values of surface roughness Ra occurred during machining of the Al-Si alloy containing bismuth. Also,
Kuczmaszewski et al. [54] showed that the surface topography is dependent on the cutting speed,
the type of tool material and the condition of the insert. Besides, another problem is thermal expansion,
which is strictly connected with cutting temperature during milling of aircraft and engine parts. It can
also depend on the geometry and properties of workpiece, the tool and kinematics of machining
operation [1].

High-speed steels, sintered carbides and diamond tools are the most popular in the machining of
Al alloys, because of their low chemical affinity for aluminum and reducing the adherent layer on the
tool. In case of turning processes of aluminum alloys with a low Si content, tungsten carbide K10 grade
inserts are usually recommended [55]. The K20 grade inserts are implemented during machining with
rapid temperature variations and K01 is employed for machining with the use of abrasive particles.
Cemented carbide tools are very often applied in the turning of soft aluminum alloys with high cutting
speeds (600–800 m/min), as well as with positive rake angles (6◦–20◦). This information was confirmed
during the research conducted by Torpov et al. [55]. During cutting of Al-Si alloys with a Si content in
a range between 12–15 vol.%, the rake angle values from 0◦ to 7◦ are recommended, independently of
the type of insert material [1]. Referring to Manna et al. [50], the cutting speed up to 225 m/min for
cutting of Al/SiC with uncoated cemented carbide is approved; also, Ciftci et al. [56] suggested the use
of cutting speeds in the range between 20 and 80 m/min. Moreover, Kamiya et al. [53] recommended
vc values from 20 to 450 m/min for Al/SiC materials. However, in case of Al-Si alloys with high Si
content and high cutting speeds, (>600 m/min) [55] the diamond-based and polycrystalline diamond
tools are suggested for machining [36,57]. It should be noted that ceramic cutting tools containing
nitrides should not be applied during cutting of aluminum alloys due to intensive adhesion and the
formation of BUE [41,58,59]. Itoigawa et al. [60] compared a machining performance of PCD and
cemented carbide tools during machining of AlSi5 alloy. By setting the cutting speed within the range
from 200 to 800 m/min, it has been presented that specific force for the diamond tool is smaller than for
carbide insert. More comprehensive comparative studies of dry aluminum turning were conducted
by Chattopadhyay et al. [61]. Researchers compared K10 tungsten carbide (WC) insert (three types),
with a tools with different coatings (CVD TiC WC, CVD TiN WC, CVD Al2O3 WC and HFCVD
WC). The authors concluded that the application of HFCVD inserts during cutting caused the lowest
degradation degree of a tool, resulting from a low chemical affinity with Al alloy. Therefore, the PCD
tools and tools with diamond coatings are advisable for machining of aluminum alloys, in particular
hard-particles alloys. New kinds of cutting inserts, based on material composites, should minimize
abrasive wear, built-up-edge, forces and also keep the acceptable surface quality and enhance tool
life [62,63].
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The PCD and sintered carbide cutting tools are commonly applied during the hard-machining
process [64,65], because of a high hardness level [66,67]. The primary disadvantage of PCD material is
its relatively low maximum cutting temperature of 600 ◦C and the affinity to ferrous materials [68].
Unfortunately, the high cost of diamond sintering causes that PCD tools are more expensive than
others; moreover, fracture toughness is unsatisfactory compared to other materials [69]. Besides,
PCD cutting tools are characterized by difficulties in obtaining similar geometries of the surface during
the manufacturing process [70]. What is also essential, the high brittleness of PCD can cause to the
premature tool catastrophic failure [71,72]. Regardless of the presented drawbacks, PCD cutting tools
are widely used because of very high abrasion resistance [73,74]. In case of Al 4xxx alloys with a high
Si content and high chemical reactivity, the wear intensity increases, which demands the usage of
PCD [75]. The next very popular tool material is tungsten carbide (WC). These materials have high
hardness, excellent abrasion resistance and high crack resistance. By using PCD particles, it is possible
to increase the hardness and the material fracture toughness [76].

Some latest researches focus on the production of dual cutting tool materials with the benefits of
tungsten carbides and hard PCDs. The WCCo/PCD composite (DDCC—diamond dispersed cemented
carbide) is an example of a modern tool material. The DDCC is a composite containing the low volume
of PCD (polycrystalline diamond) in the WCCo matrix [69]. In the production process of DDCC,
the PCD is provided as the MBD4 powder with a nano or micrometric grain size [69]. The hot isostatic
pressing sintering method is applied as the production method [77]. Compared to other methods,
the primary attribute of pulse plasma sintering is the high energy provided in a short time [78,79].
Conventional sintering conducted in the range of temperatures between 1400 and 1500 ◦C could result
in the unstable diamond phase and graphitization [80].

Apart from limited researches focused on the production of the DDCC materials, their cutting
performance is still not investigated [81]. Thus this work presents the identification of some fundamental
cutting indicators, as tool wear mechanisms and surface roughness formation in the transverse turning
of Al-Si alloy. The carried out experiments included the inspections of machined surface topographies
after grooving with different cutting parameters. In addition, the tool life and wear tests of DDCC
inserts were conducted during grooving process and the obtained results were compiled with values
reached during machining with cemented carbide tools. The results can be selected for an effective
selection of machining parameters during cutting of Al-Si alloys with DDCC materials.

2. Experimental Details

2.1. Research Plan

The basic technological effects of a precise grooving of AlSi13MgCuNi alloy with a novel uncoated
WCCo/PCD (DDCC) inserts were evaluated as part of this study. Measurements of tool wear for a
various cutting parameters during the external grooving process and evaluation of surface texture
were performed during the experiments. Figure 1 presents the flowchart of the carried out experiment.

The grooving process with an orthogonal kinematics of Al-Si alloys has been selected, since it is
very often employed during manufacturing of grooves in pistons intended for exhaustive engines.
The aluminum alloys containing silicon are among the most popular construction materials applied
in many industrial applications due to relatively low mass and high strength, excellent thermal
and electrical conductivities [46]. Moreover, its corrosion-resistant properties and tendency to
passivate increase its use in welded tanks, fuel and oil supply lines and propellers [46,47]. In particular,
the aluminum alloys containing Si are categorized as difficult-to-cut materials. Therefore, the orthogonal
non-free grooving was employed due to generation of high cutting loads. Therefore, this research can
be applied for the experimental verification of DDCC tools during machining tests dynamic conditions.
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Figure 1. The flowchart of a carried out experiment.

2.2. Production of DDCC Composite

The WCCo/PCD composite (DDCC) used in this study was produced with a use of PPS technique.
The WC and Co powders with an addition of MBD4 diamond powder were applied in the manufacturing
process (see Table 1). The mixing process of powders was conducted in two steps—preparation of the
WC6Co and combination WC6Co with diamond particles. Sintering was made in a PPS apparatus in
the pressure of 5 × 10−3 Pa [82]. Compared to other methods, the PPS enables the obtainment of high
energy equal to 600 MW, provided in a short time. Sintering process in the conventional conditions,
conducted in the range of temperatures between 1400–1500 ◦C could result in the unstable diamond
phase and graphitization [80].

Table 1. Characteristics of powders and some mechanical properties of the uncoated Diamond
Dispersed Cemented Carbide (DDCC) composite.

Powder Type Grain Diameter
[µm]

Hardness
HV

Fracture Toughness
[MPa·m1/2]

WC 0.4
2345 9Co 1

MBD4 16–20

The uncoated DDCC composite samples were ground with PCD grains (with size of 20–30 µm,
Warsaw University of Technology, Warszawa, Poland) with a ceramic adhesive Ba23 (Warsaw University
of Technology, Warszawa, Poland). As a consequence, the surface roughness was influentially reduced
(Ra = 1.28–1.4 µm, Rz = 7.05–7.9 µm—before grinding; Ra = 0.018–0.04 µm, Rz = 0.126–0.150 µm—after
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grinding) [83]. The medium WC grain size in the DDCC composite with a 6 wt.% of Co is 0.42 µm [82].
According to Rosinski et al. [82], the hardness of the DDCC is 23 GPa (approx. 2345 HV). This value is
significantly higher than values reached for the nano-cemented carbides [80]. In addition, its fracture
toughness is approx. equal to 9 MPa·m1/2 (Table 1.), thus it is 50% higher than values reached for the
polycrystalline diamonds.

Figure 2 shows the cutting insert geometry applied during grooving process of aluminum-silicon alloy.
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2.3. Turning Tests

Samples made of AlSi20MgCuNi alloy, containing (in wt.%): 20% Si, 1.3% Cu, 1% Ni, 0.8% Mg,
0.2% Mn and rest Al, were used during the grooving tests. The cylindrical workpiece samples had
diameter of d = 130 mm. The workpiece material was characterized by the following mechanical
properties—tensile strength 320 MPa, shear strength 260 MPa, hardness 137 HV and elongation 6.7%.
The precise CTX 310 Ecoline 560E lathe (DMG, Pleszew, Poland) was employed during cutting trials.
A semi-synthetic coolant concentrate (Statoil ToolWay ST) with 6% content, density of 990 kg/m3 and
a working pH of 9 was used during tests. The cutting path in feed direction was lf ≈ 3 mm and the
pick feed was br = 1.9 mm. The grooving parameters applied during the tests are shown in Tables 2
and 3. Diagram of the grooving process is shown in Figure 2a. The uncoated H3 and H10 inserts were
also employed in tests, since they are very often employed for the machining of Al-Si alloys The main
difference between the H3 and H10 cemented carbides involves the level of hardness and bending
strength. The selected properties of a H3 and H10 sintered carbides are shown in Table 4.

Table 2. Plan of the non-free orthogonal grooving test employed for an evaluation of surface topography.

Feed f [mm/rev] Cutting Speed vc [m/min] Cutting Depth ap [mm]

0.15 50, 100, 200, 400, 600, 800, 1200 2.5

Table 3. Plan of the non-free orthogonal grooving test employed for an evaluation of tool wear.

Feed f [mm/rev] Cutting Speed vc [m/min] Cutting Depth ap [mm]

0.15, 0.2 800, 1200 1.9

Table 4. Mechanical properties of cemented carbide inserts.

Insert ISO 513 Structure
Grain Size Co Hardness Density Bending Strength

µm ±0.5% HV 30 HRA g/cm3 N/mm2

H3 K01-K05 submicron ≤0.6 7.0 1800 93.2 14.65 3700
H10 K05-K10 submicron ≤0.6 8.0 2000 94.3 14.65 3800

The geometry of all tested cutting tool was as follows—main cutting edge angle κr = 90◦,
corner radius rε = 0.1 mm (chamfer 0.1 mm × 45◦), orthogonal rake angle γo = 1◦, orthogonal flank
angle αo = 9◦, length of main cutting edge l = 2.3 mm, angle of inclination of the main cutting edge
λs = 0.

2.4. Inspection of Tool Wear and Calculation of Tool Life

The stereoscopic and scanning electron microscopes (SEM, Tescan Vega, Brno, Czech Republic)
were applied for the visual inspections of tools after grooving. The stereoscopic microscope was
employed to the evaluation of maximal flank wear width located on the straight section of the leading
cutting edge VBBmax (see Figure 3). The scanning microscope was employed for the inspection of a
BUE onto the tool flank and rake faces, as well as the cutting edge. Moreover, the identification of a
crater wear on the rake face was made with the use of SEM. The length of crater wear was measured
perpendicularly to the length of a cutting edge.

The time of machining for the number of tool passes equal to p was expressed by the relation:

ts =
l f

f n
p. (1)

The lf is a path of machining in the direction of feedrate [mm], n is a spindle rotation speed [rpm].



Materials 2020, 13, 2467 8 of 25

The path of machining in the main (circumferential) direction, considering number of tool passes
equal to p can be determined by equation:

Lc =

p∑
j=1

lcj. (2)

The symbol lc in Equation (2) denotes the cutting path length in the main direction for a one pass.
The following equation determines the value of the lc factor:

lc = π

l f
f∑

i=1

d− 2(i− 1) f . (3)

The critical wear of VBcr = 0.1 mm was adapted to calculate the tool life. The value of the selected
VBcr was employed from the recommendations used in automotive industry to the finishing of grooves
intended for a piston rings. Moreover, Ozel et al. [84] stated that during longitudinal finishing turning
of metals, the dullness criterion in relation to the flank wear can be selected as 0.1 mm.
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In the carried out experiments, one tool wear trial per the tested insert and selected input
parameters combination was employed. It should be noted that the tool life for a given tool grade
and the same workpiece/input parameters combination can be variable in the range of different
inserts. This is usually attributed to some alterations in cutting insert geometry/properties, changes in
workpiece surface finish and properties, as well as some random factors occurring during cutting.
Nevertheless, according to Oraby and Alaskary [85], during turning of metals, in the range of critical
flank wear equal to 0.2 mm, the variability of tool wear per consecutive inserts is not exceeding the
15%. Therefore, the influence of tool wear variability induced by the application of distinct cutting
inserts was neglected in the current study.

2.5. Evaluation of the Machined Surface Topography

The surface roughness and topography measurements were conducted using the stylus
(Hommel-Etamic T8000, Hommel Etamic, Jena, Germany) and the optical (Veeco NT 1100, Veeco,
Plainview, NY, USA) profile meters. Measurements were repeated five times on a different
areas of the tested surfaces. The following settings have been applied during roughness
measurements—elementary segment length lr = 2.5 mm, measuring segment length ln = 10.0 mm,
filter cut-off wavelength λc (cut-off) = 2.5 mm. Based on obtained profiles, the EVOVIS software
(Version 1.38, Hommel Etamic, Jena, Germany) has been applied to calculate the spatial surface
roughness parameters. Optical measurements were carried out with a 5.1-fold magnification. The area
of the scanned surface was 0.9 mm × 1.2 mm, while the distance of vertical points of 1.65 µm.
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3. Results and Discussion

3.1. Evaluation of Tool Wear and Tool Life

In the first stage, the machining performance of DDCC inserts was analyzed in terms of tool wear
and tool life. The microscopic images of cutting edges (Figure 4) show the appearance of built-up-edge
(BUE), independently on selected cutting speed during cutting. According to Barzani et al. [31],
the appearance of BUE during turning of Al-Si alloy is strictly attributed to its ductility; moreover,
the decline in Si content leads to a higher adhesion. Primarily, the intensification of adhesion
phenomenon is induced by the appearance of normal and tangential stresses caused by cutting forces.
Moreover, the high friction and load concentration in a small contact area between tool and workpiece
and almost "chemically pure" newly created chip surface, as well as relatively active rake face are also
the sources of adhesion intensity.
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Figure 4. Microscopic images of the DDCC inserts after cutting with various input parameters:
(a) vc = 180 m/min, f = 0.2 mm/rev, VBB = 0.04 mm; (b) vc = 400 m/min, f = 0.2 mm/rev, VBB = 0.04 mm;
(c) vc = 600 m/min, f = 0.2 mm/rev, VBB = 0.04 mm; (d) vc = 800 m/min, f = 0.15 mm/rev, VBB = 0.05 mm.

It was shown that cutting speed significantly affects the adhesion intensity on tool working part.
The appearance of this phenomenon is manifested by an intense generation of a double built-up-edge
simultaneously on flank and rake faces. The growth of vc factor leads to the decline in BUE intensity.
This observation is attributed to relations between the cutting speed and the cutting temperature,
which in turn significantly affects the adhesion intensity. According to Józwik and Domińczuk [86],
an intensification of BUE phenomenon has a place within a certain range of cutting speeds, feeds and
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corresponding temperatures, as well as the cutting forces. The most intensive growth corresponds to
the cutting speed at which the temperature in chip-tool interface is approx. 300 ◦C. However, the total
disappearance of BUE is observed at cutting speed, at which the contact temperature is around 600 ◦C.
On the other hand, the decrease in BUE intensity can be also attributed to the decline in the friction
coefficient between the tool and workpiece, together with a growth of cutting speed, as reported in
Reference [87].

Figure 4a–c show that in case of cutting speeds vc in a range between the 180 m/min and 600 m/min,
the height of BUE can exceed even 1 mm. However, during grooving with a cutting speeds equal to at
least 800 m/min, the slight BUE was formed mainly on the tool rake face (Figure 4d). Thus, the further
wear tests were employed in a range of cutting speeds: vc ≥ 800 m/min.

The Lorenz wear curves, depicted in Figure 5 show that during grooving of Al-Si alloy with
DDCC insert, in the range of vc = 800 m/min and f = 0.15 mm/rev, the almost linear growth of a flank
wear in function of cutting time ts and path Lc is found. This observation indicates the occurrence
of a typical continuous and moderate wear growth, characteristic for an appearance of abrasion and
adhesion wear mechanisms [88,89].Materials 2020, 13, x FOR PEER REVIEW 10 of 24 
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Figure 5. Tool wear curves for DDCC, H3 and H10 inserts obtained during grooving with vc = 800 m/min
and f = 0.15 mm/rev in function of (a) cutting time; (b) cutting path.

Nevertheless, in the case of cutting with H3 and H10 cemented carbides, the rapid and stepped
growth of tool wear has been observed, which resulted in occurrence of catastrophic tool failure after
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cutting time less than 5 min. It reveals an occurrence of an excessive cutting load, due to interaction of
hard Si particles contained in Al-Si alloy with the cutting tool during cutting, which consequently can
cause the growth of stresses above the local strength limit of a material.

The wear test of DDCC inserts has been also conducted during grooving with higher cutting
speed vc = 1200 m/min and feed f = 0.2 mm/rev (Figure 6). In this case, a significantly higher
wear intensity has been found, comparing to that observed during cutting with vc = 800 m/min and
f = 0.15 mm/rev. The observed wear curve had a non-linear/exponential progress with cutting time
and path, suggesting the appearance of an accelerating wear (failure wear region). This observation can
suggest that the growth of a cutting temperature (resulting from a growth of cutting speed), can induce
an intense wear mechanisms (e.g., abrasion or diffusion) of DDCC tools.Materials 2020, 13, x FOR PEER REVIEW 11 of 24 
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Figure 6. Tool wear curves for DDCC insert obtained during grooving with vc = 1200 m/min and
f = 0.2 mm/rev in function of (a) cutting time; (b) cutting path.

The thorough characterization of tool wear mechanisms during grooving with DDCC inserts was
conducted with the SEM images of cutting edges (Figures 7–9), obtained after the machining process.
During grooving with vc = 800 m/min, f = 0.15 mm/rev and in a range of cutting time ts ≤ 30 min,
the stable BUE was located onto the cutting edge with the maximal width not exceeding 0.1 mm
(Figure 7). The appearance of relatively low BUE widths reveals the appearance of a stable adhesive
wear mechanism, which contributes to the moderate tool wear growth in a function of cutting time.
In case of cutting with vc = 1200 m/min and ts < 2 min, the stable BUE on the rake and flank faces,
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as well as along the cutting edge was also found (Figure 8). Nevertheless, in a range of cutting time
ts < 8 min, apart from intense built-up-edge, the crater wear on the tool rake face has been observed
(Figure 9). In some cases the width of crater was higher than 0.1 mm. Its appearance contributes
significantly to the intense wear rate of DDCC inserts (see Figure 6).

The crater on the rake face is caused by a cyclic formation and destruction of an adhesive joints.
This periodic phenomenon can consequently lead to exceeding the local tool material strength limit
and thus the material loss in a form of craters. In addition, the flowing of very hard Si particles
along the rake face during the chip flow causes tool material chunking and thus the crater wear.
This phenomenon can be additionally supported by the material diffusion, which is initiated by the
chemical purity of tool-chip contact zone and high cutting temperatures (>800 ◦C), induced by a cutting
process in a range of high cutting speeds.

The basic mechanisms of tool wear during cutting of high-silicon Al-Si alloys are—abrasion as a
result of scratching the cutting edge with a separated hard silicon particles, as well as microchipping of
tool working part, associated with periodic removal of BUE from the tool [32]. In addition, an intense
formation of BUE during machining of Al-Si alloys can be induced by an intense flank wear and cutting
temperatures exceeding 500 ◦C [33].
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Figure 10 shows the comparison of tool life t and the cutting path in a range of tool life LT, obtained
after the turning tests with DDCC and cemented carbide (H3, H10) inserts. It was observed that in the
case of DDCC inserts, the tool life and cutting path in a range of tool life were respectively 23 min and
12,279 m.
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Figure 10. Durability of tested cutting inserts within the range of vc = 800 m/min, f = 0.15 mm/rev:
(a) comparison of the tool life of DDCC, H3 and H10 cemented carbides; (b) cutting path over the tool
life for DDCC, H3 and H10 cemented carbides.
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Considering the cemented carbide tools, the following values were achieved—t = 5 min and
LT = 2500 m for H3 cemented carbide and t = 4 min and LT = 4500 m for H10 cemented carbide.
This means that the use of DDCC inserts during grooving of Al-Si allows obtaining more than 5 times
longer tool life and almost 3-fold increase of cutting path compared to values obtained during turning
of H3 and H10 cemented carbide tools.

Figure 11 depicts the tool life t and the cutting path in a range of tool life LT for DDCC composite
inserts after grooving with different cutting parameters. It was observed that an increase in the f value
from 0.15 to 0.2 mm/rev and vc from 800 to 1200 m/min results in a 2-fold increase in material removal
rate QV.
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On the other hand, the use of increased cutting parameters (f = 0.2 mm/rev; vc = 1200 m/min)
causes a 6-fold shortening of tool life and a 5-fold decrease in the cutting path over the tool life,
compared to the values obtained during turning with f = 0.2 mm/rev; vc = 1200 m/min. This indicates
that the moderate growth of a grooving productivity with DDCC inserts can lead to the intense decline
in tool life. Therefore, this aspect should be considered during the selection of an optimal cutting
parameters for a DDCC tools.

In order to define the relations between the tool life and its mechanical properties (mainly
hardness), the charts depicting tool life per tool material hardness were developed for the tested
inserts (Figure 12). These charts characterize the intensity of tool material hardness effect on the
obtained tool life. During cutting of a particular material, tool life is considerably affected by tool
hardness. However, during machining processes also other tool properties, as temperature resistance,
fracture toughness and bending stress have important effect on the tool durability. In case when the
tool life per hardness ratio values for tools with distinct hardness will be at the same level, the tool
life could be not affected by abrasion wear mechanisms (correlated directly with tool hardness) but
phenomena (e.g., intense adhesion, dynamic loads, high temperature, etc.) correlated with other tool
properties. In the carried out studies, the highest difference in hardness level of tool materials was of
30%. Nevertheless, the largest difference in tool life per tool material hardness ratio was equal to 930%.
This vast difference denotes that cutting ability of tested tool materials during grooving of Al-Si alloy
is only marginally affected by tool material hardness. Therefore, the possible reasons of differences in
tested materials durability during machining of AlSi20MgCuNi alloy can be attributed to other tool
material properties, as strength, fracture toughness and maximal working temperature. However,
the verification of this observation requires further studies on tool material properties.
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3.2. Evaluation of Surface Topography

The machined surface topography constitutes the fundamental effect of the machining process
and simultaneously one of primary cutting tool efficiency indicators. Thus, in this section the machined
surface microscopic images (see Figure 13), together with 3D surface topographies and 2D surface
roughness profiles obtained after grooving with various cutting parameters are characterized.

Figure 13 depicts an image of a machined surface after the grooving of Al-Si alloy with a
DDCC insert for a various cutting speed values. The formation of a surface texture during external
grooving process is not affected by a value of feed, since the feed marks formed during the considered
position of a cutting edge are being completely removed during the subsequent workpiece revolution.
Therefore, the formation of a surface irregularities during grooving process can be affected mainly
by a micro-profile of a cutting edge, machining system vibrations, material decohesion mechanisms
correlated with interactions between tool and workpiece or the discontinuities/phase composition of
a workpiece.

It was shown that machined surfaces formed in a cutting speed range of 50 m/min ≤ vc ≤ 400 m /min
are irregular and characterized by an intensive cracks and exfoliations. These observations can be also
confirmed by a 3D surface topographies, surface profiles (Figure 14) and determined surface roughness
parameters (Figure 15). Nevertheless, for a higher cutting speeds (vc > 400 m/min), the machined
surface becomes smoother and the number of cracks and exfoliations is being significantly reduced (see
Figures 13e–g and 14d–f).
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Figure 13. Images with a 4-fold magnification of a surfaces after grooving with DDCC insert in the range
of: (a) vc = 50 m/min; (b) vc = 100 m/min; (c) vc = 200 m/min; (d) vc = 400 m/min; (e) vc = 600 m/min;
(f) vc = 800 m/min; (g) vc = 1000 m/min.
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Figure 14. 3D topographies and 2D surface profiles of a machined surfaces of the AlSi13MgCuNi
alloy after grooving with a DDCC insert in the range of: (a) vc = 50 m/min; (b) vc = 100 m/min;
(c) vc = 200 m/min; (d) vc = 400 m/min; (e) vc = 600 m/min; (f) vc = 800 m/min.

It should be noted that the cutting speed range characterizing an appearance of intense surface
fractures overlaps with a cutting speed range of intense BUE formation on the cutting edge. Thus,
the surface quality is significantly affected by an adhesion phenomenon, which causes the periodic
formation of an adhesive joints of the workpiece on the cutting edge and subsequently the destruction
of these joints and re-deposition on the surface after cutting. In addition, the appearance of cracks
on the surfaces machined with a lower cutting speeds can be correlated with a high tensile residual
stresses induced by a values of cutting forces.

According to Akyuz [90], the growth of cutting speed leads to the decline in cutting forces during
turning of Al-Si alloys with the polycrystalline diamond (PCD) inserts. Therefore, in a range of lower
cutting speeds the higher values of cutting forces can lead to the higher residual stresses and thus to
the appearance of cracks on the surface after machining.

Ultimately, the Si content in the tested alloy can cause the silicon grain chunking during machining,
which can consequently lead to the deterioration of a surface finish.

The analysis of surface topographies formed during grooving with higher cutting speeds
(vc > 400 m/min, Figure 14d–f) reveals an occurrence of a periodic dominant irregularity peaks
with the wavelength equal to approx. 1.9 mm. The value of this distance corresponds directly to the
employed pick feed br value during the grooving tests. Therefore, the source of these irregularities
is the side plastic flow of a workpiece, which is induced by material elastic/plastic deformations
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and ploughing mechanisms. Nevertheless, during the analysis of a singular groove turning process,
no pick-feed is applied and thus the formation of a surface profile on the circumference of workpiece
will not be affected by a material plastic side flow. In case of a lower cutting speeds (Figure 14a–c),
no effect of side plastic flow is visible, since the formation of surface irregularities is dominated by an
intense adhesion and formation of cracks.

Figure 15 shows the surface roughness spatial parameters (Sa, Sz) in function of vc. The observed
non-linear decline in Sa and Sz parameters values together with a growth of vc is consistent with a
literature reports [90,91]. It can be also seen that error bars, describing the range of a measured Sa and Sz
values reach influentially higher values in a range of a lower cutting speeds, (50 m/min ≤ vc ≤ 200 m/min).
This observation reveals that the appearance of an intense BUE and formation of cracks on the surface can
cause the random distribution of a surface roughness in various areas of a machined surface.
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Ultimately, the application of a novel DDCC inserts enables the obtainment of a minimal surface
roughness parameters Sa = 3.4 µm and Sz = 19.4 µm during grooving of Al-Si alloy with the cutting
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speed of vc = 1000 m/min and f = 0.15 mm/rev. These values are comparable to those obtained during
longitudinal turning of Al-Si alloy with cemented carbide TiN coated inserts [31]. Thus, in terms of a
surface finish, the novel DDCC cutting tools can be employed as an alternative to the conventional
coated cemented carbide tools.

4. Conclusions

In this paper the cutting performance experiments of the modern WCCo/PCD (DDCC) tools
during the machining of Al-Si alloy were presented. The carried out tests included the inspections
of the tool wear and assessment of tool life. Moreover, the research included the evaluation of the
machined surface topography. On the basis of the research, the following conclusions were given.

(1) The adhesive DDCC tool wear manifested as the BUE was the dominant wear mechanism in
the range of investigated input parameters. However, the intensity of this phenomenon was
significantly reduced with an increase in cutting speeds. During grooving with vc = 800 m/min
and f = 0.15 mm/rev, the stable BUE was located onto the cutting edge with the maximal width
not exceeding 0.1 mm, which contributes to the moderate tool wear growth in a function of
cutting time. However, during grooving with a cutting speed of vc = 1200 m/min, the crater wear
on the tool rake face has been also observed, whose appearance contributed influentially to the
intense wear rate of DDCC inserts.

(2) The selection of vc = 800 m/min and f = 0.15 mm/rev during grooving of AlSi13MgCuNi alloy with
DDCC inserts enables 5 times longer tool life and almost 3-fold increase of cutting path compared
to values obtained during grooving with H3 and H10 cemented carbide inserts. This observation
proves the significantly higher cutting performance of inserts made of DDCC during machining
of AlSi13MgCuNi alloy compared to that reached for a cemented carbides (H3, H10).

(3) It has been found that increase of cutting speed contributed to the influential improvements
of surface quality after grooving with the DDCC inserts. During machining in a cutting speed
range of 50 m/min ≤ vc ≤ 400 m/min, machined surfaces were irregular and characterized by
an intensive cracks and exfoliations. On the other hand, during machining with higher cutting
speeds (vc > 400 m/min), the machined surface became smoother and the number of cracks and
exfoliations was significantly reduced. This observation reveals the significant role of BUE
formation during grooving with DDCC inserts.

(4) Characterization of tool wear and tool life revealed that the feed value of f = 0.15 mm/rev and cutting
speed in a range of 800 m/min ≤ vc ≤ 1000 m/min should be selected. Grooving of AlSi13MgCuNi
alloy with these cutting parameters enables the tool life of 23 min and surface roughness parameter
Sa in the range of 3 microns.

(5) Because of an intense BUE phenomenon during grooving of AlSi13MgCuNi alloy with uncoated
DDCC inserts, it is recommended to conduct further studies with the application of tools equipped
with anti-wear coatings to reduce the friction coefficients between the tool rake face and flowing
chip and to minimize the adhesion phenomenon.
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