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Abstract: When a thick laminate is subjected to bending, under certain boundary conditions, wrinkles
may appear and develop due to the inextensibility of the fibers. Wrinkling is one of the most critical
defects in composite manufacturing. Numerical simulation of the onset and growth of such wrinkles
is an important tool for defining optimal process parameters. Herein, several bending experiments
of thick laminates are presented. They were found to lead to severe wrinkling and delamination of
different kinds. It is shown that the history of loading changed the developed wrinkles. Stress resultant
shell finite elements specific to textile reinforcement forming show their relevance to provide, for these
wrinkles induced by bending, results in good agreement with the experiments, both with regard to
the onset of the wrinkles and to their development. This numerical approach was used to improve
the understanding of the phenomena involved in wrinkling and to define the conditions required to
avoid it in a given process.
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1. Introduction

Composite material has become essential for applications where a high stiffness-to-weight ratio is
a key design parameter. On the other hand, the fiber matrix composition of these materials renders
their manufacturing processes complex. Process simulation tools that are gradually being developed
need to make it possible to avoid the trial-and-error design of these processes. Software have been
invented for composite forming [1–11] and resin flow [12–19]. In addition, simultaneous ply-forming
of a multilayered composite has been found to increase manufacturing efficiency [20–26].

However, when a laminate is formed, its bending can lead to the development of wrinkles.
These wrinkles are one of the most severe defects that can affect a composite and their presence
generally makes the composite unsuitable. It is essential to determine, especially by simulation, the
conditions under which these wrinkles do not appear. Multilayer forming can lead to many types of
defects [27]. Specific studies on multilayer unidirectional (UD) prepreg consolidated under autoclave
pressure have been carried out [28–32]. In the case of L-shape forming, the mechanisms of wrinkle
formation and the influence of process parameters have been studied [25,33,34].

Experimental investigations of wrinkle-type defects generated by the forming of multilayers
are numerous and the phenomena are well analyzed. On the other hand, numerical simulations of
these aspects are scarce. The simulation of wrinkling due to the consolidation of thick composite
parts has been presented by Belnoue et al. [35]. Each ply was modeled by a 3D finite element layer in
contact with its neighbors with consideration of viscoelastic behavior [36]. Simplified models of this
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phenomenon have been proposed. [37,38]. The numerical analysis of creasing and folding of laminated
paperboard has been carried out for a continuous 2D solid medium [39,40].

Although the causes of wrinkling during manufacture can be plentiful, fiber inextensibility
associated with the bending of thick laminate can lead to excess fiber length and is a major cause of
flaw [27]. This paper proposes a simulation of the wrinkling caused by the bending of thick laminates.
Stacks of dry plies (without resin) have been considered. The objective was to analyze only the wrinkles
caused by the excess length of the inextensible fibers due to bending of a thick stack. This phenomenon
is often of first order in multilayer forming processes. It is an issue that concerns other scientific fields,
in particular folding of rock structures [41–43] and creasing and folding of paperboard [40,44–47].

In the present work, several bending experiments corresponding to large rotations of the laminate
ends led to significant wrinkling. Different boundary conditions and loading steps resulted several
different wrinkle. The objective was to show that stress-resultant shell elements specific to textile
reinforcements provide relevant simulations of the development of wrinkles and the associated
delamination in the case of bending of thick stacks with a large number of layers. The presented
experiments and simulations were repeatable and represented the phenomena related to the excess
length of the plies during the bending of thick laminates.

2. Presentation of Experimental Analyses

Ten-layer stacks of carbon fabric G1151 (Hexcel) (Figure 1a,b) and 100 layers of paper (Figure 1c)
were considered. From a straight position, these stacks were bent by a relative rotation of the ends
from 0◦ to 90◦.
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Figure 1. Experimental analysis of wrinkling during bending. (a) Symmetrical bending; (b) L-flange 
forming; (c) Bending after buckling. 

Rotations and displacements of the stack ends were imposed during loading. Figure 1 shows 
that significant wrinkles developed in the studied cases, especially when the boundary conditions of 
the stack prevented relative slippage. This wrinkling caused delamination of the different layers. 
Section 4 analyzes the wrinkles in the case of symmetrical bending with clamped ends (Figure 1a). 
Section 5 examines the influence of pressure at the ends upon wrinkling and upon the development 
of a bevel (Figure 1b). Section 6 analyzes the effect of global buckling before bending upon the 
development of wrinkles (Figure 1c). When it comes to symmetrical bending, the orientation of the 
textile layers was studied in Section 4. It was shown that a ±45° orientation made it possible to avoid 
wrinkling. 

The objective of these different experimental tests was both to highlight the wrinkling due to the 
bending of the stacks and to serve as validations of the stress resultant approach developed for the 
simulation of textile composite forming. The different tests that are analyzed in this article are of the 
same type. They all impose a relative rotation of 90° of the ends. Nevertheless, the displacements of 
these ends and the history of loading differed and the obtained deformations and wrinkles varied 
widely. 

3. Stress Resultant Shell Approach 

Figure 1. Experimental analysis of wrinkling during bending. (a) Symmetrical bending; (b) L-flange
forming; (c) Bending after buckling.

Rotations and displacements of the stack ends were imposed during loading. Figure 1 shows that
significant wrinkles developed in the studied cases, especially when the boundary conditions of the
stack prevented relative slippage. This wrinkling caused delamination of the different layers. Section 4
analyzes the wrinkles in the case of symmetrical bending with clamped ends (Figure 1a). Section 5
examines the influence of pressure at the ends upon wrinkling and upon the development of a bevel
(Figure 1b). Section 6 analyzes the effect of global buckling before bending upon the development of
wrinkles (Figure 1c). When it comes to symmetrical bending, the orientation of the textile layers was
studied in Section 4. It was shown that a ±45◦ orientation made it possible to avoid wrinkling.

The objective of these different experimental tests was both to highlight the wrinkling due to the
bending of the stacks and to serve as validations of the stress resultant approach developed for the
simulation of textile composite forming. The different tests that are analyzed in this article are of the
same type. They all impose a relative rotation of 90◦ of the ends. Nevertheless, the displacements of
these ends and the history of loading differed and the obtained deformations and wrinkles varied widely.
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3. Stress Resultant Shell Approach

In a shell approach, the internal forces on a representative unit cell (RUC) of the woven fabric are
assumed to be represented by the tensions T11 and T22, in the warp and weft directions, the in-plane
shear moment Cs and the bending moments M11 and M22 (Figure 2). These stress resultants are the
conjugates of axial elongations ε11, ε22, in-plane shear γ, and curvatures χ11,χ22. The internal virtual
work on a unit cell can be written:

δWRUC
int = δWtension

int + δWshear
int + δWbending

int
δWRUC

int = δε11T11L1 + δε22T22L2 + δγ Cs + δχ11M11L1 + δχ22M22L2
(1)

where L1 and L2 are the lengths of the RUC in the warp and weft directions. The virtual work theorem
for any virtual displacement field equal to zero on the boundary with prescribed displacement is
expressed as:

δWext −
∑

NRUC

δWRUC
int = δWacc (2)
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Here, NRUC is the number of unit cells of the woven fabric under consideration and δWext and
δWacc are respectively the external virtual work and the virtual work of the acceleration quantities.

The mechanical behavior of the textile reinforcement is given by the relations between the stress
resultant T11, T22, Cs, M11, M22 and the strains ε11, ε22, γ, χ11, χ22. The mechanical behaviors can
be coupled [48–52], but for simplicity and due to lack of experimental data, it was assumed that the
behaviors were decoupled. Finite elements composed of woven unit cells have been implemented
from Equation (1) [5,53,54]. This stress resultant approach is well suited for the simulation of textile
reinforcement forming. In particular, it takes into account the bending behavior independently of the
membrane behavior which is essential for fibrous reinforcements whose bending stiffnesses are not
directly related to that of the membrane, as is the case for classical shells.

Other approaches for decoupling the bending and membrane stiffnesses of woven fabrics have
been proposed [55–59]. Membrane approaches have been developed for the simulation of fabric
draping, however, it has been shown that the simulation of wrinkles requires a good description of the
bending behavior [60,61]. The use of standard shell finite elements is not suitable because the bending
stiffness is deduced from that of the membrane, which gives rise to bending stiffness values much
higher than those of textile reinforcements and disturbs the wrinkle analysis. Another advantage of the
stress resultant approach (Equation (1)) is the consideration of the resultant efforts on the elementary
cell which leads to the direct use of the specific tests that have been developed to determine the
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mechanical behavior of textile reinforcements. The picture-frame and bias extension tests give the shear
moment Cs as a function of the shear angle γ [62–65], and the Peirce- and Kawabata-type bending tests
measure the bending moment Mαα as a function of the curvature χαα [61,66–68]. Finally, the biaxial
tensile tests give the stresses as a function of the two axial deformations [69–72].

In this modeling approach, the transverse compaction of the layers is not considered. This would
require the use of 3D finite elements or solid-shell elements [73–75]. In the present study, these stress
resultant shells were used efficiently to simulate composite laminate wrinkling during bending and
the associated ply separation (up to 100 layers).

4. Symmetrical Bending with Clamped Ends

In this test, a laminated composite was subjected to bending due to a symmetrical 45◦ rotation of
its two ends. Here, both ends of the stack were clamped. The displacements of the nodes in the two
ends (50 mm) (shown in Figure 3a) are imposed. It is known that in this case the bending of a laminate
leads to wrinkles. This was confirmed experimentally in the following experiments. If at least one of
the ends was unclamped, the bending of the laminate would take place without wrinkling, because of
possible slippage between the layers, which would give rise to a bevel (Figure 4).
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In Figure 5, the stack consisted of 10 layers of G1151 textile reinforcement manufactured by Hexcel.
This reinforcement was an interlock fabric shown in Figure 3b. It has been studied and used as a test
reinforcement in several investigations concerning the draping of preforms [22,76–79] and in particular
the ITOOL project [80]. It consisted of an interlock weaving of 6K carbon yarns and the thickness of
each ply of the stack was 1.3 mm.Materials 2020, 13, x FOR PEER REVIEW 6 of 17 
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The mechanical properties of G1151 (tension, in-plane shear and bending) have been studied in
different studies [68,76,77] and the properties used in the stress resultant shell approach are given in
Table 1.

Table 1. Mechanical properties of the G1151® fabric.

Tensile stiffness in warp and weft direction:

Tαα = Kαεαα

Kα = 2300 N/yarn (α = 1, 2)

In-plane shear stiffness:

Cs(γ)= k1γ+ k3γ
3+k5γ

5

k1= 0.37 N mm

k3 = −0.84 N mm

k5= 1.03 N mm

Bending stiffness in warp and weft direction:

Mαα= Bαχαα
Bα= 8.84 N mm (α = 1, 2)

Coefficient of friction between plies:
Thickness of a ply

µ = 0.21
e = 1.3 mm

Simulations were carried out using Plasfib in-house explicit finite element software [5]. The three
node shell elements used are stress resultant shell elements as introduced in Section 3. Their formulation
is described in [5]. Applications in composite forming are presented in [60,77]. They are rotation free
elements (without degrees of freedom of rotation) and use the position of neighbouring elements to
determine the curvature [81,82]. The characteristics of finite element models are given in Table 2.
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Table 2. Characteristics of Finite Element Models.

Simulation Number of
Layers

Number of
Elements per

Layer

Number of
Nodes per

Layer

Number of Degree
of Freedom per

Layer

Total Number
of Degree of

Freedom

Stack of G1151 layers 10 48 50 150 1500
Stack of paper layers 100 96 98 294 29,400

Figure 5 shows the symmetrical bending of a stack of ten layers of G1151 oriented at 0◦–90◦.
Due to the thickness of the stack and the inextensibility of the fibers, a significant wrinkling developed
with ply separation. The simulation of the symmetrical bending test in Figure 5a was performed and is
shown in Figure 5b. Ten layers of resultant stressed shell elements were placed in contact and clamped
at both ends. Figure 5b,c illustrate that the deformed shape obtained by the simulation was in good
agreement with the experimental test and that it gave a good description of the wrinkles caused by the
bending of the laminate.

The test analyzed in Figure 6 was the same as in Figure 5 with the exception that the stack
was composed of 100 layers of paper. The deformation was of the same nature. The mechanical
characteristics of the sheets of paper are given in Table 3 [57] and Figure 6b shows that the simulation
satisfactorily predicted the wrinkles for all 100 layers. Table 4 compares the experimental and simulated
values of the positions of the apex point A of the wrinkles.
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Table 3. Mechanical properties of a layer of paper.

Young’s modulus E: 4.61 GPa
Shear modulus G 1.92 GPa
Coefficient of friction between plies: µ = 0.20
Thickness of a ply e = 0.1 mm

Table 4. Comparison of the experimental and numerical height hAA′ of the wrinkle at apex A (mm).

Figure 5 Figure 6 Figure 8

Experiment hAA′ 44.6 42.8 46.6
Simulation hAA′ 45.6 40.1 44.7
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In Figure 7, the symmetrical bending was the same as before (rotation of 45◦ at each end), but the
stacking was made with 10 layers of G1151 oriented at ±45◦. The result of this was very different since
the deformed shape had no wrinkles. The longitudinal inextensibility constraint of the 0◦–90◦ case no
longer existed and the stack thus deformed without wrinkling. A shear angle of 8◦ was measured
(Figure 7a) on the outer surface and −5◦ on the lower surface. The ability for shear deformation during
bending of plies oriented at 45◦ was noted in the case of 3D interlock fabrics [83]. The simulation of
the symmetrical bending of the stack of G1151 plies oriented at ±45◦ did not show any wrinkling
(Figure 7b) and confirmed the shear angles in the upper and lower layers.
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Figure 7. Symmetrical bending of a stack of ten plies of Hexcel G1151® oriented at ±45◦ (a) Deformed
shape obtained by experiment. (b) Deformed shape obtained by simulation.

In the test presented in Figure 8, symmetrical bending was applied to a stack of 10 layers of G1151
oriented alternately at 0◦–90◦ and ±45◦. Figure 8a pointed at the development of wrinkles of the same
magnitude as for a 0◦–90◦ stack. However, the deformation was different since the 0◦–90◦ plies had the
same shape, but the ±45◦ plies also formed wrinkles due to their being influenced by the neighbouring
layers. The result was a deformation where the layers were in pairs: a ply at 0◦–90◦ dragged its
neighbouring ±45◦ ply with it. This deformation consisting of sets of two layers was correctly obtained
by the simulation.
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Figure 8. Symmetrical bending of a stack of ten plies of Hexcel G1151® oriented successively at 0◦–90◦

and 45◦. (a) Deformed shape obtained by experiment; (b) Deformed shape obtained by simulation.

The experimental and simulated values of the positions of the apex point A of the wrinkles
(Figures 5, 6 and 8) in the different symmetrical bending cases presented in Section 4 are compared in
Table 4.

Experimental and numerical values are comparable although there are some differences. However,
it should be noted that even though the bending and wrinkling experiments are repeatable, they are
nevertheless subject to a certain amount of dispersion, which may explain some of the differences.
Table 5 presents the experimental values of the height hAA′ of the wrinkle at apex point A in the case of
the experiment shown in Figure 5. (Symmetrical bending of a stack of ten plies of Hexcel G1151®).
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The three values of hAA′ given in this table have been measured for three different tests. The dispersion
is less than 5% and is of the same order of magnitude as the differences between the experimental and
numerical values. The dispersion in the other tests is of the same magnitude.

Table 5. Measure of the height hAA′ of the wrinkle at apex point A for three different tests (mm).

Test 1 Test 2 Test 3

Experiment hAA′ 44.6 46.2 45.3

The choice of the number of elements (Table 2) in the model is based on a compromise between
the precision and the good description of the shape of the wrinkles susceptible to develop on
the one hand and the calculation time on the other hand. The simulations take into account the
geometrical non-linearities and the frictional contacts are numerous, especially in the 100-layer laminate.
The number of elements used and specified in Table 2 are minimal while still allowing a good description
of the wrinkles. Figure 9 shows the result of a simulation of a symmetrical bending with a lower
number of elements (240 elements in Figure 9a instead of 480 elements in Figure 9b). The mesh in
Figure 9a is too coarse for this case and the wrinkles are not correctly described.

Materials 2020, 13, x FOR PEER REVIEW 8 of 17 

 

Table 4. Comparison of the experimental and numerical height hAA’ of the wrinkle at apex A (mm). 

  Figure 5 Figure 6 Figure 8 
Experiment hAA’ 44.6 42.8 46.6 
Simulation hAA’ 45.6 40.1 44.7 

Experimental and numerical values are comparable although there are some differences. 
However, it should be noted that even though the bending and wrinkling experiments are repeatable, 
they are nevertheless subject to a certain amount of dispersion, which may explain some of the 
differences. Table 5 presents the experimental values of the height hAA’ of the wrinkle at apex point A 
in the case of the experiment shown in Figure 5. (Symmetrical bending of a stack of ten plies of Hexcel 
G1151®). The three values of hAA’ given in this table have been measured for three different tests. The 
dispersion is less than 5% and is of the same order of magnitude as the differences between the 
experimental and numerical values. The dispersion in the other tests is of the same magnitude. 

Table 5. Measure of the height hAA’ of the wrinkle at apex point A for three different tests (mm). 

 g Test 1 Test 2 Test 3 
Experiment hAA’ 44.6 46.2 45.3 

The choice of the number of elements (Table 2) in the model is based on a compromise between 
the precision and the good description of the shape of the wrinkles susceptible to develop on the one 
hand and the calculation time on the other hand. The simulations take into account the geometrical 
non-linearities and the frictional contacts are numerous, especially in the 100-layer laminate. The 
number of elements used and specified in Table 2 are minimal while still allowing a good description 
of the wrinkles. Figure 9 shows the result of a simulation of a symmetrical bending with a lower 
number of elements (240 elements in Figure 9a instead of 480 elements in Figure 9b). The mesh in 
Figure 9a is too coarse for this case and the wrinkles are not correctly described.  

 
(a) (b) 

Figure 9. Symmetrical bending of a stack of ten plies of Hexcel G1151®. Comparison of the result of 
the deformed shape obtained when using (a) 240 and (b) 480 three node shell elements. 

Figure 10 displays, in the case of symmetrical bending, the values of the bending moments and 
the curvatures in the lower ply for which the wrinkling is greatest. The maximum curvature is in the 
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Figure 9. Symmetrical bending of a stack of ten plies of Hexcel G1151®. Comparison of the result of
the deformed shape obtained when using (a) 240 and (b) 480 three node shell elements.

Figure 10 displays, in the case of symmetrical bending, the values of the bending moments and
the curvatures in the lower ply for which the wrinkling is greatest. The maximum curvature is in the
vicinity of the edge and is 0.04 mm−1, i.e., a radius of curvature of 25 mm.
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Figure 10. Symmetrical bending of a stack of ten plies of Hexcel G1151®. Bending moments and the
curvatures in the lower ply.

5. L-Flange Forming

This section describes laminates of 10 layers of G1151 and 100 paper layers formed into an L-flange
(Figures 11–13) [84–88]. The displacements of the right end are imposed. The right end of the laminate
was rotated 90◦ while the left end is kept horizontal, leading to an L-shape as shown in Figures 12
and 13. The value of the prescribed displacement at this right end is shown in Figure 11. On the left
end a load is imposed. The effect of the magnitude of the load is analysed in the present section.
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Figure 12. L-Flange forming. Initial state and prescribed rotation and displacements. L-Flange forming
of a stack of ten plies of Hexcel G1151®. (a) L-Flange forming with a 1 N load on the left end. Experiment
and simulation; (b) L-Flange forming with a 10 N load on the left end. Experiment and simulation;
(c) L-Flange forming with a 20 N load on the left end. Experiment and simulation.
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Figure 13. L-Flange forming of a stack of 100 layers of papers with comparison of the experimental
and numeric bevel. (a) L-Flange forming with a 1N load on the left end. Experiment and simulation;
(Zoom on the bevel at left end); (b) L-Flange forming with a 10 N load on the left end. Experiment and
simulation; (c) L-Flange forming with a 20 N load on the left end. Experiment and simulation.
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The influence of the compaction force applied at the left end was studied. When this load was
almost zero (Figures 12a and 13a), the layers of the stack could slip relative to one another and a bevel
developed at the free end of the laminate. This bevel was due to the difference in the inner and outer
radius of the L-flange and the length of the layers, which remained constant. In this case, with zero
compaction load, the L-flange forming could be carried out without wrinkling. Figure 13a shows that
the bevel angle in the case of the stack of 100 layers of paper was close to 30◦. When the compaction
force at the left end increased (10 N, Figures 12b and 13b), wrinkles developed in the horizontal part of
the laminate. The bevel became partial and only affected the lower part of the stack. There was no
more slippage between the plies in the upper part of the stack, which caused wrinkles to form due to
the constant length of the layers.

As can be seen in Figures 12c and 13c, the compaction force at the left end was sufficient to clamp
the stack at least partially. The force increases to, F = 20 N, there was a very small relative slippage of
the plies, there was no longer any bevel and the wrinkling became significant.

These tests confirmed that the L-flange forming of a laminate led to significant wrinkling if both
ends were blocked. In order for the L-flange forming to prevent wrinkling, it is necessary that one end
of the laminate creates a bevel. The simulations of the L-flange forming shown in Figures 9 and 10
accurately described all aspects of both wrinkle formation and the total or partial development of the
bevel. A simulation of the forming using the stress resultant shells presented in Section 3 proved to be
a suitable tool to determine whether or not the forming conditions would lead to wrinkling.

Table 6 compares the experimental and simulated values of the positions of the apex point B of
the wrinkles (Figures 12 and 13) after L-flange forming presented in Section 5.

Table 6. Comparison of the experimental and numerical position of the apex point B (X, Z) and height
hBB′ of the wrinkle after L-Flange forming (mm).

Figure 12b Figure 12c Figure 13b Figure 13c

Experiment B (78.5, 27.4) (73.1, 31.6) (93.4, 20.5) (90.9, 31.9)
Simulation B (78.2, 26.3) (75.1, 30.1) (88.9, 22.9) (83.0, 31.0)

Experiment hBB′ 27.4 31.6 20.5 31.9
Simulation hBB′ 26.3 30.1 22.9 31.0

6. Bending after Buckling

This section analyses the bending of a laminate after global buckling. In this test, a first step
consisted of buckling the stack of 100 paper layers due to imposed horizontal displacements of the
ends (Figure 14a,b). In a second step, the laminate was bent by the rotation of the ends. Two cases were
considered: in Figure 14c,e, the bending was symmetrical with end rotations of 45◦ each. Wrinkles
developed because the ends of the stack were clamped. Two wrinkles appeared symmetrically on the
left and right sides of the laminate. It can be noted that although the bending was symmetrical (rotation
of 45◦ at each end), the fact that the rotation took place after the global buckling led to a different type
of wrinkling than the one obtained in Section 4 (Figure 6). In the second case (Figure 14d,f), only the
left end was rotated 45◦. A single wrinkle developed on the right side of the laminate. Figure 14e,f
show the simulation results of these two cases. They were in good agreement with the experiments.

Table 7. compares the experimental and simulated values of the positions of the point C, D, E and
F apex of the wrinkles (Figure 14c,e) after bending after buckling.

Table 7. Comparison of the experimental and numerical position of the points C(X, Z), D(X, Z), E(X, Z),
F(X, Z) and height of the wrinkle after bending after buckling (mm).

Position C Position D Position E Position F hCD hEF

Experiment (−32.4, 50.8) (−51.8, 33.7) (28.1, 54.6) (50.8, 33.8) 26.2 31.3
Simulation (−30.2, 50.0) (−51.0, 33.3) (30.8, 52.0) (50.4, 33.4) 27.0 26.4
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Figure 14. (a) Initial position; (b) First step: global buckling; (c) Second step symmetrical bending; (d) 
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side: simulation. 

Table 7. Comparison of the experimental and numerical position of the points C(X, Z), D(X, Z) E(X, 
Z), F(X, Z) and height of the wrinkle after bending after buckling (mm). 

g Position C  Position D Position E Position F hCD hEF 
Experiment  (−32.4, 50.8) (−51.8, 33.7) (28.1, 54.6) (50.8, 33.8) 26.2 31.3 
Simulation  (−30.2, 50.0) (−51.0, 33.3) (30.8, 52.0) (50.4, 33.4) 27.0 26.4 

Figure 14. (a) Initial position; (b) First step: global buckling; (c) Second step symmetrical bending;
(d) Second step: rotation of a single side; (e) Symmetrical bending: simulation; (f) Rotation of a single
side: simulation.

Table 8 compares the experimental and simulated values of the positions of the point G and H
apex of the wrinkles (Figure 14d,f) after buckling and rotation of a single side presented in Section 6.

Table 8. Comparison of the experimental and numerical position of the point G(X, Z) and H(X, Z) and
height of the wrinkle after buckling and rotation of a single side (mm).

Position G Position H hGH

Experiment (49.9, 48.6) (62.3, 24.4) 28.5
Simulation (52.9, 50.3) (66.2, 27.6) 26.4

7. Remarks and Conclusions

The thick laminate bending experiments presented in this article showed significant wrinkling
and ply separation due to the excess length of certain plies. Simulations of these cases based on stress
resultant shell elements specific to textile reinforcements provided results in good agreement with the
experiments for large ply numbers (100 plies). It was found to be a simulation tool that could analyse
the influence of the parameters and select them for wrinkle-free manufacturing. Several remarks can
be made:

The various tests presented were similar, but the wrinkles that developed differed in appearance.
In particular, the symmetrical bending described in Section 4 and the bending after buckling presented
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in Section 6 both subjected the laminate to a 45◦ rotation of both ends. However, the wrinkle types
were not the same. This was due to the non-linearities with regard to geometry and contact causing
the pre-buckling (described in Section 6) to lead to two zones of wrinkling while only one developed
in the case put forward in Section 4.

The experiments and simulations presented were quite consistent and characteristic of a
given situation.

From the point of view of real production, the analyses presented show that the simulation of
wrinkling during a folding operation is possible with numerical models of acceptable complexity for a
number of plies that can be significant. From the point of view of the laminate quality, wrinkles are not
acceptable. Simulations such as those presented above should be used to define the conditions of the
manufacturing process to avoid these wrinkles.

If we consider the bending laminates as a single shell for the whole laminate (modelling with a
single shell in the thickness), the position of the normals in the set of deformed configurations (plotted
the different figures of the article) corresponded neither to Kirchhoff’s theory nor to Mindlin’s theory,
thus confirming [57,61].

In this article, only the effect of excess fibre length induced by bending was considered. This is
an important phenomenon that can lead to major defects. Nevertheless, there exist many potential
sources of defects during the manufacturing of a composite of which the main ones are listed in [27].
For a given process it will be necessary to model all those that are likely to occur.

Only dry plies (without resin) were considered. This is the case for LCM processes where the
resin is injected after the forming of a preform. However, a large part of composites are made by
draping thermoset or thermoplastic prepregs and the resin plays an important role in possible defects
of the process.
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