

Article Enhanced magnetoelectric coupling in BaTiO₃-BiFeO₃ multilayers - an interface effect

Stefan Hohenberger ¹, Johanna K. Jochum ^{2,3}, Margriet J. Van Bael ², Kristiaan Temst ², Christian Patzig⁴, Thomas Höche⁴, Marius Grundmann ¹, and Michael Lorenz ¹

- ¹ Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstraße 5, D-04103 Leipzig, Germany
- ² Laboratorium voor Vaste-Stoffysica en Magnetisme, Celestijnenlaan 200D, B-3001 Leuven, Belgium
- ³ Heinz Maier-Leibnitz Zentrum, Lichtenbergstr. 1, D-85747 Garching, Germany
- ⁴ Center for Applied Microstructure Diagnostics, Fraunhofer-Institut f
 ür Mikrostruktur von Werkstoffen und Systemen, Walter-H
 ülse-Stra
 ße 1, D-06120 Halle, Germany
- * Correspondence: stefan.hohenberger@uni-leipzig.de

Received: 28 November 2019; Accepted: 23 December 2019; Published: 2 January 2020

Figure 1. Measurement principle of the TF 2000 HS dynamic hysteresis measurement. (**a**) triangular voltage pulse sequence, (**b**) respective *P*-*E* loops, and (**c**) respective *I*-*E* loops. The polarization *P* is calculated by integration of the measured current *I* that results from the electric field *E* change and is normalized by the electrode area *a*, where *a* is determined by optical microscopy and *E* by division of the applied voltage *V* with the total film thickness. The final, true *P*-*E* loop consists of the second half of the two measurements performed after pre-polarization pulses leading to a negative (blue) and positive (red) pre-poled state. The solid lines represent the respective second halves of the measurements and start from a oppositely polarized stat. The first halves hence contain information about the polarization changes that take place in the 1 s delay time between pre-polarization pulse and measurement pulse.

Figure 2. $2\theta - \omega$ scans for the samples of (a) the p_{O_2} series and (b) the BTO-BFO-ratio series.

Figure 3. RSM around the STO 001 ((**a**)-(**d**)) and 103 ((**e**)-(**h**)) peaks for samples R09 ((**a**),(**e**)), R07 ((**b**),(**f**)), R03 ((**c**),(**g**)), and R01 ((**d**),(**i**).

Figure 4. RSM around the STO 001 ((**a**)-(**d**)) and 103 ((**e**)-(**h**)) peaks for samples P25 ((**a**),(**e**)), P10 ((**b**),(**f**)), P05 ((**c**),(**g**)), and P01 ((**d**),(**i**)..

Figure 5. In-plane lattice constants derived from RSMs around the (103) STO substrate peaks for (**a**) the BTO-BFO ratio series, (**b**) the p_{O_2} series, and (**c**) the thickness series. The gray segmented lines in (**a**) mark the in-plane lattice constants of bulk STO (JCPDS 84-0444), BFO (pseudocubic, JCPDS 73-0548), and BTO (JCPDS 83-1880), as noted respectively.

Figure 6. TEM images from samples (**a**) R09 and (**b**) R01, (**c**) in-plane lattice parameter evolution over the first 10 monolayers of sample D48.

Figure 7. (a) *P*-*E* and b) *I*-*E* loops recorded for sample D192 at voltages from 5 V to 40 V.

Figure 8. VSM measurements for sample P25 performed at 10 K, 150 K and 300 K.

Figure 9. α_{ME} plotted against d_{dl} (black, lower scale) and p_{O_2} (red, upper log scale) for the BaTiO₃-BiFeO₃ multilayers reported in Lorenz *et al.* 2015.

Figure 10. $\alpha_{\rm ME}$ plotted against *T* for (a) the $p_{\rm O_2}$ series and (b) the $d_{\rm dl}$ series.

Table 1. List of additional samples. d_{dl} values derived from superstructure fringes in 2θ - ω scans, d_{BTO} and d_{BTO} derived from fits of XRR measurements.

sample name	$d_{\rm dl}({\rm nm})$	$d_{\rm BTO}({\rm nm})$	$d_{\rm BFO}({\rm nm})$
G6041	69.0 ± 4.0	$25.6\pm0.5^{\dagger}$	$43.6\pm0.5^{\dagger}$
G6043	44.0 ± 3.0	27.3 ± 1.3	16.3 ± 0.7
G6044	35.7 ± 0.8	27.6 ± 0.7	7.8 ± 0.3
G6045	30.0 ± 2.0	25.6 ± 1.2	3.5 ± 0.3

⁺ Values derived from TEM measurements.

 \odot 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).