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Abstract: Polyethylene is used as a traditional shielding material in the nuclear industry, but still
suffers from low softening point, poor mechanical properties, and difficult machining. In this
study, novel boron carbide polyether-ether-ketone (PEEK) composites with different mass ratios
were prepared and tested as fast neutron absorbers. Next, shielding test pieces with low porosity
were rapidly manufactured through the fused deposition modeling (FDM)-3D printing optimization
process. The respective heat resistances, mechanical properties, and neutron shielding characteristics
of as-obtained PEEK and boron carbide PEEK composites with different thicknesses were then
evaluated. At load of 0.45 MPa, the heat deformation temperature of boron carbide PEEK increased
with the boron carbide content. The heat deformation temperature of 30% wt. boron carbide PEEK
was recorded as 308.4 ◦C. After heat treatment, both tensile strength and flexural strength of PEEK and
PEEK composites rose by 40%–50% and 65%–78%, respectively. Moreover, the as-prepared composites
showed excellent fast neutron shielding performances. For shielding test pieces with thicknesses
between 40 mm and 100 mm, the neutron shielding rates exhibited exponential variation as a function
of boron carbide content. The addition of 5%–15% boron carbide significantly changed the curvature
of the shielding rate curve, suggesting an optimal amount of boron carbide. Meanwhile, the integrated
shielding/structure may effectively shield neutron radiation, thereby ensuring optimal shielding
performances. In sum, further optimization of the proposed process could achieve lightweight
materials with less consumables and small volume.
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1. Introduction

With the increasing use of nuclear energy in various sectors [1], growing concerns about radiation
safety and protection issues are being considered [2–4]. Neutron radiation generated by nuclear
reactors and accelerators poses a huge threat to humans and electronic components as it can strongly
penetrate biological bodies and electronic devices [5]. Traditional neutron shielding materials include
concrete and water, in which concrete possesses better shielding properties [6–8], but is not convenient
for moving from one spot to another. By comparison, water contains H, which makes it an excellent
neutron attenuation body, but might negatively impact the overall mechanical properties. Moreover,
nuclear reactors with miniaturized sizes and lightweight fashion have been developed [9]. However,
smaller reactors require much higher levels of nuclear fuel [10], leading to much more released heat
during combustion [11]. Hence, the development of nuclear radiation protection materials with
improved shielding protection, but limited volume, structure, and high-temperature environment has
become an important and urgent task.
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As one promising and significant ceramic material [12], boron carbide stands out with its
extraordinary properties [13,14], such as ultra-high hardness (Mohs hardness of 9.36 and microhardness
of 55 GPa to 67 GPa) [15], less density (2.52 g/m3), high melting point (2350 ◦C), high boiling point
(3500 ◦C), high temperature strength, as well as good chemical stability without reacting with
strong acids or alkali solutions. In addition, boron carbide has been widely applied in the national
defense industry [16,17], nuclear industry, and other fields [18–20], on account of its high chemical
degree, neutron absorption, wear resistance, and excellent semiconductor conductivity. In view of its
outstanding properties, boron carbide is usually used to produce bullet-proof materials; nozzles for
guns and cannons; and the essential components of nuclear reactors, such as the control rods, accident
rods, safety rods, plates, or neutron absorbers [21]. Furthermore, combined with cement [22], it is also
used for the nuclear shielding body, which is the most important functional element second only to
the nuclear fuel elements. Boron is an excellent neutron absorber with high neutron capture cross
section [23–26], excellent corrosion resistance, and no produced radioisotopes. Boron polymers are
effective neutron shielding materials [27–29], thereby widely used in control rods of reactors and rocket
fuel. In particular, a high boron content makes boron carbides important neutron-absorbing materials
in the nuclear industry [30].

Light elements like H could effectively shield fast neutron radiation thanks to their scattering
power. Thus, polyethylene with a high H content has long been utilized as a neutron shielding
material [31]. With a melting point of 130 ◦C and a relative density of 0.941 to 0.960 g/cm3, polyethylene
possesses good chemical stability and good resistance to heat, cold, and environmental stress cracking.
Polyethylene molds around 140 to 220 ◦C, and possesses excellent corrosion resistance and electrical
insulation. In addition, with less water absorption, polyethylene also has good electrical properties
and radiation resistance [32–36]. However, as polyethylene is pressure-sensitive, injection under high
pressure during molding is needed [37]. In the process of injection, it is crucial to ensure the uniformity
of material temperature. In the meantime, the heating time should not be too long, for long-time
hearing may give rise to the decomposition of polyethylene. Compared with other plastic materials,
polyethylene is relatively soft, lightweight, and transparent. More importantly, polyethylene is
non-toxic [38], so it is harmless to the human body. Although the mechanical properties of polyethylene
are general, such as low tensile strength and poor creep resistance, it demonstrates good impact
resistance [39]. Polyethylene can be mainly divided into linear low-density polyethylene (LLDPE),
low-density polyethylene (LDPE), and high-density polyethylene (HDPE). In terms of impact strength,
LDPE > LLDPE > HDPE, and in terms of mechanical properties, LDPE < LLDPE < HDPE. Thereby,
HDPE has excellent physical and mechanical properties, but it is difficult to be processed in extruder
owing to its long and tangled molecular chain; extremely high melt viscosity [40,41]; decomposition after
heating; and extreme insensitivity to thermal shear stress, which may result in shear fracture. On the
other hand, boron carbide (B4C) polyethylene (PE) composite has demonstrated excellent performance
in shielding neutron radiation owing to the presence of high H content in polyethylene [42–44].
However, polyethylene is difficult to use in real applications owing to its low melting point, weak heat
resistance (softening at 110 ◦C), weak mechanical strength, and poor radiation corrosion resistance [45].
Neutron shielding requires particularly high-temperature resistant polymer matrices, where epoxy
resin or rubber have been used as matrices, but cannot endure temperature above 170 ◦C [46]. Therefore,
the development of novel high-temperature-resistant materials with improved neutron shielding
properties is highly desirable. With 143 ◦C glass transition temperature (Tg) and 334 ◦C melting
point, polyether-ether-ketone (PEEK) can achieve 48% maximum crystallinity [47–49]. The density in
amorphous state is 1.265 g/cm3, while in maximum crystallinity state, its density is 1.32 g/cm3. Thanks
to its low density, PEEK is adopted instead of steel to achieve light weight in aerospace [50]. Moreover,
its crystal structure means it possesses excellent heat resistance and mechanical properties [51–54].
It can be used at 250 ◦C for a long time, and its instantaneous temperature can reach 300 ◦C, and even
at 400 ◦C, it can endure a short period without decomposition. Compared with other high temperature
resistant plastics [55,56], such as polyimide (PI), polyphenylene sulfide (PPS), polytetrafluoroethylene
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(PTFE), and polyphenylene oxide (PPO), the upper temperature limit of PEEK is nearly 50 ◦C higher
than that of other plastics. With great rigidity, good dimensional stability, and small linear expansion
coefficient, PEEK is very close to aluminum. With excellent corrosion resistance similar to nickel
steel [57], PEEK can only be dissolved or destroyed by concentrated hydrochloric acid. It is also
flame-retardant, and even in flame conditions, it releases less smoke and toxic gases. With good
radiation resistance, it possesses the best fatigue of alternating stress among all plastics [58–61], which
is close to alloy materials. Most significantly, high wear resistance and low coefficient of friction at
250 ◦C enable PEEK to be used as a military material in the manufacture of various aircraft parts for
aerospace applications, for PEEK can largely replace other metal materials such as aluminum. Among
electromagnetic radiation resistant aromatic hydrocarbon polymers without halogen elements, PEEK
has been shown to be useful as insulating cable material with excellent mechanical properties [62],
good thermal and chemical stability, and superior abrasion resistance. However, its high melting point
and low melting index render its processing more challenging and expensive. So far, PEEK and its
composites have widely been used in aerospace, electronics, and power and medical equipment [63–67].
However, their usage in nuclear shielding is limited, partly owing to their high cost and difficult
processing [68].

For instance, Okuno et al. processed shielding protection materials using two methods [69].
The first consisted of high-temperature injection mold and the second was based on film pressure
on thin layer resin films. For materials with complex structures and low melting indexes, shark skin
disease could be induced on surfaces of bulk of processed products, often caused by frequent melt
fracture during processing [70]. Furthermore, the whole processing could last longer periods, and be
characterized by defects and difficulties.

Recently, 3D printing (additive manufacturing) based on fused deposition modeling (FDM)
has gained worldwide popularity in various industries owing to its rapid manufacturing [71–73],
integrated design and manufacturing, high material utilization, and suitability for molding of complex
microstructures [74]. However, no relevant literature dealing with FDM-based manufacturing and
processing of nuclear protection equipment has so far been published.

In this paper, a new type of shielding PEEK composites was developed. Screw extruder was
adopted for palletization and extrusion, and 3D printing (FDM) was used to manufacture protection test
pieces with different sizes, contents, and structures. The heat deformation temperatures, mechanical
properties, and shielding performances of the as-obtained composites were all evaluated and the
results were discussed.

2. Experimental

2.1. Material Preparation

Boron carbide powder (Dunhua Zhengxing Abrasive Co., Ltd., Jilin, China) at different weights
(G50 = 1.2 µm) and polyether-ether-ketone (PEEK, VICTREX, 450PF, Lancashire, United Kingdom)
were subjected to vacuum drying, mixing, air dispersion, screw granulation, and extrusion to yield
boron carbide PEEK composites with different boron carbide contents (10%, 20%, and 30%). The test
pieces were produced by FDM (Figure 1).
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Figure 1. (a) Preparation of new shielding materials, (b) fused deposition modeling (FDM) special
material of boron carbide polyether-ether-ketone (PEEK) composites, and (c) FDM processing
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2.2. Shielding Process

After preparation of boron carbide PEEK shielding materials with different contents, heat treatment
was carried out in a nozzle to a semi-flow state for covering, which then covered the previous layers
along the pre-designed path and filling mode. Next, rapid cooling and solidification were performed
under air or water cooling, where the extruded wire was bonded to the surrounding materials. The test
pieces were fabricated by self-developed high-temperature 3D printer (Figure 1c), assembled at the
Xi’an Jiaotong University. To prevent deterioration in shielding performance, reduction in voids, or
increase in void ratio, the whole 3D printing processing of pieces was explored.

During the shielding of test bodies, the final print quality would mainly be affected by the nozzle
temperature, diameter of print nozzle, nozzle speed, width of filling line (line width), and overlapping
ratio of the filing lines (line-to-line overlapping ratio). Figure 2a1, b1, and d1 used the same materials
with 10% wt. boron carbide PEEK and Figure 2c1 used the materials with PEEK. Because the nozzle
temperature was insufficient and the nozzle speed was too fast, a great number of voids were formed
in the small filling line space (Figure 2a1).
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Figure 2. Surface structure diagrams of 3D printing (FDM) test pieces. (a1) and (b1) Unqualified
test pieces. (c1) and (d1) Qualified test pieces. (a2), (b2), (c2), and (d2) Light microscopic images
corresponding to (a1), (b1), (c1), and (d1), respectively.

Besides, with large line-to-line overlapping ratios, the materials at line junction overflowed
after melting (Figure 2b1). As the nozzle plane was affected by the interface, the increase in moving
resistance and delay in movement trajectory may lead to misalignment (Figure 2b1). The qualified test
pieces mean the test pieces that possess a smooth surface without many holes, which would better
fit with Figure 2c1,d1. By comparison, unqualified test pieces were those presented in Figure 2a1,b1.
The experimental specific processing parameters could be summarized as follows:

• In Figure 2a1: nozzle temperature = 410 ◦C, diameter of print nozzle = 0.4 mm, nozzle speed =

80 mm/s, line width = 0.4 mm, and line-to-line overlapping ratio = 0.
• In Figure 2b1: nozzle temperature = 425 ◦C, diameter of print nozzle=0.4 mm, nozzle speed =

20 mm/s, line width = 0.4 mm, and line-to-line overlapping ratio = 50%.
• In Figure 2c1: nozzle temperature = 410 ◦C, diameter of print nozzle = 0.4 mm, nozzle speed =

20 mm/s, line width = 0.4 mm, and line-to-line overlapping ratio = 10%.
• In Figure 2d1: nozzle temperature = 425 ◦C, diameter of print nozzle = 0.4mm, nozzle speed =

20 mm/s, line width = 0.4 mm, and line-to-line overlapping ratio = 15%.

The respective photomicrographs of shielding test pieces in Figure 2a1, b1, c1, and d1 are provided
in Figure 2a2, b2, c2, and d2, respectively. The different brightness levels of filling lines on the same
plane would reflect the smoothness degree of surface structure of each test piece under light microscopy.
Accordingly, the presence of lines with different brightness levels on the planes (Figure 2a2,b2) indicated
non-smooth surface test pieces. By comparison, the surface of each test piece in Figure 2c2,d2 looked
smooth because no obvious differences in brightness levels of the planes were observed. On the other
hand, the particles marked with red lines (Figure 2d2) were identified as boron carbide induced by
agglomeration during the experiment instead of the regular forming process. The reason for this had to
do with boron carbide ultra-fine powders (G50 = 1.2 µm) possessing high chemical bonding activities
(such as hydrogen bonding), which would facilitate agglomeration of particles during experiments.

Melt flow index measurements were performed to evaluate the viscoelastic properties as a
necessary characteristic in shaping process operations. Figure 3 presents the change in melt flow index
of four materials as a function of temperature under 5000 g weight pressure. In Figure 3, the melt
flow indices of all four kinds of materials increased with temperature under the same weight pressure.
The matrix PEEK reached the peak melt flow index at about 440 ◦C. Afterward, the melting index
decreased slightly owing to the melting point of PEEK (343 ◦C). As temperature rose further, PEEK
was carbonized into carbides, hindering the melting flow and reducing the melt flow index.
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Meanwhile, the nozzle diameter became smaller than the original as excessive carbides were
generated and gathered around the nozzle, thereby affecting the line width. Therefore, appropriate
temperatures can ensure unobstructed materials without forming new impurities. As the melting point
of boron carbide is 2350 ◦C, it would disperse as solid particles in the matrix PEEK at temperatures
below 2350 ◦C. In Table 1, the volume ratio increased with the mass ratio of boron carbide in the
composites. This could exert a negative impact on melt fluidity of carbon fiber. The melting indices
of the materials were measured according to GB/T 3682-2000 standard [75]. Note that melting index
refers to the fluidity value of thermoplastic materials during processing. According to GB/T 3682-2000
standard, thermoplastic materials were first melt into fluid within 10 min at a predetermined pressure
and temperature. The mass (g) flowing through the circular tube with 2.095 mm in diameter was
then measured as the melting index. Note that the melting index value was proportional to the
material fluidity. In other words, larger values would induce greater fluidity, and vice versa. However,
excessively large fluidity values would render the fluid after the melting process more difficult to
shape when passing through the nozzle, while materials with extremely low fluidities may lead to
clogging in the nozzle, limiting their passage through time.

Table 1. Fused deposition modeling (FDM) temperature parameters of boron carbide polyether-ether-
ketone (PEEK).

Composites Name Volume Ratio of Boron
Carbide (vol.%)

Melting Index
(g/10 min)

Printing temperature
(◦C)

PEEK 0 13.00 410 ◦C
10% wt. Boron Carbide

PEEK 5.62 11.00 425 ◦C

20% wt. Boron Carbide
PEEK 11.81 10.40 435 ◦C

30% wt. Boron Carbide
PEEK 18.67 9.80 440 ◦C
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In Table 1, the corresponding volume ratio increased with boron carbide content owing to the
presence of boron carbide particles in the composites. On the other hand, the melting index of each
composite decreased with boron carbide content at the same temperature (Figure 3). At load of 5000 g,
PEEK melting index of 13 g/10 min, and temperature of 410 ◦C, PEEK was successfully extruded without
carbonization or clogging in the nozzle. Using good fluidity composites, less PEEK carbonization, and
a low blocking nozzle rate, the melting indices of 10% wt., 20% wt., and 30% wt. boron carbide PEEK
were set to 11 g/10 min at a printing temperature of 425 ◦C, 10.4 g/10 min at 435 ◦C, and 9.8 g/10 min at
440 ◦C, respectively.

Here, 10% boron carbide PEEK composite with wire diameter of 1.75 ± 0.05 mm was used in the
experiments (Figure 4).
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Figure 4. Relationship between the overlapping ratio of filling lines with density.

During processing, a 3D printer with nozzle diameter of 0.4 mm, nozzle temperature of 425 ◦C,
movement speed of 20 mm/s, and line width of 0.4 mm was employed for processing. The corresponding
density was calculated under different overlapping ratios of filling lines. Note that overlapping ratios
of 5% to 15% induced densities of 98% to 99.2%.

Figure 5a illustrates a light micrograph diagram of the test piece surface at filling line overlapping
ratio of 2% (0.008 mm). The filling lines looked clear with paddings in between the lines. In Figure 5b,
the surface of test pieces tended to uniform planes with a flat surface at an overlapping ratio of 15%
(0.06 mm). Moreover, in Figure 5c, large amounts of overflow occurred at the junction of filling lines
and overlapping ratio of 50% (0.2 mm). Excess material accumulated on the surface, leading to an
uneven surface. Therefore, the printing of the next layers generated many holes. Furthermore, high
temperature accelerated carbonization, thereby inducing more impurities and a large numbers of air
holes in printed samples. This, in turn, reduced the quality of test pieces. All test pieces in Figure 5a–c
contained 10% wt. boron carbide PEEK.
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Test shielding neutron cylinders with 55 mm in diameter are shown in Figure 2c1,d1, and the
PEEK shielding neutron test piece was presented in Figure 2c1. For FDM processing of the boron
carbide PEEK/PEEK composites with a 0.4 mm diameter nozzle (Table 2), the nozzle speed was set to
20 mm/s and the diameter of print nozzle (line width) was 0.4 mm. Its line-to-line overlapping ratio of
PEEK was 10%, and that of PEEK composites was 15%. The respective nozzle temperature of PEEK,
10% boron carbide PEEK, 20% boron carbide PEEK, and 30% boron carbide PEEK was fixed at 410 ◦C,
425 ◦C, 435 ◦C, and 440 ◦C, respectively.

Table 2. FDM processing parameters of boron carbide PEEK.

Composites
Name

Nozzle
Temperature

(◦C)

Nozzle Speed
(mm/s)

Diameter of
Print Nozzle

(mm)

Line Width
(mm)

Line-to-Line
Overlapping

Ratio

PEEK 410 20 0.4 0.4 10%
10% wt. Boron
Carbide PEEK 425 20 0.4 0.4 15%

20% wt. Boron
Carbide PEEK 435 20 0.4 0.4 15%

30% wt. Boron
Carbide PEEK 440 20 0.4 0.4 15%

2.3. Analysis and Testing

2.3.1. Permeability Test and Void Ratio of Boron Carbide PEEK

The density of each test piece was measured by the drainage method, requiring dry test samples
without absorbed water. Consequently, water absorption of both PEEK and boron carbide PEEK
composites was analyzed. After drying at 150 ◦C for 10 h, PEEK, 10% wt. boron carbide PEEK,
20% wt. boron carbide PEEK, and 30% wt. boron carbide PEEK were separately immersed in purified
water for 10 min followed by drying by filter paper and air stream. The moisture of wire materials
before and after soaking was evaluated by a moisture meter for 20 min. Figure 6 displays the water
absorption profiles of boron carbide PEEK composites. Soaked and unsoaked specimens demonstrated
no significant differences in water content. Thus, the drainage method could feasibly be used to test
the densities of PEEK and boron carbide PEEK composite.
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The theoretical density of PEEK composites can be calculated by Equation (1). The ratio of actual
density of test pieces measured by the drainage method to the theoretical density would present the
compactness criteria.

ρ = m
V1+V2

=
mρ1ρ2

mρ2+mρ1
=

mρ1ρ2
ηmρ2+(1−η)mρ1

=
ρ1ρ2

ηρ2+(1−η)ρ1
=

ρ1ρ2
η(ρ1−ρ2)+ρ1

(1)

where m is the total material mass after compositing (in g), ρ1 is the reinforcing material density
(in g/cm3), ρ2 is the matrix material density (in g/cm3), ρ is the composite material density (in g/cm3),
and η is the mass ratio of composite materials. V1 represents the volume of reinforcing material
(in cm3), and V2 is the volume of matrix material (in cm3).

With 100% compactness (Table 3), the matrix PEEK was filled with melted powder without the
formation of bubbles. The compactness of the composite material decreased with mass of boron carbide
owing to slight agglomeration of boron carbide powders during the mixing of dry powders.

Table 3. Density and compactness of PEEK and boron carbide PEEK composites.

Composites
Name

Actual Wire
Density (g/cm3)

Theoretical Wire
Density (g/cm3)

Test Piece Density
(g/cm3)

Wire
Compactness

Test Piece
Compactness

PEEK 1.300 1.30(VICTREX) 1.294 100% 99.54%

10% wt. Boron
Carbide PEEK 1.365 1.366 1.354 99.93% 99.19%

20% wt. Boron
Carbide PEEK 1.429 1.439 1.411 99.31% 98.74%

30% wt. Boron
Carbide PEEK 1.499 1.520 1.473 98.62% 98.27%

2.3.2. Neuron Shield Platform and Shielding Performance Test Method

The samples and center of boron trifluoride detector (BF3 detector) were placed on the same
central axis and the long counter of the BF3 detector was used for counting. The collection and storage
of neutron shielding experiments and neutron shielding platform are displayed in Figure 7. The red
dot represents the Am-Be source and front surface of test pieces to shield was set 3 cm away from the
geometric center of the Am-Be neutron source. The acquisition time was programmed to 30 s at a test
voltage of 1600 V. The neutron shielding performance of composite materials was calculated according
to Equations (2) and (3):

E(%) =
C0 −Ci

C0
× 100% (2)

C0 =
n0

t0
, Ci =

ni
ti

(3)

where t0 represents the real acquisition time (s) in absence of testing pieces, ti is the real acquisition
time (s) of the ith test, n0 means the number of neutrons detected by the detector in absence of testing
pieces, ni is the number of neutrons detected by the detector in the ith test, and E represents the neutron
shielding ratio in the form of percentage. Moreover, C0 and Ci are the numbers of neutrons detected
within 1 s in non-test pieces and test pieces, respectively. E% denotes the shielding efficiency.
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3. Results and Discussion

3.1. Mechanical Properties

In Figure 8, the test piece was made by FDM according to the standards GB/T 1040.2-2006 [76] and
GB/T 9341-2008 [77]. Note that GB/T 1040.2-2006 standard represented a state-mandated test condition
used to determine the tensile properties of molding and extruded plastics through specifying the
shape, size, and number and test procedures of test pieces. In this standard (Figure 8a), the speed of
the tester used for measuring the tensile properties was set to 1 mm/min, except for dumbbell-shaped
test pieces. Besides, this standard was equivalent to ISO 527-2:1993.GB/T 9341-2008 utilized for the
determination of bending properties of plastics, issued by the General Administration of Quality
Supervision, Inspection, and Quarantine of the People’s Republic of China in 2008 then implemented
on 1 April 2009. This standard was equivalent to ISO 178:2001 and could be applied to thermoplastic
composites as it specified the dimensions, numbers, and procedures of test molding pieces. Figure 8b
displayed a test piece cuboid with 80 mm in length, 10 mm in width, and 4 mm in height as tested by
GB/T 9341-2008 standard at a speed of 1 mm/min.
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Figure 8. Mechanical properties of test pieces: (a) tensile strength test pieces and (b) flexural strength
test pieces.

The tensile strength of PEEK (before heat treatment) was estimated to be 59.29 MPa (Figure 9a).
As the mass of boron carbide was enhanced, tensile strength gradually declined. In other words,
the increase in mass of boron carbide led to a decrease in the compactness of the composite materials,
thereby influencing the printing performances. To improve the mechanical properties, the test pieces
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were first fixed and then incubated at 300 ◦C for 2 h. The tensile strengths of both matrix PEEK and
PEEK composites increased by 40%–50%.
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Figure 9. Tensile and flexural strengths of new composite shielding materials. (a) Test result of tensile
experiment and (b) test data of flexural experiments.

The flexural strength in PEEK composites reached a maximum at boron carbide content of 10%
(Figure 9b). To facilitate the agglomeration of ultrafine powders during mixing, the size of boron
carbide particle was set to G50 = 1.2 µm. The boron carbide in PEEK occupied 5.62% vol. in 10%
wt. boron carbide PEEK, 11.81% vol. in 20% wt., and 18.67% vol. in 30% wt. During the printing
process at a nozzle temperature of 440 ◦C, boron carbide was kept in its original particle form without
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melting. At boron carbide content of 0–10% wt., PEEK could tightly pull the boron carbide. At contents
exceeding 10%, the agglomeration of boron carbide increased with boron carbide content and both
proportion of PEEK and corresponding flexural strength decreased. In Table 2, the porosity of PEEK
test pieces printed by FDM reached 99.54%, and those of 10% wt., 20% wt., and 30% wt. boron carbide
PEEK attained 99.19%, 98.74%, and 98.27%, respectively. At boron carbide contents above 10% wt.,
the porosity of test pieces rose, leading to a decline in flexural strength. At contents exceeding 30%,
the flexural strength reduced rapidly as the agglomeration of boron carbide at low contents induced
little effect on the materials. That is to say that large specific gravity PEEK completely coated boron
carbide at contents below 10% after melting at 440 ◦C, but changed as boron carbide content was
further enhanced. Above 30%, PEEK did not fully immerse in boron carbide after melting, thereby
diminishing the flexural strength of obtained composite materials. After heat treatment, the flexural
strength increased from 65% to 78%. Hence, heat treatment could improve the mechanical properties
of materials.

3.2. Heat Deformation Temperature

Test pieces were made following the standard GB/T 1634.2-2004 used for temperature determination
of plastics under load application [78]. This standard was issued by the General Administration
of Quality Supervision, Inspection, and Quarantine of the People’s Republic of China and the
Standardization Administration of China on 15 March 2004 and then implemented on 1 December
2004. GB/T 1634 specifies the temperature at which test disturbance of an 80 mm × 10 mm × 4 mm
plastic cuboid piece reaches the standard deflection value under 0.45 MPa load with the increase in test
temperatures. The principle states that, under constant three-point bending load, the sample should
produce a specific bending stress in relevant parts of GB/T 1634.2-2004. Besides, the standard deflection
temperature corresponding to the specified bending strain increment should be measured under
constant temperature increasing conditions. Table 4 shows the results of heat deformation temperature
tests of polyethylene and PEEK/PEEK composite materials. The test results of injection-molding
polyethylene test pieces provided in the literature were used for comparison [79].

Table 4. Heat deformation temperature and tensile strength of PEEK/boron carbide PEEK
composites/polyethylene.

Materials Heat Deformation Temperature
(GB/T 1634.2-2004)

Tensile Strength
(GB/T 1040.2-2006)

VICTREX PEEK (FDM 3D Printing) 294.1 ◦C 75.08 MPa
10% wt. Boron Carbide PEEK (FDM 3D Printing) 304.8 ◦C 69.68 MPa
20% wt. Boron Carbide PEEK (FDM 3D Printing) 306.3 ◦C 57.40 MPa
30% wt. Boron Carbide PEEK (FDM 3D Printing) 308.4 ◦C 55.45 MPa

High-density polyethylene 2911 produced by
PetroChina Fushun Petrochemical Company

(Injection Molding) [79]
69.6 ◦C 27.10 MPa

High-density polyethylene DMDA-8008 produced
by PetroChina Dushanzi Petrochemical Company

(Injection Molding) [79]
73.7 ◦C 24.80 MPa

High-density polyethylene C430 produced by
Korea Samsung Total) (Injection Molding) [79] 63.6 ◦C 24.70 MPa

High-density polyethylene ME3500 produced by
Korea LG Group (Injection Molding) [79] 67.7 ◦C 24.50 MPa

Figure 10 presented the heat deformation temperature profiles of PEEK and boron carbide PEEK
composites at 0.45 MPa. The matrix PEEK displayed high heat deformation temperature. As boron
carbide content increased, the heat deformation temperature gradually rose owing to the small thermal
conductivity of boron carbide with little effect on the matrix material. Using GB/ T 1634.2-2004
standard, the sample produced specific bending stress in relevant parts of GB/T 1634 under constant
three-point bending load (0.45 MPa). Besides, the standard deflection temperature corresponding
to specific bending strain increment was measured under constant temperature increase conditions.
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As temperature rose to 300 ◦C, but before reaching the melting point of PEEK (343 ◦C), PEEK started
to re-crystallize [80], leading to the formation of solid glue tightly holding boron carbide. At this
point, boron carbide acted as supporting material, which led to increased bending strength. Thus,
the thermal deformation temperature of 30% boron carbide PEEK was higher than that of 20% boron
carbide PEEK, but this did not mean that the thermal deformation temperature rose with boron carbide
content. As boron carbide content was further enhanced, the corresponding PEEK content decreased
owing to the reduction in heat deformation temperature, where decreased PEEK could no longer hold
boron carbide. At this point, the incrementing trend of heat deformation temperature was only suitable
for boron carbide contents below 30%. In Table 3, the heat deformation temperature of PEEK/PEEK
composites was four- to fivefold superior to that of PE. Thus, PEEK/PEEK composites possessed better
high-temperature resistance.
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3.3. Neutron Shielding Performance

3.3.1. Mono-Layer Shielding Body Structure

FDM was employed to prepare solid filled cylindrical mono-layer shielding test pieces (55 mm in
diameter) of PEEK, 10% wt. boron carbide PEEK, 20% wt. boron carbide PEEK, and 30% wt. boron
carbide PEEK. Test pieces with the same material, but various thicknesses, namely, 20 mm, 40 mm,
60 mm, 80 mm, and 100 mm, were used for experimentation.

The fast neutron shielding process in neutron science is often accomplished in two steps: slowing
down fast neutrons via H followed by absorption of slow neutrons into boron carbide. For the Am-Be
source used in experiments (Figure 11), the majority of the shielding surface near the direct radiation
source was made of fast neutrons. Using boron carbide PEEK as new shielding material, the matrix
PEEK containing H slowed down the neutrons, thereby reinforcing boron carbide as a neutron absorber.
To ensure the same neutron radiation intensity, the test pieces were placed 3 cm away from the Am-Be
source. Boron carbide occupied 11.81% vol. in 20% wt. boron carbide PEEK, while PEEK took up
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88.19% vol. For 30% wt. boron carbide PEEK, boron carbide occupied 18.67% and PEEK took up 81.33%
vol. The shielding ratio of PEEK increased with the thickness of test pieces. Using the same thickness,
the shielding rate of PEEK composites rose with boron carbide content. Boron carbide PEEK composites
with the same content showed an enhanced neutron shielding rate with the thickness of test pieces.
Thus, PEEK and boron carbide PEEK composites were good neutron-absorbing materials. For PEEK
composites with 30% wt. boron carbide content and shielding body thickness of 100 mm, the neutron
shielding rate reached 88.24%. At shielding body thicknesses exceeding 20 mm, the neutron shielding
ratio changed exponentially with boron carbide content. At 5% wt.–10% wt. boron carbide, the slope
of the curve changed greatly, indicating a significant shielding effect. Above 10%, the slope tended to a
plateau, meaning a strong shielding effect of composites in the presence of 10% wt. boron carbide.
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It was encouraging to notice that 20% boron carbide PEEK was optimal for 20 mm shielding test
pieces. In other words, the best content of boron carbide was around 20% wt. for a shielding test
piece thickness of 20 mm. For 20 mm shielding testing body with 30% wt. boron carbide PEEK, H
content was less than 20% wt. After passing through a 20 mm 30% wt. boron carbide PEEK shielding
body, the fast neutrons can no longer slow down owing to the presence of less H element than in a
20% wt. boron carbide PEEK shielding body. Therefore, the fast neutrons would escape and cannot
be captured by boron carbide, leading to a decrease in shielding efficiency. For 0% wt. to 20% wt.
contents, the shielding ratio increased as H content reduced and boron carbide content rose. Thus,
H can effectively slow down the speed of fast neutrons. However, the neutrons largely escaped at
low boron carbide contents and boron carbide was not enough to absorb weakened fast neutrons.
Therefore, the optimal shielding plate with reasonable PEEK (H) and boron carbide content distribution
might be designed under given thickness to ensure the best shielding effect and maximum material
utilization ratio. Besides, the special shielding process of neutron radiation extended the application
fields of FDM.

The direct relationship between fast neutron shielding performance of boron carbide PEEK
composites and main influencing factors (boron carbide content, shielding piece thickness, and the



Materials 2020, 13, 2314 18 of 24

activity of the radiation source) were obtained through analysis of the data. To achieve the best
shielding effect in terms of materials and structural design under space constraints, the best boron
carbide content and optimal thickness of shielding body were simulated.

3.3.2. Double-Layer Shielding Body Structure

Figure 12 shows the respective double-layer shielding body of two composite materials with the
same thickness (80 mm). The shielding rate of the test piece with (30% + 20%) structure was similar to
that of (20% + 30%) structure. In addition, (10% + 30%) structure displayed slightly better shielding
performance than (30% + 10%). On the other hand, (0% + 30 %) structure did significantly much better
than (30% + 0%), (30% + 10%), and (30% + 20%) structures.
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shielding body during testing. 30% wt. boron carbide PEEK material with 40 mm in thickness is close
to the detector. Neat PEEK material thickness is 40 mm.

The reason for that had to do with the significant role of H and boron carbide in shielding fast
neutrons. The shielding efficiency was related to distribution of H and boron carbide played in the
test pieces. The detailed reasons were provided in Figure 13. Using the same active Am-Be source,
A, B, C, and D were employed in shielding test pieces. A and B were put in the middle parts of test
bodies at the same height, while C and D were placed on the upper surface of test bodies at the same
linear distance from the source space. Supposing (A and B) and (C and D) on the same positions,
(C and D) would share the same radiation intensity under the same source and (A and B) should share
the same neutron radiation intensity. The passage of neutrons through a shield plate of 80 mm in
thickness will induce better shielding neutron effect of the (30% + 30%) structure when compared with
(30% + 20%), as (C and D) were close to the source and most were fast neutrons. At (A and B), the fast
neutrons slowed down to become slow neutrons. After the passage of slow neutrons through the
next 40 mm shield body, the 30% wt. boron carbide PEEK absorbed more than 20% wt. boron carbide
PEEK. Moreover, 30% wt. boron carbide PEEK contained more boron carbide than 20% wt. boron
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carbide PEEK. For 80 mm (20% + 30%) and 80 mm (30% + 20%) structures, the passage of neutrons
through the first 40 mm thick layer yielded lower shielding efficiency for 20% wt. boron carbide PEEK
when compared with 30% wt. boron carbide PEEK. However, compensation occurred when neutrons
passed through the next 40 mm thick layer as 30% wt. boron carbide PEEK could absorb more neutrons
than 20% wt. boron carbide PEEK. Thus, 80 mm (20% + 30%) and 80 mm (30% + 20%) structures
presented the same shielding efficiency. Meanwhile, the shielding efficiency of 80 mm (30% + 30%)
was similar to that of 80 mm (10% + 30%) in terms of neutron shielding efficiency of the double-layer
shielding body structure (Figure 12). Both materials can shield 82.28% of neutrons. However, 80 mm
(0% + 30%) outperformed both 80 mm (30% + 0%) and 80 mm (10% + 30%) in terms of shielding
efficiency. As a result, 80 mm (0% + 30%) structure was superior to both 80 mm (30% + 30%) and
80 mm (10% + 30%) structures in terms of material utilization (reduced cost), shielding body weight,
and shielding efficiency.
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As neutron shielding is complex, the next stage was devoted to calculating the best ratio distribution
of materials and designing the optimal structure based on material distribution by nuclear shielding
simulation. However, injection molding and molding of complex geometry could only slightly cope
with different gradient contents of shielding protection. Thus, FDM was adopted as it does not require
expensive molds and limitation of the geometrical structure of shielding bodies. FDM often excels in
complex structure manufacturing with broader applications. Despite this, the method achieved good
integration prospects in design and manufacturing under optimal shielding performance in terms of
shortened processing time, reduced material waste, and minimized production costs.

4. Conclusions

A new type of Boron Carbide PEEK composites for neutron radiation shielding was prepared by
FDM processing. The resulting materials were tested and their properties were evaluated. The following
conclusions could be drawn:

(1) To reduce printing failures and improve compactness of test pieces with reduced defects,
the printing temperature of novel boron carbide PEEK composites suitable for FDM was changed
from 420 ◦C to 440 ◦ C and overlapping rate of filling lines varied from 5% to 15%.

(2) Both matrix material PEEK and boron carbide PEEK composite recorded heat deformation
temperature around 300 ◦C under load of 0.45 MPa. This solved issues brought by excessive low
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deformation temperature of polyethylene composite and led to excellent mechanical properties
of boron carbide PEEK composite after heat treatment.

(3) The shielding tests showed the novel boron carbide PEEK materials to possess excellent fast
neutron shielding performances. Shielding pieces with 100 mm in thickness and 30% boron
carbide content could absorb up to 88.24% neutrons. For thicknesses from 40 mm to 100 mm,
the neutron shielding ratio changed exponentially with the content of boron carbide.

(4) Neutron shielding composite materials and shielding structures were then produced according
to composition and structure to yield nuclear shielding materials with multiple shielding
characteristics and shielding/structure integration. In sum, FDM could be used for the design
and production of variable-structure neutron shielding bodies with excellent mechanical loading
capacities and shielding performances. Such structures should be characterized by small size,
lightweight, less consumables, and low cost.
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