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Abstract: Lipopolysaccharide (LPS) is a well-known strong inducer of inflammation. However, 
there is little information regarding how LPS-release behavior affects cellular senescence at the 
affected area. In this paper, we demonstrate that a vacuum-heating technique (dehydrothermal 
treatment) can be utilized to prepare an LPS sustained-release gelatin sponge (LS-G). LPS sustained 
release from gelatin leads to the long-term existence of senescent cells in critical-sized bone defects 
in rat calvaria. Three types of gelatin sponges were prepared in this study: a medical-grade gelatin 
sponge with extremely low LPS levels (MG), LS-G, and a LPS rapid-release gelatin sponge (LR-G). 
Histological (H-E) and immunohistochemical (COX-2, p16, and p21) staining were utilized to 
evaluate inflammatory reactions and cellular senescence one to three weeks after surgery. Soft X-
ray imaging was utilized to estimate new bone formation in the defects. The LR-G led to stronger 
swelling and COX-2 expression in defects compared to the MG and LS-G at 1 week. Despite a small 
inflammatory reaction, LS-G implantation led to the long-term existence of senescent cells and 
hampered bone formation compared to the MG and LR-G. These results suggest that vacuum 
heating is a viable technique for preparing different types of materials for releasing bacterial 
components, which is helpful for developing disease models for elucidating cellular senescence and 
bone regeneration. 
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1. Introduction 

Bacterial infection is a major obstacle to bone fracture healing [1,2] and bone-regeneration 
therapies [3]. It is a consensus that bacterial components modulate bone metabolisms. Despite the 
development of various antibacterial materials [4], antibiotic use occasionally exhibits poor 
effectiveness in terms of preventing recurrent infections [5] and implant failures [6]. Further 
elucidation of the mechanisms between chronic inflammation induced by residual bacterial 
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components and bone regeneration is crucial for preparing advanced biomaterials for bone 
regeneration therapy.  

Lipopolysaccharide (LPS), which is a typical outer-cell membrane of Gram-negative bacterial 
endotoxins, is a latent contaminant in many treatments and surgeries in the medical field [7]. In 
general, bacterial LPS consists of three key components, namely a polysaccharide shell, 
oligosaccharide regions near the core, and lipid A structures in the very center [8]. LPS exhibits high 
heat resistance, even under typical sterilization conditions [7]. LPS is a well-known stimulant that 
strongly activates immune system signals and inflammation [9]. Specifically, LPS activates M1 
macrophages, which play an important role in secreting inflammatory cytokines and generating 
reactive oxygen species [10]. Regarding bone biology, LPS stimulation promotes the formation of 
osteoclasts by increasing receptor activator of NF-kappaB ligand (RANKL) levels or directly 
stimulating osteoclast progenitor cells [11], leading to bone resorption. LPS impairs bone healing at 
the systemic administration level [9] while promoting osteoblast differentiation at low doses [12]. 
Overall, the effects of LPS on bone formation are still controversial.  

Various stresses, such as oxidative stress and inflammatory cytokines, irreversibly arrest the cell 
cycle, thereby generating stress-induced senescent cells both in vivo and in vitro [13]. LPS can induce 
DNA damage [14] and generate stress-induced primary senescent cells in vitro [15,16]. However, 
information regarding the LPS induction of senescent cells in vivo is still lacking. In general, 
biological experiments, LPS has been tested based on one-time local administration [17,18] or 
systemic administration [19–21], or based on recurrent systemic administration [22]. Few studies have 
analyzed the contribution of LPS release behaviors to host reactions, particularly for in vivo cellular 
senescence.  

It is widely recognized that the controlled release of drugs is a promising strategy for eliciting 
the full functionality of therapeutics [23]. Bioengineering approaches enable various materials to 
release drugs in a controlled manner [24]. Gelatin, denatured collagen, has been widely utilized as a 
substrate for biomaterials and drug carriers [25–27]. Various groups, including our own group, have 
utilized this protein as a controlled release carrier for polyphenol [28], growth factors, and antibiotics 
[27]. A vacuum-heating technique (dehydrothermal treatment: DHT) has been utilized to promote 
intermolecular bonding based on esterification between the carboxyl and hydroxyl groups in 
polymers [29]. Based on this background, we hypothesize that the combination of gelatin and LPS 
with or without DHT should enable us to prepare different LPS release materials for developing 
chronic inflammation models with residual LPS levels.  

In this study, we attempted to evaluate the relationships between inflammation, cellular 
senescence, and bone formation in early stages under different LPS release behaviors from the gelatin 
sponges in vivo. We prepared three different types of gelatin sponges representing distinct release 
behaviors of LPS: an LPS sustained-release gelatin sponge (LS-G), LPS rapid-release gelatin sponge 
(LR-G), and medical-grade gelatin sponge without LPS (MG) (Figure 1A). 
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Figure 1. (A) Flow chart for sponge preparation. (B) Lipopolysaccharide (LPS) release from the 
lyophilized reagent-grade gelatin sponge or LS-G over 24 h in saline. The measurement value for 
reagent-grade gelatin powder is set to 100%. (C) LPS release from medical-grade gelatin sponge 
without LPS (MG), LPS sustained-release gelatin sponge (LS-G), and LPS rapid-release gelatin sponge 
(LR-G) into saline over 24 h. Mean with standard deviation (SD) (n=3). **p < 0.01: one-way analysis of 
variance (ANOVA), Tukey–Kramer test as post hoc test. N.D. Not detected. 

2. Materials and Methods  

2.1. Materials 

Two porcine-skin-derived type-A gelatin powders, namely medical-grade gelatin RM-100 and 
reagent-grade gelatin G2500, were purchased from Jellice Co., Ltd. (Miyagi, Japan) and Sigma-
Aldrich Co. LLC. (St. Louis, MO, USA) respectively. LPS from Escherichia coli O55 was purchased 
from Sigma-Aldrich Co. LLC. 
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2.2. Lipopolysaccharide (LPS) Content Measurement 

The LPS contents of the medical- and reagent-grade gelatin in Milli-Q water were measured 
utilizing a ToxinSensor™ Chromogenic LAL Endotoxin Assay Kit (L00350, GenScript USA Inc., 
Piscataway, NJ, USA) according to the manufacturer’s instructions.  

2.3. Preparation of Gelatin Sponges 

2.3.1. Preparation of Medical-Grade Gelatin Sponge without LPS (MG) 

Medical-grade gelatin powder (100 mg) was dissolved in 10 mL of Milli-Q water at 70 °C. The 
resultant solution was poured into silicone tubes (5 mm in diameter, 7 cm in height) and stored for 
24 h at −30 °C. The tube contents were lyophilized utilizing a DC800 lyophilizer (Yamato Co., Ltd., 
Tokyo, Japan), then subjected to DHT via vacuum heating utilizing an ETTAS AVO-250NS vacuum 
dryer (AS ONE, Osaka, Japan) for 24 h at 150 °C with a gauge pressure of −0.1 MPa to obtain the MG. 
The cylindrical columns of MG were dissected indiscriminately (3 mm in diameter, 2–3 mm in 
height). The sponges were then saturated with 50 μL of saline prior to the animal experiments. 

2.3.2. Preparation of LPS Sustained-Release Gelatin Sponge (LS-G) 

Reagent-grade gelatin powder (100 mg) was dissolved in 10 mL of Milli-Q water at 70 °C. The 
following steps were the same as those for the preparation of MG. The cylindrical columns of LS-G 
were dissected indiscriminately (3 mm in diameter, 2–3 mm in height). The sponges were saturated 
with 50 μL of saline prior to the animal experiments. 

2.3.3. Preparation of LPS Rapid-Release Gelatin Sponge (LR-G) 

The dissected MG were saturated with LPS-containing saline (1.7388 EU/μL) to obtain LR-G 
(containing 12.42 EU/mg of LPS). All sponges were stored at 4 °C in the dark prior to their use. 

2.4. Characterization of Sponges 

Macroscopic observations were conducted utilizing a Canon A495 camera (CANON Inc., Tokyo, 
Japan). Field-emission scanning electron microscopy (SEM, S-4800, Hitachi, Tokyo, Japan) was 
employed to confirm the porous structures of the MG (MG is the base material of LR-G) and LS-G. 
SEM images were obtained with parameters of 5.0 kV and 10 μA. Attenuated total reflection Fourier 
transform infrared spectroscopy (IRAffinity-1S, Shimadzu, Kyoto, Japan) was used to confirm the 
chemical structures of the MG and LS-G. Data preprocessing algorithms were utilized to adjust the 
baseline measurements and eliminate noise in the spectra via smoothing. 

2.5. LPS Release Experiments from Sponges 

Gelatin sponge samples (1 mg) were placed into 1 mL of sterile saline and shaken at room 
temperature for 3 days. The LPS levels in the resulting solutions were measured utilizing a 
ToxinSensorTM Chromogenic LAL Endotoxin Assay Kit (L00350, GenScript USA Inc.) according to 
the manufacturer’s instruction.  

2.6. Implantation of Sponges 

All animal experiments were approved by the Animal Experiment Committee of Osaka Dental 
University and strictly conformed to the guidelines (Approval No. 19-03006). Sprague Dawley rats 
(male, 8 weeks old) were anesthetized prior to operation utilizing an intraperitoneal injection of a 
mixture of butorphanol tartrate, midazolam, and medetomidine hydrochloride. In the center of the 
calvaria of each rat, critical-size defects (9 mm in diameter) was created utilizing a trephine bar 
(Dentech, Tokyo, Japan). Sterile saline was added occasionally during the procedure to decrease bone 
damage. The defects were filled with 7 mg of sponge (the LR-G was weighed prior to saturation). In 
the cases of MG and LS-G, dissected sponges with 50 μL of saline were implanted in the defects. In 
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the case of LR-G, dissected MG sponges saturated with 50 μL of LPS-containing saline were 
implanted in the defects. A negative control (no-implant) group of rats had only saline added to their 
defects. The rats were divided into the following groups: 1 = No implant, 2 = MG, 3 = LS-G, and 4 = 
LR-G. A total of 36 rats were utilized for the experiments (3 rats × 12 groups, including the no-implant 
control group, for 1, 2, and 3 weeks). At 1, 2, and 3 weeks after implantation, groups of rats were 
euthanized and the treated calvaria were harvested and fixed with a 4% phosphate-buffered 
paraformaldehyde solution (FUJIFILM Wako Pure Chemical Co., Osaka, Japan) for further 
evaluation. 

2.7. Hematoxylin-Eosin Staining 

Four-micrometer-thick non-decalcified frozen sections were obtained from the fixed samples 
utilizing the Kawamoto method [30]. Thin sections were then processed via hematoxylin-eosin 
staining. Images were captured utilizing a BZ-9000 digital microscope (Keyence Co., Osaka, Japan). 
Histomorphometric analysis was conducted to calculate the thickness of tissues above the original 
bone level in the calvaria defect areas utilizing Adobe Photoshop Elements (Adobe Systems Inc., San 
Jose, CA, USA) and ImageJ (Image J 1.50i; NIH, Bethesda, MD, USA). This process was conducted as 
follows: (1) capture images by utilizing the BZ-9000 digital microscope, (2) draw a continuous curve 
along each outer side of the bone beds from end to end to mark the original bone surface utilizing 
Adobe Photoshop Elements, and (3) measure the distances from the margin vertexes of tissue to the 
original bone surfaces marked in (2) utilizing ImageJ. 

2.8. Lysate LPS-Level Test 

All tissue in the defect areas on days seven, 14 and 21 was collected and lysed in sterile saline (2 
mL). The LPS levels in the acquired solutions were measured utilizing a ToxinSensorTM Chromogenic 
LAL Endotoxin Assay Kit (L00350, GenScript USA Inc.) according to the manufacturer’s instructions. 

2.9. Immunohistochemistry Analysis 

Immunostaining was performed to observe inflammatory reactions and cell senescence. The 
sections obtained by utilizing the Kawamoto method were incubated with a Tris-HCl buffer and 
blocked with BLOXALL® Endogenous Peroxidase and Alkaline Phosphatase Blocking Solution (SP-
6000, Vector Laboratories, Burlingame, CA, USA) at room temperature. Next, incubation with 
primary antibodies (Anti-COX2/Cyclooxygenase 2 antibody (ab15191, Abcam, Cambridge, MA, 
USA), Anti P16-INK4A (10883-1-AP, Proteintech, Rosemont, IL, USA), and Anti P21 (10355-1-AP, 
Proteintech)) was conducted at 4 °C overnight and incubation with the corresponding secondary 
antibody (Alexa FlourTM 488 goat anti-rabbit immunoglobulin G (H+L); A11034, Thermo Fisher 
Scientific, Rockford, IL, USA) was conducted for 30 min at room temperature. Next, the sections were 
mounted with a ProLongTM Gold anti-fade reagent with 4',6-diamidino-2-phenylindole (DAPI; 
P36935, Thermo Fisher Scientific). After staining, the sections were observed utilizing a confocal laser 
microscope (LSM-700, Zeiss Microscopy, Jena, Germany) and the obtained images were analyzed 
utilizing ImageJ to evaluate the positive staining areas of p16 and p21 according to the following 
formula: 

 Fluorescent staining area (%) =
 p16 or p21 positive staining area 

total area of tissue 
× 100  

Three micrographs of each group were used.  

2.10. Bone Histomorphometric Analysis Utilizing Soft X-ray Imaging 

The fixed samples were evaluated utilizing soft X-ray equipment (SOFTEX: CSMW-2, Softex Co., 
Ebina, Kanagawa, Japan) operating at 20 kV with 4 mA radiation. The exposure time was 1.0 sec. 
Three rats per group were utilized for bone histomorphometric analysis. The obtained images were 
analyzed utilizing ImageJ to evaluate the area of new bone growth according to the following 
formula: 
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Bone area / total defect area (%) = radiopaque area
total area of defect 

× 100. 

2.11. Statistical Analysis 

Results are expressed as mean ± standard deviation (SD). One-way analysis of variance 
(ANOVA) was utilized to compare the mean values between groups. If an ANOVA result was 
significant, the Tukey-Kramer test was utilized as a post hoc test. All statistical analyses were 
performed utilizing Prism 8 (GraphPad Software Inc., San Diego, CA, USA).  

3. Results 

3.1. Preparation and Characterization of Sponges 

Reagent-grade chemicals have the potential to contain LPS [7]. We first verified LPS 
contamination in two types of gelatins (reagent-grade and medical-grade gelatin). The reagent-grade 
gelatin contained 12.42 ± 1.557 EU/mg of LPS and the medical-grade gelatin contained 0.001373 ± 
0.0002533 EU/mg of LPS. Remarkably, the LS-G retained its LPS better compared to the intact reagent-
grade gelatin and corresponding lyophilized sample (Figure 1B). Although the LR-G contained the 
same amount of LPS (12.42 EU/mg) as the LS-G, it released all of its LPS within 24 h in saline, whereas 
the LS-G retained its LPS (Figures 1C and S1). 

Figure 2A presents the Fourier-transform infrared (FT-IR) spectra of MG before adding the LPS-
containing saline (for LR-G) and of LS-G. The LPS peak is undetectable for both sponges, but gelatin 
peaks are visible. Both type of sponges exhibit a spongy morphology with similar pores and smooth 
surfaces (Figure 2B and C). These results suggest that there were negligible differences between the 
structures of LS-G and MG before adding the saline or LPS-containing saline prior to implantation 
into the bone defects. 

 
Figure 2. (A) Fourier transform infrared (FT-IR) spectra of sponges. (B) Macroscopic images of 
sponges. (C) Field-emission scanning electron microscopic (SEM) images of sponges. 

3.2. Inflammatory Reactions of Defects 

Figure 3A shows the implanted sponges at the operation. Seven days after the implantation of 
sponges into defects, no groups showed any obvious necrosis at the incision site and exhibited normal 
local skin conditions (Figure 3B-a and Figure S2). However, the LR-G group exhibited extraordinary 
swelling compared to the LS-G group, indicating a stronger inflammatory reaction to the implanted 
material (Figure 3B-b). The swelling was likely to be attributed to the cellular infiltrate, extracellular 
matrix (ECM) expansion or the presence of edema.  
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Figure 3. (A) Critical-sized bone defects with and without sponges. Fifteen representative pieces of 
LR-G are presented. (B-a) Vertical and (B-b) lateral macroscopic views of skin above the surgery site 
1 week after surgery. 

To confirm the host reactions at the defect sites, we stained the defects with hematoxylin and 
eosin (H-E), and cyclooxygenase 2 (COX-2) one, two, and three weeks after surgery (Figures 4 to 6 
A–C). The LR-G group exhibited thicker tissue at the defect sites compared to the other groups at 1 
week (Figures 4A,B). COX-2 is known to be associated with inflammation and the generation of 
prostaglandin endoperoxide H2 [31]. The expression of COX-2 was strong in the defects treated with 
the LR-G (Figure 4C). The results of LPS detection for the LS-G and LR-G groups reveal negligible 
differences in terms of residual LPS in the defects (Figure 4D). These results suggest that the LR-G 
induced the strongest swelling, but no significant differences in the residual LPS level at one week. 
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Figure 4. One week after operation: (A) Hematoxylin-eosin (H-E) staining and (B) quantitative 
evaluation of tissue thickness at defect sites (△ = gelatin sponge). (C) Immunohistochemistry staining 
with cyclooxygenase 2 (COX-2) and 4',6-diamidino-2-phenylindole (DAPI). (D) LPS levels in lysates 
from tissue at calvaria defects. Mean with SD (n = 3). **p < 0.01: one-way analysis of variance 
(ANOVA) with Tukey–Kramer test as post hoc test. N.D.: Not detected. 

At 2 weeks, the LS-G and LR-G groups showed no significant differences in terms of tissue 
thickness or COX-2 expression at the defect sites (Figure 5A,B,C). Residual LPS was only detectable 
in the defects of the LS-G group (Figure 5D).  
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Figure 5. Two weeks after operation: (A) H-E staining and (B) quantitative evaluation of tissue 
thickness at defect sites. (C) Immunohistochemistry staining with COX-2 and DAPI. (D) LPS levels in 
lysates from tissue at calvaria defects. Mean with SD (n = 3). *p < 0.05 and **p < 0.01: one-way ANOVA 
with Tukey–Kramer test as post hoc test. N.D.: Not detected. 

At 3 weeks, the LS-G and LR-G groups exhibited no significant differences in terms of tissue 
thickness or COX-2 expression at the defect sites (Figure 6A,B,C). Residual LPS was only detectable 
in the defects of the LS-G group (Figure 6D).  
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Figure 6. Three weeks after operations: (A) H-E staining and (B) quantitative evaluation of tissue 
thickness at defect sites. (C) Immunohistochemistry staining utilizing COX-2 and DAPI. (D) LPS 
levels in lysates from tissue in calvaria defects. Mean with SD (n = 3). *p < 0.05 and **p < 0.01: one-way 
ANOVA with Tukey–Kramer test as post hoc test. N.D.: Not detected. 

3.3. Senescent Cells in Defects 

Figure 7 presents immunohistochemical staining images and quantitative data regarding the 
senescent cells in defects 1 to 3 weeks after surgery. The p16 and p21 markers are commonly utilized 
to distinguish cellular senescence [32,33]. One week after the surgeries, there were p16- and p21-
positive cells in the defects treated with both the LR-G and LS-G, but not in the defects treated with 
the MG or without sponge implantation (Figure 7A). Senescent cells gradually decreased in the 
defects treated with the LR-G over time, whereas the LS-G retained senescent cells in the defects for 
up to 21 d (Figures 7B,C). These results indicate that both the LS-G and LR-G similarly induce 
senescent cells in defects, but with different durations. The implantation of LS-G stimulated senescent 
cells in the defects for long durations, even without severe inflammation (Figure 6C).  
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Figure 7. (A) One week, (B) 2 weeks, and (C) 3 weeks after operations: immunohistochemistry 
staining utilizing DAPI with p16 or p21 (a) and the corresponding quantitative data (b). Mean with 
SD (n = 3). *p < 0.05 and **p < 0.01: one-way ANOVA with Tukey–Kramer test as post hoc test. 

3.4. Bone Formation in Defects 

Soft X-ray imaging was utilized to evaluate bone formation in early stage in each defect (Figure 
8). First, we attempted to determine if radiopacity is a suitable marker for newly formed bone based 
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on H-E staining (Figure 8A). The radiopacity is coincident with the newly formed bone at 3 weeks 
after the surgeries. There are no obvious increments in radiopacity in the defects treated without 
sponges for up to 3 weeks. At one week, the defects treated with LS-G exhibited higher radiopacity 
than those in the other groups, while those treated with LR-G exhibited the lowest radiopacity. At 3 
weeks, the defects treated with MG and LR-G exhibited increased radiopacity, but not with LS-G 
(Figure 8C). These results clearly suggest that the residual duration of LPS in bony defects is likely to 
alter the course of bone formation.  

 
Figure 8. (A) Confirmation of bone formation utilizing representative soft X-ray images of the LR-G 
in defects at 3 weeks and H-E staining results. Upper image: soft x-ray images. White line: cutting line 
for H-E staining. Lower image: low- and high-magnification defects stained with H-E. (B) Radiopaque 
portion of each defect in the soft X-ray images. (C) Morphometric analysis to quantify radiopaque 
areas (new bone) in defects. Mean with SD (n = 3). *p < 0.05 and **p < 0.01: one-way ANOVA with 
Tukey–Kramer test as post hoc test. 
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4. Discussion 

Our results demonstrate that different LPS release behaviors not only alter inflammatory 
reactions, but also cellular senescence and bone formation in critical-sized bone defects in rat calvaria. 
The sustained release of LPS is coincident with the failure of bone formation for up to 3 weeks.   

Thus far, only a few studies have reported that gelatin can induce inflammation in host cells 
[34,35]. Similar to one previous study [7], we found that reagent-grade gelatin contains a small 
amount of LPS (much less than the lethal dose 50 (LD50)) [36]. In this study, contaminated LPS was 
readily released from intact reagent-grade gelatin when it was dissolved in saline (Figure 1B). 
Additionally, the LS-G robustly retained its LPS, which consisted of polysaccharides with numerous 
hydroxyl groups [37]. DHT can enhance the ester bonding between carboxyl and hydroxyl groups 
[29]. The dehydration condensation of carboxyl in gelatin and hydroxyl groups in LPS can occur 
following DHT, thereby altering the release behavior of LPS from LR-G and LS-G. Applying DHT to 
LPS-containing gelatin may be a viable technique for delaying LPS release and transforming the 
complex into a long-term stimulant for host cells, even in vivo.  

Pore size and porosity alter the bone-forming capabilities of biomaterials [38]. According to SEM 
observations, MG and LS-G exhibit similar pore sizes before adding an LPS-containing solution or 
saline. To the best of our knowledge, there has been little research on the relationships between 
cellular senescence and the pore sizes of biomaterials. Constricting pores leads to DNA damage in 
cells [39,40], potentially leading to the induction of cellular senescence [13]. However, we could not 
identify p16- and p21-positive cells in defects treated with the MG. These results indicate that the 
cellular senescence induced by the LR-G and LS-G must not be caused by intact pores, but by other 
stimulants in the sponges.  

LPS is believed to enhance the generation of reactive oxygen species (ROS), including H2O2 and 
O2−, resulting in oxidative stress [41,42]. Inflammation caused by the increased production of ROS 
[43,44] is likely to promote cellular senescence [13]. However, the bone defects 3 weeks after the 
surgeries in our study exhibited little inflammation at the defect sites (Figure 6). Residual LPS could 
be found only in defects treated with the LS-G. Repeated [16] or long-term [45] stimulation by LPS 
causes cellular senescence in vitro. These results may suggest that it is not extracellular reactive 
oxygen or inflammatory cytokines, but residual LPS that directly promotes cellular senescence. 

The LS-G and LR-G contained an equal amount of LPS (28.98 pg per defect). This dose is far less 
than the LD50 (3 mg/kg) [36]. Previous studies utilized 345 to 17,253 times more LPS compared to 
our doses in vivo [17,18,46], which apparently hampered bone formation [18,46]. As with these 
studies, in our study, although LR-G rereleased LPS immediately, bone formation was still delayed 
for 1 week, which might due to the temporal burst effect (inducing high dose of LPS). Meanwhile, 
the LS-G only released 1.47% of the amount of LPS released by the LR-G secreting relatively high 
dose of LPS temporarily. Regardless, the LS-G significantly attenuated bone formation for up to 3 
weeks. Guo et al. demonstrated that LPS inhibits osteoblastic differentiation via apoptosis (at 10 
ng/mL) [47]. Although we could not exclude the possibility that the low dose of LPS in the LS-G 
directly inhibited bone formation in the defects, Xu et al. reported that LPS can enhance osteoblastic 
differentiation at much higher concentration (at 500 ng/mL) [12]. The hampered bone formation 
might be occurred by different mechanism partially associated with LPS-induced senescent cells. 

This study analyzed the effects of LPS release behavior on cellular senescence and bone 
formation in critical-sized bone defects in rat calvaria. However, further evaluations should be 
conducted to identify robust relationships between LPS-induced cellular senescence and bone 
formation. First, it is still unclear how LPS-induced cellular senescence alters bone formation in 
defects. Second, elucidating the fate and quality of newly formed bones with different types of 
sponges would be very informative. Third, it is still unclear whether released- or unreleased-LPS 
from LS-G caused the cellular senescence. We may also need to clarify the differences in LPS between 
the LS-G and LR-G.  

Overall, our study demonstrated that vacuum heating techniques can be utilized to fabricate 
two distinct types of gelatin sponges for releasing LPS rapidly or gradually. Such sponges 
significantly affect inflammatory reactions, cellular senescence, and bone formation in an early stage 
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in critical-size bone defects in rat calvaria. Additionally, these two materials enabled us to determine 
that the sustained release of LPS attenuates bone formation and increases cellular senescence in vivo. 
The mechanisms determining how these senescent cells hamper bone formation are still unclear. 
However, the results suggest that the approaches for preparing different types of materials releasing 
bacterial components are likely to be helpful for developing disease models that provide an 
informative insight to design novel biomaterials for bone-regenerative therapy.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: LPS release 
from LS-G into saline over 3 days, Figure S2: (A) Vertical and (B) lateral macroscopic views of skin above the 
surgery site 1 week after surgery. 
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