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Abstract: Out-of-plane wrinkling has a significant influence on the mechanical performance of 

composite laminates. Numerical simulations were conducted to investigate the progressive failure 

behavior of fiber-reinforced composite laminates with out-of-plane wrinkle defects subjected to 

axial compression. To describe the material degradation, a three-dimensional elastoplastic damage 

model with four damage modes (i.e., fiber tensile failure, matrix failure, fiber kinking/splitting, and 

delamination) was developed based on the LaRC05 criterion. To improve the computational 

efficiency in searching for the fracture angle in the matrix failure analysis, a high-efficiency and 

robust modified algorithm that combines the golden section search method with an inverse 

interpolation based on an existing study is proposed. The elastoplastic damage model was 

implemented in the finite-element code Abaqus using a user-defined material subroutine in 

Abaqus/Explicit. The model was applied to the progressive failure analysis of IM7/8552 composite 

laminates with out-of-plane wrinkles subjected to axial compressive loading. The numerical results 

showed that the compressive strength prediction obtained by the elastoplastic damage model is 

more accurate than that derived with an elastic damage model. The present model can describe the 

nonlinearity of the laminate during the damage evolution and determine the correct damage 

locations, which are in good agreement with experimental observations. Furthermore, it was 

discovered that the plasticity effects should not be neglected in laminates with low wrinkle levels. 

Keywords: elastoplastic damage model; wrinkle defect; progressive failure analysis; fiber kinking; 

fracture plane 

 

1. Introduction 

Fiber waviness is a type of manufacturing defect that occurs mostly during filament winding. 

Ply level out-of-plane waviness can result in severe degradation of mechanical properties, in 

particular, such as the compressive strength of composites. Hsiao and Daniel [1] conducted 

theoretical and experimental studies on unidirectional composites with out-of-plane wrinkles under 

compressive loading. They discovered that the stiffness and strength of the laminates decreases 

significantly with increasing fiber waviness. A similar study was conducted by Davidson and Waas 

[2], who found that for thick unidirectional carbon fiber polymer matrix composites, there exists a 

fiber misalignment angle at which the compressive strength is the global minimum. In a subsequent 

work, Davidson and Waas [3] developed a fiber waviness tolerance and criticality assessment 

framework employing surrogate modeling and Monte Carlo methods to predict the compressive 

strength and failure mode of a composite structure with fiber waviness. Adams et al. [4,5] 
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investigated the effect of fiber wrinkles on the compressive strength of symmetric cross-ply 

laminates. According to their results, the compressive strength of those laminates was up to 36% 

lower than that of pristine laminates. Furthermore, various studies have shown that composites 

exhibit significant nonlinear behaviors before the final collapse of their structures, especially for 

laminates with wrinkles. Wisnom and Atkinson [6] performed finite-element (FE) analyses and 

experiments on T800/924 unidirectional laminates. Their results showed that fiber misalignments 

could induce shear nonlinearities. Chun et al. [7] discovered experimentally that DMS 2224 

carbon/epoxy composite laminates with wrinkles exhibit both material and geometric nonlinearities 

under tension and compression. In addition, Makeev et al. [8] observed a nonlinear shear behavior 

in IM7/8552 laminates with fiber wrinkles using digital image correlation, and they proposed a 

nonlinear shear stress–strain relation obtained from numerical simulations. Davidson and Waas [9] 

used an odd polynomial series fitting obtained from experimental results to model the nonlinear 

shear response of the matrix in fiber-reinforced composites. Mukhopadhyay et al. [10] captured the 

progressive damage in IM7/8552 laminates with wrinkles using a high-speed video camera during 

compression experiments, and then, adopted a nonlinear shear stress–strain relation to describe the 

material behavior in a subsequent numerical analysis. However, the above studies focused only on 

shear nonlinearity, and disregarded plasticity and nonlinearity in the transverse direction. 

In many progressive damage models developed for composite laminates, plasticity has been 

introduced to describe material nonlinearity. In a microscale, Prabhakar and Waas [11–13], Sun et al. 

[14], and Yuan et al. [15] applied a micromechanics model to predict the compressive failure behavior 

of unidirectional fiber-reinforced laminated composites using plasticity to approximate the 

nonlinearity of matrices. At the ply level, Lemanski et al. [16] presented a perfectly plastic model 

based on the Hill yield criterion and the kinematic hardening rule to simulate the nonlinear behavior 

of AS4/8552 composite laminates fabricated by Wang et al. [17], although only delamination damage 

was considered in their analysis. Wang et al. [18–20] performed off-axis tension and compression 

tests of IM600/Q133 unidirectional laminates and discovered that a material performs differently 

under tension and compression. Therefore, they proposed an elastoplastic constitutive model with 

distinguished tension and compression performances as an improvement on the Hill yield criterion. 

Xue et al. [21,22] applied this model to analyze the progressive elastoplastic failure behavior of 

IM600/Q133 and IM7/8552 composite laminates. Chen et al. [23] developed a combined elastoplastic 

damage model that accounted for plasticity on both the transverse and in-plane shear directions; 

however, the model could only be applied for two-dimensional damage analysis. According to an 

experiment, in which composite laminates were subjected to traverse compression [24,25], the 

fracture plane is not parallel to the loading direction. Moreover, fibers exhibit kinking or splitting 

failure under axial compression [26,27]. Therefore, existing damage models cannot be applied for the 

compression failure analysis of laminates considering plasticity effects. 

To the best of our knowledge, no studies have been conducted on the longitudinal compression 

failure of multi-ply laminates with wrinkles that consider plastic damage in the matrix. Therefore, 

we extended the elastoplastic damage model described in [23] to a three-dimensional (3D) damage 

analysis and conducted a progressive failure simulation of composite laminates with out-of-plane 

wrinkle defects subjected to axial compression. To rapidly search for the fracture angle in the matrix 

failure analysis, we propose a highly accurate approach that combines the golden section search 

method and an inverse interpolation. We implemented the damage model based on the LaRC05 

criterion [28] in a modified algorithm using a user-defined material subroutine in Abaqus/Explicit 

(VUMAT). To evaluate the effectiveness of the proposed method, we compared the predicted results 

with experimental observations [10]. 

The contributions of this study are as follows: (1) We conducted a progressive failure analysis of 

multidirectional fiber-reinforced polymer laminates with embedded wrinkle defects based on an 

elastoplastic damage model. (2) We demonstrated the nonlinearity of the laminate during damage 

evolution and correctly determined the damage location through numerical simulations. 

The remainder of the paper is organized as follows: Section 2 describes the elastoplastic damage 

model adopted in the present study. In Section 3, an approach is proposed to determine the 
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orientation of the fracture plane in the matrix failure analysis. The implementation of the elastoplastic 

model using the user-defined subroutine VUMAT is presented in Section 4. Section 5 shows 

numerical simulation examples and discusses the predictions by comparing them with test results 

[10]. Finally, conclusions are presented in Section 6. 

2. Elastoplastic Damage Model 

2.1. Stress-Strain Relationships 

For composite materials exhibiting a plasticity response, the total strain tensor � is expressed as 

the sum of the elastic and plastic strain parts, �e and �p, respectively, as follows: 

e pε = ε + ε  (1) 

According to damage mechanics theories, the Cauchy nominal stress tensor � and the effective 

stress tensor σ  obey the following relationship: 

 dσ = M σ  (2) 

where  11 22 33 23 31 12          σ  and  11 22 33 23 31 12          σ  for 3D problems. 

M(d) = diag[1/(1-d1) 1/(1-d2) 1/(1-d2) 1/(1-d3) 1/(1-d3) 1/(1-d2)], where d represents the damage variable 

and d1, d2, and d3 denote the damage in the fiber and in the transverse and shear directions, 

respectively. To ensure the irreversibility of the damage, d1, d2, and d3 are expressed as: 

1 max( ,  or )ft kink splitd d d d ,    3 1 21 1 1d d d    2 max( , )mt mcd d d  (3) 

where dft is the damage caused by tension in the fiber direction; dkink and dsplit denote the fiber kinking 

and splitting, respectively, caused by compression in the fiber direction; dmt represents both the 

damage caused by tension in the matrix and the degradation of the interface between the fibers and 

the matrix due to decohesion; and dmc denotes the damage caused by compression in the matrix. 

The relationship between stress and strain for undamaged orthotropic anisotropy composites is 

as follows: 

e
0σ = C ε  (4) 

where C0 is the stiffness tensor of the undamaged unidirectional laminated composite.  

By substituting Equation (4) into Equation (2), the relationship between the elastic strain tensor 

�e and the Cauchy nominal stress tensor can be expressed as follows: 

   d de -1
0 0ε = C M σ S M σ  (5) 

where S0 is the undamaged flexibility tensor. 

The stress–strain relationship for damaged composite materials can be expressed in the form: 

e
dε S σ  (6) 

where Sd is the damage flexibility tensor. 

By comparing Equations (5) and (6), the relationship between S0 and Sd can be expressed as 

follows: 

 d 0 dS S M  (7) 

According to Matzenmiller’s assumption [29], the compliance tensor of the damaged lamina can 

be obtained by adjusting the Poisson ratios. In the present study, the compliance tensor was degraded 

similar to [29]. Therefore, the following form of Sd was adopted: 
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2.2. Plastic Model 

The plastic yield function can be expressed in terms of effective stresses as follows [23]: 

     , p p pF F   σ σ   (9) 

where Fp is the plastic potential and � is the hardening parameter. The power law proposed by Sun 

and Chen [30] is expressed as follows: 

p nA    (10) 

where A and n are coefficients that can be determined using an approach based on the linear 

regression analysis of off-axis tensile tests performed on unidirectional composite laminate 

specimens.   and p  are the equivalent stress and the equivalent plastic strain, respectively. 

For simplicity, Chen et al. [23] converted the isotropic hardening law to an equivalent form in 

which the equivalent plastic strain p  is used as an internal variable: 

   
mp p      (11) 

where the coefficients β and m are related to A and n, respectively, through the relationships β = A−1/n 

and m = 1/n. 

Here, the 3D general plastic potential proposed by Sun and Chen [30] is employed. Hence, Fp 

can be rewritten as: 

   2 2 2 2
22 33 23 66 31 12

3
4 2

2
pF a           

 
  (12) 

where a66 is a material parameter that describes the level of plastic deformation developed under 

shear loading compared with that under transverse loading and ij  represents the effective stress 

component. 

Assuming the associated plastic-flow rule and the associated hardening rule for composite 

materials, the plastic strain rate 
p
ijd  can be expressed as: 

p
ij

ij

F
d 







 (13) 

where � is a plastic consistency parameter.  

The plastic work per unit volume dWp is defined as: 
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p p p
ij ijdW d d       (14) 

By substituting Equations (12) and (13) into Equation (14), the equivalent strain rate is expressed 

as follows: 

pd   (15) 

2.3. Damage Model 

In general, the damage modes in composite structures include fiber failure, matrix cracking, and 

delamination. Fiber failure and matrix cracking occur in the plane and can be further categorized into 

tensile and compressive modes. Pinho [28] classified the fiber failure caused by compression into 

fiber splitting and fiber kinking. 

2.3.1. Fiber Tensile Failure 

Typically, fiber failure occurs when the longitudinal stress reaches the longitudinal tensile 

strength. Therefore, the maximum stress criterion is considered: 

11
111,        0ft

T

f
X


    (16) 

where 11  is the normal stress in the fiber direction; XT is the axial tensile strength of the composite; 

and fft is the exposure factor corresponding to the tension-induced fiber failure. 

2.3.2. Matrix Failure 

According to experimental observations [24,25], a fracture plane appears in the longitudinal 

direction of fibers under a transverse stress or/and an in-plane stress acts. Matrix failure occurs in the 

fracture plane. Puck introduced a criterion using stress components in the fracture plane. Pinho [28] 

adopted the advantages of the Puck criterion and improved it in the second World-Wide Failure 

Exercise (WWFE-II). The stress components on the fracture plane, as shown in Figure 1, can be 

obtained through a transformation of coordinates using the following formulas: 

   

2 2
22 33 23

2 2
33 22 23

31 21

cos sin 2 sin cos

sin cos cos sin

sin cos

N

T

L

       

       

    

  

   

 

 (17) 

where � , � , and �L are the normal, longitudinal shear, and transverse shear stresses in the crack 

plane, respectively. ϕ denotes the angle of the fracture plane. 

NT

L

1

2

3
f

 

Figure 1. Traction components in the fracture plane, based on [31]. 
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If the normal stress in the fracture plane is a tensile stress, i.e., �N  ≥ 0, then matrix tensile failure 

will occur; otherwise, matrix compression failure will occur. The matrix failure criteria are expressed 

as follows: 

2 2 2

2 2

= + + 1                0 

1    0    

N T L
mt N

T T L

mat

T L
mc N

T T N L L N

f
Y S S

f

f
S S

  


 


   

      
       
      

 
   

      
    

 (18) 

where YT is the transverse tensile strength; �L and �T are the friction coefficients in the longitudinal 

and transverse directions, respectively; and SL and ST are the in situ longitudinal and transverse shear 

strengths, respectively. It is worth noting that, although SL and ST are not the same as the parameters 

S12 and S23, respectively, used in physics, Puck et al. [31] found that the value of SL can be set to that 

of S12. The other parameters can be determined by analyzing the pure transverse compression of a 

composite laminate, which is calculated as follows [32]: 

0

1

tan(2 )
T 
  , 

02 tan( )
C

T

Y
S


 , T

L L

T

S
S


   (19) 

where ϕ0 is the angle of the fracture plane for pure compression [24,25], i.e., ϕ0 = 53 ± 2°, and YC is the 

transverse compressive strength of the composite. 

2.3.3. Fiber Compression Failure 

Schultheisz and Waas [26] observed a local matrix deformation accompanied by fiber fracture 

(i.e., “fiber kinking”) that differs from fiber microbuckling. Furthermore, Argon [27] assumed that 

initial microbuckling could result in fiber rotation, matrix shearing, fiber–matrix debonding, fiber 

kinking, and splitting in kink bands. 

Although the fiber kinking mechanism is similar to that of matrix failure, a major difference is 

that in the matrix failure model, the associated stresses are calculated with respect to the fracture 

plane, whereas in fiber kinking analysis, stresses are calculated with respect to the kink plane, which 

is aligned with the fiber rotation. As shown in Figure 2, system 1–2–3 describes the material 

coordinates, where � is the angle between the kink plane and axis 2. Fiber kinking occurs on the plane 

with local coordinate system 1m–2m–3m, which is obtained by rotating the coordinate system 1–2�–3� 

by an angle �. 

 

Figure 2. 3D kinking model based on [32]. 
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The associated stress transformations in the transformation of the above coordinates are 

expressed as follows [28]: 
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According to the concept of matrix compression failure, and taking the effect of matrix 

transverse tension due to fiber misalignment into account, the fiber kinking/splitting criterion can be 

expressed as [28]: 

22 2

2223 12

22 22

mm m

kink split m m
T T L L T

f f
S S Y

 

   

    
               

 (22) 

where 22
m , 12

m , and 23
m  are the transverse normal stress and the in-plane and out-of-plane shear 

stresses, respectively, in the coordinate system 1m–2m–3m, and <·> denotes the Macauley symbol, i.e., 

<x> = (x + |x|)/2. Pinho et al. [28] determined experimentally that fiber kinking takes place only for 

compressive stress 11  ≤ −XC/2; otherwise, fiber splitting occurs. 

Angle � is expressed by [32]: 

12

22 33

2
tan(2 )










 (23) 

The misalignment frame orientation � is the sum of the initial misalignment angle �i and the 

additional shear strain � due to loading: 

 12

12

i






  


   (24) 

The shear strain � in the initial misalignment frame is defined as follows: 

   1 11 22
12sin 2 cos 2

2
CL i if  

      
   

 
 (25) 

where fCL is the shear function (i.e., τ = fCL(γ)). For linear shear, Equation (25) can be simplified to: 

12 12

12 11 22

i
i

G

G

 
 

 


 

 
 (26) 

2.3.4. Damage Propagation Criterion 

Damage evolution is accompanied by release of strain energy and degradation of the material 

properties. The loading/unloading and softening stress–strain curves for a combined elastoplastic 

damage model are shown in Figure 3, where σ0 and ε0 are the initial values of the failure stress and 

strain in all directions, respectively. 
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Figure 3. Loading/unloading and softening stress–strain curve [23]. 

Without considering plastic deformation in the fiber direction, the material exhibits a linear 

elastic behavior before damage. After damage occurs, the stiffness decreases gradually. Before 

damage is initiated, although irreversible plastic deformations in both the shear and transverse 

directions are observed, the material stiffness is not degraded. Therefore, a nonlinear behavior is 

shown during loading. Unlike in the fiber direction, both plastic deformation and stiffness softening 

occur beyond the point of damage initiation. Stiffness softening is expressed by an exponential 

damage parameter as follows [33]: 

   
1

1 exp 1 ,   , , ,  or I I I

I

d A f I mt mc ft kink split
f

       (27) 

A discrete element is the basic unit of the FE method. Although elements with different sizes 

obey the same stress–strain relationship, the energy release rates of different elements are unequal 

and proportional to the element size. To alleviate the dependence of the energy release rate on the 

element size, an element characteristic length LC is introduced with a critical strain energy release rate 

of GI,C. The damage energy dissipated per unit volume, gI,C, can be defined with the exponential factor 

AI as an internal variable [23] as follows: 

   ,

, 0,   , , ,  or I C

I C I

C

G
g A I mt mc ft kink split

L
    (28) 

where GI,C contains Gkink, Gsplit, GIC, and GIIC, which are identical to the fiber kinking and splitting 

fracture toughness and modes I and II of the matrix fracture toughness, respectively. gI,C(AI) can be 

obtained from the following integration: 

 
 

,
0

I I
I C I

I

d A
g A dt

d dt

 


  (29) 

By substituting Equation (29) into Equation (28), the following equation is derived, which is used 

to solve AI by numerical iterations: 

         
    
    

1

1

,C ,C 1

, ,

ln /
ln ln ln /

ln / g

n n

I In n n

I I I I C I n n

I C I C

A A
A A g A L G

g






   (30) 

Details on the approach used to determine AI are provided in Chen et al. [23]. 

2.4. Cohesive Model 

A modified cohesive model [34] was adopted to simulate interfacial failure, as shown in Figure 

4a. In this model, mode II and mode III fractures, which were considered as the combined resulting 

transverse shear modes, were used with mode I to compose the mixed mode, as shown in Figure 4b. 

The total mixed-mode relative displacement is expressed as: 
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2 2
I IIm     (31) 

where �Ι and �ΙΙ are defined as: 

I 1max(0, )  , 
2 2

II 2 3     (32) 

Here, �1 is the normal opening relative displacement, and �2, �3 are the resulting transverse shear 

relative displacements. 

A quadratic damage initiation criterion under a multiaxial stress state was used to predict the 

onset of delamination in the cohesive zone [34]:  

2 2

I II
max max
I II

max( ,0)
1

 

 

   
    

   
 (33) 

where 
max
I   and 

max
II   denote the interlaminar tensile and shear strengths (see in Figure 4), 

respectively, and �Ι and �ΙΙ are the resulting normal interlaminar stress and shear stress of the 

interface, correspondingly. Assuming linear softening in the interface elements after the 

delamination onset, the fracture energy under mixed-mode loading with the power law criterion [35] 

is expressed as: 

I II

IC IIC

1
G G

G G

 
   

    
   

 (34) 

0

0
max 0, min 1, m m

delam f
m m

d
 

 

   
   

   
 (35) 

where α ∈[1.0, 2.0] is an empirical parameter derived from mixed-mode tests, and GIC and GIIC are 

the critical energy release rates for pure modes I (opening) and II (shear), respectively. The 

superscripts “0” and “f” indicate the initial and final values of the effective displacement �m, 

respectively, and the max function represents the irreversible damage.  

  

(a) Interfacial relative 

displacements in a cohesive element 

(b) Interfacial bilinear mixed-mode softening law 

based on [34] 

Figure 4. Cohesive zone. 

3. Calculation of the Angle of the Fracture Plane 

Knops [36] proposed an algorithm to determine the fracture plane in composite laminates. As 

shown in Figure 5, the fiber orientation of each ply in the laminate is assumed to be in direction 1. 
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Subsequently, each ply is divided into discrete equal angular intervals of 1° from direction 1 (0°) to 

180°. The stress components �N (ϕ), �T(ϕ), and �L(ϕ) on the planes oriented at each angle are 

determined for a designated stress state and substituted into Equation (18) to derive the value of fmat. 

Then, the angle corresponding to the maximal fmat gives a potential orientation of the fracture plane. 

If fmat reaches 1.0 with increasing external loading, which indicates matrix failure initiation, then the 

associated angle of a potential fracture plane is the real orientation ϕfp of the fracture plane. 

 

Figure 5. Search of fracture planes based on [31]. 

Although the procedure developed by Knops can be used to obtain a precise fracture angle, its 

efficiency is low. For a model with N elements and M increments, M × N × 180 iteration steps are 

required. Here, we propose a modified algorithm to determine the fracture angle with high efficiency 

and robustness based on the studies of Wiegand et al. [37] and Schirmaier et al. [38]. According to the 

research of Schirmaier et al. [38], the number of fmat thresholds does not exceed three, and the distance 

between two local maxima is always greater than 25°. Therefore, the fracture angle can be searched 

for in [−90°, 90°] with a step size of 10°, as shown in Figure 6. (If the curve increases or decreases 

monotonously, which is not shown in Figure 6, the fracture angle is 90° or −90°). The local extrema 

intervals (denoted as “range 1” and “range 2”) are determined by applying the golden section search 

method and an inverse interpolation. 
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Figure 6. fmat versus ϕ in the interval [−90°, 90°]. 

For range 1 (see the magnified image at the top left corner of Figure 6), i.e., [ϕ1, ϕ4], the golden 

section points ϕ2 and ϕ3 can be determined as follows: 
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Subsequently, the values of fmat at ϕ2 and ϕ3 must be compared. If fmat(ϕ 2) < fmat(ϕ3), the local 

extremum interval is substituted by [ϕ 2, ϕ 4]; otherwise, the local extremum interval is updated by 

[ϕ1, ϕ3]. For fmat(ϕ2) < fmat(ϕ3) in the current case, let ϕa = ϕ2, ϕc = ϕ4, and ϕb = ϕ3. By applying an 

interpolation in interval [ϕa, ϕc], the function fmat(ϕ) is approximated as follows: 
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 (38) 

Therefore, the maximum point of range 1, ϕfp1, is expressed as: 

             
             

2 2

fp1

1

2

b a mat b mat c b c mat b mat a

b

b a mat b mat c b c mat b mat a

f f f f

f f f f

       
 

       

    
 

    
 (39) 

The maximum point in range 2, denoted as ϕfp2, is obtained by applying a similar procedure on 

range 2. Finally, the fracture angle in interval [−90°, 90°] is determined as the larger one of ϕfp1 and 

ϕfp2. 

To verify the effectiveness of the above algorithm, four typical stress states were selected to 

determine the angle of the fracture plane: pure shear in-plane and out-of-plane, uniaxial compression, 

and arbitrary 3D stress, which are listed in Table 1.  

Table 1. Four typical stress states for IM7/8552 composite (units: MPa). 

Stress State �11 �22 �33 �12 �23 �13 

1 (pure shear) 0.0 0.0 0.0 0.0 73 0.0 

2 (pure shear) 0.0 0.0 0.0 94.195 0.0 0.0 

3 (uniaxial compression) 0.0 −316.8 0.0 0.0 0.0 0.0 

4 (arbitrary 3D) 0.0 −20 50 21 43.3 32.57 

The curves of the threshold of the matrix damage onset versus angle ϕ for IM7/8552 

unidirectional composite laminates under the four typical stress states are shown in Figure 7. It can 

be seen that the fracture angles for the four cases are significantly different. For the case of uniaxial 

compression (i.e., curve 3), there are two peaks at ϕ = 54° and ϕ = −54°, while for the other three cases 

there is only one peak. For the two cases of pure shear, these peaks occur at ϕ = 0° and ϕ = 45° It is 

worth noting that an inflection point appears at ϕ = 0° in curve 1. In fact, for the case of pure shear 

associated with curve 1, the matrix tensile failure (i.e., σN ≥ 0) occurs in the interval [0°, 90°], while 

the matrix compressive failure (i.e., σN < 0) occurs in the interval [−90°, 0°]. Therefore, ϕ = 0° is the 

separation point for the tensile and compressive failure modes, which leads to an inflection point in 

the curve. Similar to curve 1, there is an inflection point in curve 4 at ϕ = −60°. This implies that for 

curve 4, the matrix failure is dominated by tensile stress in the interval [−60°, 30°] and by compressive 

stress in the intervals [−90°, −60°] and [30°, 90°]. 
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Figure 7. Threshold of matrix damage onset versus ϕ for four typical stress states. 

A comparison between the proposed algorithm and Knops’ algorithm [36] in terms of efficiency 

and accuracy is shown in Table 2, where N is the number of calculation points and “time” represents 

the real calculation time. As shown in Table 2, the angles calculated using the proposed algorithm 

are similar to those derived with Knops’ algorithm with step size 0.1°, whereas the associated 

calculation time is reduced to between 1/10 and 1/15 of the latter. It can be concluded that the 

algorithm proposed here is highly accurate and efficient.  

Table 2. Comparison of the efficiency and accuracy of the proposed algorithm with those of Knops’ 

algorithm. 

Stress State 
Knops’s Algorithm Proposed Algorithm 

Step size (o) ϕfp (o) N Time (s) ϕfp (o) N Time (s) 

1 (pure shear) 
1 45 180 0.0625 

45.0114 22 0.0113 
0.1 45 1800 0.1250 

2 (pure shear) 
1 0 180 0.0781 

4.44 × 10−16 22 0.0142 
0.1 0 1800 0.2344 

3 (uniaxial compression) 
1 54 180 0.0625 

54.271 25 0.0156 
0.1 54.5 1800 0.2561 

4 (arbitrary 3D) 
1 68 180 0.0732 

67.8691 22 0.0156 
0.1 67.9 1800 0.1094 

4. VUMAT Subroutine 

Discontinuity problems do not easily converge in implicit solvers, such as damage problems and 

nonlinear problems. Hence, we developed a 3D elastoplastic damage algorithm implemented in the 

user-defined subroutine VUMAT as an extension to that of Chen et al. [23], which is suitable for a 

plane stress state. To accommodate compressive failure analysis, we replaced the LaRC criterion with 

the Hashin criterion [39]. In addition, the cohesive model was implemented in Abaqus/Explicit [40] 

using the user-defined subroutine VUMAT. The flow chart of the subroutine VUMAT is shown in 

Figure 8, which includes VUMAT-1 and VUMAT-2 for the elastoplastic damage and cohesive zone 

models, respectively.  
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Figure 8. Flow chart of subroutine VUMAT. 

4.1. Elastoplastic Damage Algorithm 

Similar to the study by Chen [23], the user-defined subroutine VUMAT of the elastoplastic 

damage algorithm was driven by a strain increment, in which the loading history was discretized 

into a sequence of time intervals, i.e., [tn, tn+1](n = 1, 2, 3). Therefore, the discrete backward Euler 

algorithm was applied to update the effective stress and strain components, and this process can be 

described as follows: the Abaqus/Explicit main program yields 

 1 1, 2, 3, fp, , , , , , , , , , ,e p p
n n n n n n n n n n n nd d d  ε ε ε ε σ σ 

， , a result of the n th increment, used as the initial 

condition to the n+1 th increment, which is updated to a novel set variable 

 1 1 1 1 1 1 1 1, 1 2, 1 3, 1 fp 1, , , , , , , , , ,e p p
n n n n n n n n n n nd d d            ε ε ε σ σ 

，   at the end of the increment. 

Therefore, the incremental elastoplastic constitutive algorithm using the backward Euler explicit 

integration procedure is formulated as follows: 
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 (40) 

The nonlinearity in Equation (40) can be solved by applying the Newton–Raphson method. The 

iteration was performed until the yield criterion 
  , 11

1 1,
p kk

n nF tol 
  σ   was satisfied at the k+1 th 

iteration, where tol is the error tolerance of 1 × 10−6. The implementation procedure is as follows: 

(1) Initial conditions: 

1 1, 2, 3, fp,, , , , , , , , , , ,e p p
n n n n n n n n n n n nd d d  ε ε ε ε σ σ 

. 
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(2) Elastic predictor: 
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(3) Yield judgment and plastic corrector: 

   ,
1 1 1 0trial p trial p trial

n n nF F      σ   (42) 

If 1 0trial
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1 1 1
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Else 

a. initialize parameter: 

       0 0 , 0 , 0, ,
1 1 1 1 1 1 10, 0, , ,p ptrial p trial p trial

n n n n n n nk              σ σ ε ε   (44) 

b. calculate 
           1 1 1 1

1 1 1 1,
k k k kp

n n n nF F F      

       σ  , 

c. do while 
 1
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nF tol


   then 

  
  
  

      
     

    
             

11

1

1

1 1

1 1 1

, 1 ,

1 1 1

1 , 1

1 0 1 1

1 1 , 1 1 1

1 1 1 1 1

:

, ,

1

k

nk

n k

n

k k k

n n n

p k p k p
n n n

k p k

n n n

k k p k k kp
n n n n n

F

F

F F F

k k


 



   

   

   







 

  



  

 

  

    

    


  

 

    

 

 

   

 

σ C ε ε

σ σ

  

 

 (45) 

End do 

End. 

(4) Damage judgment and corrector: 

a. Search for the fracture plane: 

If , 1mat nf   then 

Calculate fp 1n ，  (Equation (39)) 
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Else 

fp 1 fpn n  ， ，  (46) 

End. 

b. Calculate the effective stress on the fracture plane N  , L  , and T   (Equation (17)) and the 

effective stress in the fiber misalignment frame 22
m , 12

m , and 23
m  (Equation (21)). 

c. Damage judgment: 

(1) Check the fiber failure criterion: 

If 11, 1 0n    then 

Calculate ftf  (Equation (16)) and ftd  

Else 

Calculate kinkf  or splitf  Equation (22) and fcd  

End. 

(2) Check the matrix failure criterion: 

If , 1 0N n    then 

Calculate mtf  (Equation (18)) and mtd  

Else 

Calculate mcf  (Equation (18)) and mcd  

End. 

(5) Correct the nominal Cauchy stress: 

a. Update the state dependent variables: 

  

1, 1 1,

2, 1 2,

3, 1 1, 1 2, 1

max( , or )

max( , or )

1 1 1

n n ft fc

n n mt mc

n n n

d d d d

d d d d

d d d





  





   

 (47) 

b. Calculate the nominal stress tensor 1nσ  (Equation (6)). 

4.2. Cohesive Zone Algorithm 

The numerical algorithm for the cohesive zone implemented in the user-defined subroutine 

VUMAT is based on [34]. According to the flow chart of VUMAT-2 in Figure 8, the algorithm 

primarily comprises the calculation of the relative displacement, evaluation of initial and ultimate 

failure, and derivation of the damage parameter d, which reflects the failure evolution. Therefore, the 

details of FE implementation in the cohesive zone are as follows: 

(1) Obtain material properties: 
max max

0, , , , ,I II I II IC IICK K G G T  , . 

(2) Relative displacement computation: 

a. Calculate the relative displacement in the local orthogonal coordinate system: 

 , 1 0 , , 1   1 2 3i n i n i nT i       ，， (48) 
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b. Calculate the mixed-mode relative displacement m  and its components: 

 , 1 1, 1max 0,I n n   , 
2 2

, 1 2, 1 3, 1II n n n      , 
2 2

, 1 I, 1 II, 1m n n n       (49) 

c. Calculate the relative displacement of mixed mode 
0

, 1m n   at the initial failure using Equation 

(33): 

2 2

, 1 , 1 , 10
, 1 max max
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I I n m n II II n
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 (50) 

(3) Verify the initial failure criterion: 

0
, 1 , 1 0initial m n m nf       (51) 

If 0initialf  , then set dn+1 = 0; otherwise, the damage evolves. Therefore, calculate the relative 

displacement of mixed mode , 1
f
m n   at the ultimate failure using Equation (34): 
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(4) Verify the ultimate failure criterion: 

, 1 , 1 0f
ultimate m n m nf       (53) 

If 0ultimatef  , then set 

0
, 1 , 1

1 0
, 1 , 1

m n m n

n f
m n m n

d
 

 
 



 





. Otherwise, 1nd    1. 

(5) Update the nominal Cauchy stress: 

 1, 1 1, 11n I nd K    ,  2, 1 2, 11n II nd K    ,  3, 1 3, 11n II nd K     (54) 

5. Numerical Examples 

To verify the elastoplastic damage model developed in this study, numerical simulations of the 

progressive failure of composite laminates with fiber waviness were performed. Mukhopadhyay et 

al. [10] conducted an experimental and numerical study of the compressive failure of IM7/8552 

laminates with wrinkles. For comparison, the IM7/8552 laminates with a layup of [452/902/−452/02]3s 

used by Mukhopadhyay et al. [10] were selected in the present simulation. Thus, the numerical and 

experimental results in [10,41] can be used for comparison with the results obtained from the 

proposed elastoplastic damage model. The geometry of the laminates and the profile of the 

embedded wrinkles are described in the following. 

The elastic properties [10] and plastic parameters [22] are listed in Table 3, where the plastic 

parameters a66, β and m were converted using Equation (11). 
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Table 3. Material properties of IM7/855 and model parameters [10,22]. 

E11 (MPa) E22 (MPa) E33 (MPa) G12 (MPa) G13 (MPa) G23 (MPa) 

161000 11380 11380 5170 5170 3980 

XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa) �i (o) 

2560 1590 73 250 113 1.5 

�12 �13 �23 β m a66 

0.32 0.32 0.43 1059.955 0.2041 2.6 

GIC (N/mm) GIIC (N/mm) Gkink (N/mm) Gsplit (N/mm)   

0.26 1.002 80 80   

First, the profile of the embedded wrinkles was plotted in MATLAB; subsequently, the 

associated FE model was generated using a Python script run by Abaqus GUI, shown in Figure 9. 

The profile of the wrinkles can be described with a cosine function as follows [10]: 

0

2
cos    for -

2 2 2

0                          otherwise

wh h h

B x L L
x

h L

 

  


  
       

 

 (55) 

where hw is the nodal coordinate of the through-thickness in the wrinkled configuration; h0 is the 

nodal coordinate in a wrinkle-free flat laminate; L is the wavelength of the wrinkle; and � is the wave 

amplitude. The value of B is unity on the centerline and decreases linearly with the thickness, with a 

ratio of 1.0:0.63:0.39:0.0 [42]. 

  

(a) Plotted in MATLAB (b) Generated in Abaqus 

Figure 9. Section of wrinkle level 5.6°, 9.9°, and 11.4° from top to bottom. 

A 3D quasi-static progressive failure simulation was implemented in Abaqus/Explicit using the 

user-defined subroutine VUMAT. To reduce the computational cost, two adjacent plies with the same 

orientation were modeled using continuum 3D eight-noded reduced integration (C3D8R) elements, 

with one element through the thickness of the laminate, without considering delamination failure 

between those two plies. Layers of eight-noded 3D cohesive (COH3D8) interface elements with zero 

thickness were inserted between the plies at different orientations to model delamination failure, with 

the cohesive material properties shown in Table 4. Usually, there are cohesive elements with zero 

and finite thickness, as shown in Figure 10. The roles of the two types of cohesive element are identical. 

However, a finite-thickness cohesive element must be meshed using extremely small thickness 



Materials 2020, 13, 2422 18 of 26 

 

intervals, which greatly increases the computation time in Abaqus/Explicit. To avoid extremely dense 

grids in thickness, which reduce the computing efficiency, zero-thickness elements were used in the 

present work. 

Table 4. Material properties of cohesive layers [10]. 

KI (N/mm3) KII (N/mm3) �Ιmax (MPa) �ΙΙmax (MPa) GIC (N/mm3) GIIC (N/mm3) α 

105 105 60 90 0.26 1.002 1 

  

(a) Finite-thickness cohesive model (b) Zero-thickness cohesive model 

Figure 10. Cohesive models. 

The laminate dimensions were 30 × 30 × 6 mm, with a nominal ply thickness of 0.125 mm, as 

shown in Figure 11a. A fine mesh with in-plane dimensions of 0.25 × 0.25 mm was applied at the 

location of the wrinkle and towards the laminate edges, whereas comparatively coarser meshes of 

dimensions 0.5 × 0.25 mm and 0.75 × 0.25 mm were used elsewhere for computational efficiency. A 

typical model of the compression specimen comprised approximately 270,000 C3D8R elements and 

260,000 COH3D8 elements. The boundary conditions shown in Figure 11b are as follows: fully 

constrained boundary conditions were applied on the left end (fixed) through reference point 1, and 

displacement boundary conditions were applied to the load direction by constraining the other 

directions to reference point 2 on the right end. 

 

(a) Geometry and FE mesh 

 

(b) Boundary conditions 

Figure 11. Geometry and boundary conditions of the wrinkle laminate. 
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5.1. Compressive Failure Stress 

Three levels of wrinkle severity, with a maximum waviness angle of 5.6°, 9.9°, and 11.4°, were 

investigated. The predicted compressive stresses versus the displacement curves calculated using 

three models are illustrated in Figure 12. As shown, both the predicted stiffness and the strength 

decrease with increasing wrinkle level for the three models. The stiffness predicted by the elastic 

model is the highest, while that obtained with the model described in [10] is the lowest. The strength 

calculated with the model of [10] is higher than that derived with the elastic model and the proposed 

elastoplastic model for defect angle 5.6°, but an opposite trend is observed for the higher angle of 

11.4°. The model in [10] considers the effects of both shear nonlinearity and residual thermal stress. 

The above opposite trends might be an effect of the residual thermal stress on the stiffness and 

strength of laminates with different wrinkle levels. It can be seen that the displacement at final failure 

predicted by the elastoplastic model is significantly greater than those of the other two models, owing 

to the plastic effects. 
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Figure 12. Predicted compressive stress versus displacement, obtained using three different models  

To demonstrate the effectiveness and predictive accuracy of the elastoplastic model, the 

compressive strengths predicted by the three models for different wrinkle severities are compared 

with test data [10,41] in Figure 13. As shown, the discrepancy between the results of the elastoplastic 

model and the test data for the three levels of wrinkle severity are 1.07%, 8.45%, and 1.97%. The errors 

of the elastic model are 6.93%, 12.04%, and 5.28%, and the prediction errors of the model in [10] are 

10.73%, 3.64%, and −2.79%. The elastoplastic model provided better predictions than the elastic 

model. Compared with the model proposed in [10], the elastoplastic model achieved more accurate 

results for wrinkle levels 5.6° and 11.4°. Theoretically, the compressive strength of the laminate with 

wrinkle level 9.9° should be greater than that of wrinkle level 11.4°, but the opposite was observed in 

the experiment reported in [10] (as shown in Figure 13). The authors of [10] explained in [41] that this 

test result was a statistical average value of the compressive strength. They found that the test error 

for wrinkle level 9.9° was greater than those for 5.6° and 11.4°, owing to the strong fluctuations in the 

dataset obtained at wrinkle level 9.9°. This may be the reason that the model in [10] seems superior 

to the elastoplastic model in the compressive strength comparison for wrinkle level 9.9°. 
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Figure 13. Compressive strength comparison for the three models and test results. 

The predicted curves of compressive strength versus the wrinkle severity by the three models 

were shown in Figure 14. As can be seen, the computed compressive strengths by the elastoplastic 

model match better with the measured data [10] than those by the other two models. It should be 

noted that the discrepancy between the prediction by the elastoplastic model and the elastic model 

decreases with the increase of wrinkle severity. 
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Figure 14. Wrinkle severity versus compressive strength. 

5.2. Failure Mechanism 

To further demonstrate the advantages of considering the elastoplastic effect, the damage 

evolution is examined in this section. Mukhopadhyay et al. [10] used high-speed imaging to record 

the failure behavior of IM7/8552 composite laminates with fiber waviness subjected to compressive 

loading. 

Figure 15a,b show the damage evolution at wrinkle level 5.6° predicted by the elastic model and 

the elastoplastic model, respectively, and the corresponding high-speed camera images of the 

damage sequence reported in [10] are shown in Figure 15c. It can be seen that the predictions of the 

elastoplastic model agree better with the test images than those of the elastic model. According to the 

prediction of the elastoplastic model and the test images, fiber failure first occurred in one of the 0° 

plies, followed by delamination in the interface between the 90° and −45° plies. Subsequently, further 
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fiber failure and through-thickness delamination occurred when the loading was increased. It is clear 

that the damage locations predicted by the proposed model match well with those in the test images. 

DelaminationFiber 
failure

Delamination

Fiber 
failure

Fiber failure

   

(a) Prediction of elastic model (b) Prediction of elastoplastic 

model  

(c) Experimental images 

Figure 15. Damage evolution in a specimen with wrinkle level 5.6°. (a) Predicted by the elastic model, 

(b) predicted by the elastoplastic model, and (c) from high-speed camera images of the damage 

sequence in [10]. 

The elastoplastic damage prediction results for laminates of wrinkle levels 11.4° and 9.9° are 

shown in Figures 16 and 17, respectively. The same damage sequence was observed in these two 

cases. Inter-ply delamination initiated earlier than fiber failure for the wrinkle severity levels 11.4° 

and 9.9°, in contrast to the case of wrinkle level 5.6°. This is in accordance with the results of 

Mukhopadhyay et al. [10]; they reported that fiber compressive failure was the dominant mechanism 

for lower-severity wrinkles (wrinkle severity lower than 8.7° for the laminates discussed), whereas 

inter-ply delamination was the driving mode of damage for higher-severity wrinkles (wrinkle 

severity exceeding 8.7° for the laminates discussed).  

  

(a) Delamination onset (b) Fiber failure occurs after delamination 

Figure 16. Elastoplastic model prediction of damage sequence for a laminate with wrinkle level 9.9°. 

  

(a) Delamination onset (b) Fiber failure occurs after delamination 

Figure 17. Elastoplastic model prediction of damage sequence for a laminate with wrinkle level 

11.4°. 
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Figure 18 shows the damage location prediction of a laminate with wrinkle level 11.4°. As 

shown, similar to the case of wrinkle level 5.6°, the fiber failure and delamination locations obtained 

with the elastoplastic model match better with those in the test image than the elastic model.  

Delamination

Fiber failure

 
  

(a) Prediction of elastic model (b) Prediction of elastoplastic 

model 

(c) Experimental image 

Figure 18. Damage locations for a specimen with wrinkle level 11.4° (a) predicted by the elastic model, 

(b) predicted by the proposed elastoplastic model, and (c) test image [10]. 

5.3. Plastic Effects 

The curves of equivalent stress versus equivalent strain for the location of the matrix damage 

initiation are shown in Figure 19, with clusters of the damage evolution sequence shown together. As 

shown in Figure 19a,b, matrix damage was initiated in phase ①, where the associated equivalent 

plastic strains were 2.032 × 10−4 and 1.5 × 10−4. This indicates that plasticity occurred before damage 

initiation. The matrix damage was initiated at the location of the maximum misalignment angle for 

these two cases, as shown in the damage cloud in phase ①. As loading proceeded, regions of fiber 

wrinkles underwent deformation owing to the large strain in the matrix and then triggered the next 

damage mode, i.e., fiber failure (see Figure 19a in phase ②) or delamination (see Figure 19b in phase 

③). At the later stage of damage development, the strains experienced within the kind band were 

large (4.43 × 10−4 and 3.42 × 10−4 for wrinkle levels 5.6° and 11.4°, respectively), as shown in phase ⑤. 

This is similar to the compressive failure mechanism in unidirectional composite laminates [11]. The 

nonlinear deformation characteristics of the matrix were described well by the proposed elastoplastic 

damage model, which could not be achieved with the elastic damage model. 

 

(a) Wrinkle level 5.6°; numbers ①, ② and ③ indicate the initial damage of the matrix, 

fiber, and delamination, respectively; numbers ④and ⑤ correspond to the damage 

evolution of the matrix. 
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(b) Wrinkle level 11.4°; numbers ①, ③ and ④ indicate the initial damage of the matrix, 

delamination, and fiber, respectively, whereas numbers ②  and ⑤  represent the 

damage evolution of the matrix. 

Figure 19. Equivalent stress versus equivalent plastic strain for wrinkle levels 5.6° and 11.4°. 

For comparison, the predicted compressive stress versus displacement curves obtained using 

the elastic model and the elastoplastic model are plotted in Figure 20 for wrinkle levels 5.6° and 11.4°, 

with clouds of damage development sequences shown together. For the two wrinkle levels, the 

initiations of matrix damage, fiber failure, and delamination were delayed in the elastoplastic model 

compared with the elastic model. It is worth noting that the ultimate displacement at final failure for 

wrinkle level 5.6° was larger than that for 11.4°. This indicates that the laminate with wrinkle level 

5.6° is relatively ductile, whereas that with wrinkle level 11.4° exhibits a brittle behavior. Moreover, 

the discrepancy between the ultimate displacements obtained from the elastic model and the 

elastoplastic model for wrinkle level 5.6° are much greater than those for wrinkle level 11.4°. 

Combined with the predicted curves of compressive strength versus wrinkle severity in Figure 14, it 

may imply that the plastic effect should not be neglected for laminates with lower wrinkle levels, at 

least for the laminate with the ply sequence discussed herein. 

 

(a) Wrinkle level 5.6°; numbers ①④, ②⑤, and ③⑥ indicate the initial damage of the 

matrix, fiber, and delamination, respectively. 
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(b) Wrinkle level 11.4°; numbers ①④, ②⑤, and ③⑥ indicate the initial damage of the 

matrix, delamination, and fiber, respectively. 

Figure 20. Predicted compressive stress versus displacement for wrinkle levels 5.6° and 11.4°. 

Numbers ①②③ indicate the damage initiation obtained from the elastic model, whereas ④⑤⑥ 

indicate that derived from the elastoplastic model. 

6. Conclusions 

The progressive failure of multidirectional fiber-reinforced polymer laminates with embedded 

wrinkle defects was numerically simulated using an elastoplastic damage model. Damage evolution 

analysis was performed according to the LaRC05 criterion with four damage modes (i.e., fiber tensile 

failure, matrix failure, fiber kinking/splitting, and delamination). A modified algorithm with high 

efficiency and robustness was proposed based on a previous study to rapidly search for the fracture 

angle in the matrix failure analysis. This algorithm achieves high accuracy and significantly improved 

computational stability by combining the golden section search method and an inverse interpolation. 

The elastoplastic damage model was applied to simulate the compressive failure behavior of 

IM7/8552 [452/902/−452/02]3s composite laminates with out-of-plane wrinkles. The results showed that 

the model can reproduce the nonlinearity of the laminate during the evolution of the damage and 

provide more accurate compressive strength predictions than the elastic model and a previous model 

[10]. In addition, the proposed model could determine the damage locations during the progressive 

failure process by comparing with test images. Based on the comparison of the compressive stress–

displacement curves predicted by the elastoplastic and elastic models, it can be concluded that 

plasticity effects should not be neglected for laminates with low wrinkle levels. 
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