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Abstract: In this work, we used the mixed solution of manganese acetate and sodium sulfate to
deposit manganese dioxide on the three-dimensional porous nickel foam that was previously soaked
in alcohol, and then the effects of solution concentrations on their capacitance properties were
investigated. The surface morphology, microstructure, elemental valence and other information of the
material were observed by scanning electron microscope (SEM), Transmission Electron Microscope
(TEM), X-ray photoelectron spectroscopy (XPS), etc. The electrochemical properties of the material
were tested by Galvanostatic charge-discharge (GCD), Cyclic Voltammetry (CV), Chronoamperometry
(CA), Electrochemical impedance spectroscopy (EIS), etc. The MnO2 electrode prepared at lower
concentrations can respectively reach a specific capacitance of 529.5 F g−1 and 237.3 F g−1 at the
current density of 1 A g−1 and 10 A g−1, and after 2000 cycles, the capacity retention rate was still
79.8% of the initial capacitance, and the energy density can even reach 59.4 Wh Kg−1, while at the
same time, it also has a lower electrochemical impedance (Rs = 1.18 Ω, Rct = 0.84 Ω).

Keywords: MnO2; precursor concentration; electrodeposition; supercapacitor; high
specific capacitance

1. Introduction

The emergence of the fossil energy crisis has forced us to use new energy sources such as wind
and solar energy. However, these energy sources are usually unstable, and it is very important to store
energy with energy storage equipment [1]. The supercapacitor has attracted a great deal of interest due
to its high power density, fast charge and discharge, and excellent cycle performance characteristics [2,3].
MnO2 is rich in content, is cheap, green and non-polluting, and has a high theoretical specific capacity
(1370 F g−1) and a wide potential window, which is considered to be one of the most attractive electrode
materials [4,5]. However, it is often difficult for MnO2 to maintain a large specific capacitance at a
high charge and discharge rate due to its low conductivity [6,7]. Synthesizing manganese dioxide with
different morphologies to obtain a large specific surface area by different methods is an effective means
to improve the specific capacitance of manganese dioxide [8–10]. Nanoflowers [11], nanorods [12],
nanospheres [8], nanowires [13] and nanotubes [14] are currently reported. The electrodeposition
method has the characteristics of being fast, simple, pollution-free and easy to control, and the prepared
material often have higher specific capacitance [15].

In addition, conventional electrode preparation methods require the incorporation of a
binder and an active material on the collector, which is detrimental to the improvement in
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electrochemical performance [16,17]. The three-dimensional porous nickel foam used as the substrate
for electrodeposition has a higher active material loading mass compared to the conventional planar
substrate, and the three-dimensional structure of the nickel foam substrate can also shorten the
ion transmission distance and provide a highly conductive network. For the electrodeposition
method, the main current research focuses on different deposition methods and different voltages and
currents [16–18], and in fact, the concentration of precursors also has a great effect on electrodeposition,
as it is necessary to study the effect of precursor concentration on electrodeposition.

In this work, we improved electrodeposition process and systematically studied the surface
morphology, microstructure and electrochemical properties of manganese dioxide thin films deposited
in different precursor concentrations by a constant voltage method. A high-performance manganese
dioxide supercapacitor was prepared at a concentration of 0.06 M by immersing alcohol before
electrodeposition to make the manganese dioxide film deposition more uniform. The MnO2 electrode
prepared in the precursor with a concentration of 0.06 M has lower charge transfer resistance (0.84 Ω),
and due to the low resistance, this electrode also has high rate performance (237.3F g−1 at a current
density of 10 A g−1) and high energy density (59.4 Wh Kg−1, 1 A g−1).

2. Experimental

2.1. Synthesis of MnO2

Ni foam (110 PPI, 350 g m−2, 1.0 mm thick, 1 × 3.5 cm−2) was employed as the substrate for MnO2

electrodeposition. A mixed aqueous solution of Mn(CH3COO)2 and Na2SO4 tetrahydrate with a
concentration of 0.06 M, 0.07 M, 0.08 M and 0.09 M, respectively, were used as a deposition precursors.
Firstly, the Ni foam was ultrasonically cleaned with hydrochloric acid, alcohol and deionized water for
5 min for the removal of possible oxides on the surface. Then the cleaned Ni foams were immersed in
alcohol for 1 min at room temperature to obtain a more uniform MnO2 film during electrodeposition,
and where Figure 1a,b shows the different SEM images, it is easy to see that Figure 1b grows more
uniformly than Figure 1a. In addition, we compare both with and without alcohol at the same charge
by using the chronocoulometry technique (Figure 1c), and found that the electrochemical performance
of the sample soaked in alcohol is better. Before the experiment, the voltage of the linear part was
selected as the experimental deposition voltage according to the linear sweep voltammetry (LSV) curve
of MnO2 electrodeposition (Figure 1d). A mixed solution of manganese acetate and sodium sulfate
with concentrations of 0.06 M, 0.07 M, 0.08 M and 0.09 M as a precursor were deposited at 0.6 V for
50 s in three-electrode system (Ag/AgCl as the reference electrode and platinum plate electrode as the
counter electrode), respectively. Subsequently, all the samples were washed with deionized water and
dried at 60 ◦C in a blower box for 12 h. The mass change ∆m before and after deposition was measured
by a high precision electronic balance.

2.2. Characterization

The morphologies and structures of the MnO2 films were characterized by emission scanning
electron microscopy (ESEM) (Zeiss ULTRA 55 SEM, 20 KV, Heidenheim, Germany) and transmission
electron microscope (TEM, FEI Tecnai G2 F20 with an accelerating voltage of 200 kV, Hillsboro, OR,
USA). TEM samples were prepared by scraping the MnO2 films out of the Ni foam matrix, dispersing
them to alcohol by ultrasonic, dropping them on copper grids and finally drying them at room
temperature. The composition of the MnO2 films was determined by X-ray photoelectron spectroscope
(XPS, Thermo Fisher K-Alpha 250xi, Waltham, MA, USA). The quality of MnO2 films were weighed by a
high-precision electronic balance (Toledo, XS205DU, d = 0.01 mg, Zurich, Switzerland), weighed 0.2 mg,
0.3 mg, 0.5 mg, 0.6 mg of MnO2 (0.06 M, 0.07 M, 0.08 M, 0.09 M), respectively. The electrochemical
performance of the MnO2 films was tested at room temperature in electrolyte of 1 M Na2SO4 by CS350
(Wuhan CorrTest Instrument Co. Ltd., Wuhan, China) electrochemical workstation with the MnO2/Ni
as the working electrode, a platinum plate as the counter electrode, and Ag/AgCl as the reference
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electrode. The specific capacitance, energy density (E) (Wh kg−1) and the power density (P) (W kg−1)
of the MnO2 at different current densities can be calculated from the constant current charge and
discharge curves according to following three Equations [19].

C =
I∆t

∆Vm
(1)

E =
1
2
×

C(∆V)2

3.6
(2)

P =
E
∆t
× 3600 (3)

In which I is the discharge current (A), ∆t is the discharge time, and m represents the mass of
active materials (g), ∆V is t the potential window (V vs. Ag/AgCl).

The area ratio capacitance of MnO2 can be calculated by the CV curve according to Equation (4),
where v is the scan rate (V s−1), and S is the area of the active materials in electrode (2 cm−2).

Cs = (

∫
IdV)/(v×V× S) (4)
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Figure 1. (a) Scanning electron microscope (SEM) images of samples without alcohol; (b) 
SEM images of samples with alcohol; (c) chronocoulometry technique curves with and 
without alcohol sample; (d) Linear sweep voltammetry (LSV) curve.  

2.2. Characterization 

The morphologies and structures of the MnO2 films were characterized by emission scanning 
electron microscopy (ESEM) (Zeiss ULTRA 55 SEM, 20 KV, Heidenheim, Germany) and transmission 
electron microscope (TEM, FEI Tecnai G2 F20 with an accelerating voltage of 200 kV, Hillsboro, OR, 
USA). TEM samples were prepared by scraping the MnO2 films out of the Ni foam matrix, dispersing 
them to alcohol by ultrasonic, dropping them on copper grids and finally drying them at room 
temperature. The composition of the MnO2 films was determined by X-ray photoelectron 
spectroscope (XPS, Thermo Fisher K-Alpha 250xi, Waltham, MA, USA). The quality of MnO2 films 
were weighed by a high-precision electronic balance (Toledo, XS205DU, d = 0.01 mg, Zurich, , 
Switzerland), weighed 0.2 mg, 0.3 mg, 0.5 mg, 0.6 mg of MnO2 (0.06 M, 0.07 M, 0.08 M, 0.09 M), 
respectively. The electrochemical performance of the MnO2 films was tested at room temperature in 
electrolyte of 1 M Na2SO4 by CS350 (Wuhan CorrTest Instrument Co. Ltd., Wuhan, China) 
electrochemical workstation with the MnO2/Ni as the working electrode, a platinum plate as the 
counter electrode, and Ag/AgCl as the reference electrode. The specific capacitance, energy density 
(E) (Wh kg−1) and the power density (P) (W kg−1) of the MnO2 at different current densities can be 
calculated from the constant current charge and discharge curves according to following three 
Equations [19]. C = 𝐼 ∆𝑡∆𝑉 𝑚 (1) 

Figure 1. (a) Scanning electron microscope (SEM) images of samples without alcohol; (b) SEM images
of samples with alcohol; (c) chronocoulometry technique curves with and without alcohol sample;
(d) Linear sweep voltammetry (LSV) curve.
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3. Results and Discussion

3.1. Effect of Alcohol on Deposition of MnO2

On the one hand, in 2006, Meng and Yu prepared the Ni(OH)2 supercapacitor electrode material
in the ethanol and water system, and reported that the proper amount of alcohol could reduce the
surface tension between the electrode and the electrolyte liquid boundary to improve the adhesion
strength of the precipitate [20]. Similarly, the mentioned reason may apply to this work, in other words,
alcohol may improve the surface tension of the Ni foam, which helps MnO2 to be better deposited
onto the Ni foam. On the other hand, previous reports showed that the Ni particle could catalyze
the ectrooxidation of ethanol to produce intermediates such as electrons and protons [21,22]. Further,
in 2019, Abolfath Eshghi et al. proposed that there were the interactions between MnO2 and ethanol
in the electrochemical process, and found that MnO2 could catalyze the ectrooxidation of ethanol,
too [21]. However, the clear explanation about interactions between MnO2 and ethanol was not given
in detail. In this work, we guess that the both Ni and MnO2 improved alcohol ectrooxidation, and
some intermediates such as electrons and protons might take part in the electrodeposited process of
MnO2, so that the deposition quality of MnO2 was improved. (Please note: In this work, we investigate
mainly the precursor concentration effects on the electrochemical performances of MnO2 deposited on
alcohol-soaked Ni foam, and we do not make the further discussion on the alcohol effect mechanism.
We hope readers to pay attention to our further work that the alcohol effect mechanism as a unique
issue will be studied in detail).

3.2. Surface Topography and Microstructure Analysis

The surface topography of the material has a great impact upon performance. Figure 2 shows
SEM images of MnO2 films deposited with different precursor concentrations, and the internal
illustration is a 5 µm scale SEM im(age. All of the manganese dioxide films are uniformly grown on
the three-dimensional porous foam nickel stent, and the films are loose, porous structures, a large part
of which is attributed to the bubbles generated during the redox process. As shown in Figure 2a–d,
the surface of the film is made up of a plurality of nanobars connected to each other, and a large number
of nanostrips form a three-dimensional, porous structure. This structure has a larger specific surface
area, enabling the active material to sufficiently react with ions in the solution, and thus shortening
the electron transport distance. As the concentration of the deposition precursor increases, there
is no significant difference in the microscopic morphology of the material surface, but the mass of
the active material deposited on the substrate increases, and the mass specific capacity decreases
(the electrochemical performance chart behind is easy to see). We conclude that the change in the
solubility of the electrodeposition solution in a small range will only cause a change in the deposition
quality (film thickness), and while the electrochemical reaction mainly occurs on the surface of the film,
lowering the effective utilization of thicker films, the specific capacitance also decreases [23]. However,
at lower precursor concentrations, the loading mass of the manganese dioxide film is very low, and the
overall capacitance performance is reduced.
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Figure 2. SEM images of different precursor concentrations; ((a), 0.06 M); ((b), 0.07M); ((c), 0.08M);
((d), 0.09 M).

In order to further understand the microstructure of the prepared manganese dioxide, we used
ultrasonic waves to shake the manganese dioxide powder from the foamed nickel substrate and
observed it (0.06 M, all samples showed a similar structure, so the 0.06 M concentration sample was
selected as the representative) by TEM. Figure 3a–d show the TEM images of MnO2 nanostrips at
different magnifications. The image shows that the growth of manganese dioxide is very uniform.
Nanostrips are interlaced and interconnected, this structure is in favor of ion transport and electron
transfer, thereby exhibiting good electrochemical performance. HR-TEM images show that the
diameter of the MnO2 nanostrip is about 30–50 nm, and the length is about 300–500 nm. The spacing
between the planes is 0.223 nm (002 plane) and 0.259 nm (301 plane), respectively, which belong to
orthorhombic system.
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Figure 3. (a,b) TEM images at different magnifications; (c,d) HR-TEM images of the nanostrips from
the 0.06 M sample.

In order to study the elemental of manganese dioxide and further prove its existence, we have
studied it by X-ray photoelectron spectroscopy (XPS). As shown in Figure 4a, full-peak scans
demonstrate the presence of Mn and O elements. The 2p orbital of Mn has two distinct peaks,
which are Mn2p3/2 (642.19 eV) and Mn2p1/2 (653.97 eV), while the separation value is 11.78 eV, and this
result is in great agreement with that in the work by Therese and Kamath [15], which suggests that the
element Mn is in the +4 valence state. The 3s orbital separation energy of Mn is 5.05 eV, indicating that
the Mn element is mainly in the +3 valence state and the +4 valence state [24–26]. In the energy spectrum
of O1s, the peak is mainly located at 529.8 eV (Mn–O–Mn), 531.2 eV (Mn–O–H), and 532.8 eV (H–O–H),
and this result is also in excellent agreement with that in the work by Yan et al. [27]. The presence of
Mn–O–H and H–O–H reveals the hydrous nature [28,29], the hydrous nature and co-existence of +3
and +4 oxidation states can dramatically improve the electrochemical reactions [24,26].



Materials 2020, 13, 181 7 of 12Materials 2020, 13, x FOR PEER REVIEW 7 of 12 

 

0 200 400 600 800 100
0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

1.6x105

1.8x105
 

C
ou

nt
s 

/ s

Binding energy (eV)

C1s

O1s Mn2p
(a)

 

635 640 645 650 655
0.0

5.0x103
1.0x104
1.5x104
2.0x104
2.5x104
3.0x104
3.5x104
4.0x104
4.5x104
5.0x104
5.5x104

(b)
 

C
ou

nt
s 

/ s

Binding Energy

11.7 eV

Mn2p3/2

Mn2p1/2

 

75 80 85 90 95
3.5x103

4.0x103

4.5x103

5.0x103

5.5x103

6.0x103 (c)
 

C
ou

nt
s 

/ s

Binding Energy (eV)

5.05 eV

Mn3s

 

526 528 530 532 534 536 538
0.0

2.0x104

4.0x104

6.0x104
C

ou
nt

s 
/ s

Binding energy (eV)

Mn-O-Mn

Mn-O-H

H-O-H

(d)

 

Figure 4. (a) X-ray photoelectron spectroscopy (XPS) spectra of MnO2 film; (b,c) Mn2p and Mn3s core 
level spectra; (d) O1s core level spectra.  
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We tested the electrochemical properties of the prepared samples by galvanostatic charge–
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Figure 4. (a) X-ray photoelectron spectroscopy (XPS) spectra of MnO2 film; (b,c) Mn2p and Mn3s core
level spectra; (d) O1s core level spectra.

3.3. Electrochemical Performance Analysis

We tested the electrochemical properties of the prepared samples by galvanostatic charge–discharge
and linear cyclic voltammetry. The reaction equation in the electrochemical charge and discharge
process can be expressed by the Equations (5) and (6) [24,27,28]:

MnO2 + Na+ + e− ←→MnOONa (5)

MnO2 + H+ + e− ←→MnOOH (6)

Due to the fact that the Mn2+ ion is water-soluble, it can be dissolved into the electrolyte [16],
and this is in line with our XPS results.

As shown in Figure 5a, the electrodeposited solution with a concentration of 0.06 M has the highest
specific capacitance, and this specific capacitance is 529.5, 322.5, 237.3 F g−1 at the current density of
1, 5, 10 A g−1, but when the concentration of precursor increases to 0.09 M, the specific capacitance
decreased to 119, 62, 45.1 F g−1 at the current density of 1, 5, 10 A g−1. As the charge and discharge
current increases, the specific capacitance of the sample decreases because the active material does
not sufficiently react at a large current density. The specific capacitance calculated at different current
densities can be used in different situations.
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Figure 5. (a) The variations of specific capacitances of different current densities; (b) the charge and 
discharge time curve at a current density of 2 A g−1; (c) the cyclic voltammetry (CV) curves at a scan 
rate of 5 mV s−1; (d) area specific capacitance at different scan rates; (e) chronoamperometric response 
of different MnO2 electrodes; (f) cycling performance of MnO2 (0.06M) at a current density of 5 A g−1. 

As can be seen from Figure 5b the charge and discharge curves of all samples are similar to 
isosceles triangles, and this shows that they have a highly reversible redox reaction, where between 
1.0 V and 0.8 V there is a fast discharge area, which is mainly due to the decline in internal resistance 
(I.R drop), which is mainly due to the contact between the active material and the electrolyte and its 
own resistance change. Cyclic voltammetry is also one of the important means to detect the 
performance of electrode materials, wherein all samples have a pair of distinct redox peaks around 
0.6–0.8 V. Results show that the 0.08 M sample has the highest area specific capacitance among the 
respective groups. As the concentration of the precursor increases, the rate of electrodeposition 
increases, and the thickness of the deposited sample also increases, which is why the area specific 
capacitance increases.  

Figure 5. (a) The variations of specific capacitances of different current densities; (b) the charge and
discharge time curve at a current density of 2 A g−1; (c) the cyclic voltammetry (CV) curves at a scan
rate of 5 mV s−1; (d) area specific capacitance at different scan rates; (e) chronoamperometric response
of different MnO2 electrodes; (f) cycling performance of MnO2 (0.06 M) at a current density of 5 A g−1.

As can be seen from Figure 5b the charge and discharge curves of all samples are similar to isosceles
triangles, and this shows that they have a highly reversible redox reaction, where between 1.0 V and
0.8 V there is a fast discharge area, which is mainly due to the decline in internal resistance (I.R drop),
which is mainly due to the contact between the active material and the electrolyte and its own resistance
change. Cyclic voltammetry is also one of the important means to detect the performance of electrode
materials, wherein all samples have a pair of distinct redox peaks around 0.6–0.8 V. Results show
that the 0.08 M sample has the highest area specific capacitance among the respective groups. As the
concentration of the precursor increases, the rate of electrodeposition increases, and the thickness of
the deposited sample also increases, which is why the area specific capacitance increases.
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However, when the concentration is increased to 0.09 M, the film thickness is maximized, the pores
between the nanobars of manganese dioxide are reduced, and the utilization rate is the lowest, so the
minimum area capacitance is exhibited (this is consistent with the previous SEM results). The specific
capacitance of the MnO2 composites electrodes in 1 M Na2SO4 electrolyte reported in other literatures
are shown in Table 1. Manganese dioxide electrode material with excellent properties can be obtained
by electrodepositing a certain concentration of precursor on a foamed nickel substrate.

Table 1. Specific capacitance compared with others.

Specific Capacitance Current Density Electrode Reference

330 F g−1 1A g−1 MnO2@N-APC [29]
262 F g−1 1A g−1 MnO2@CCNs [30]
270 F g−1 1A g−1 MnO2 [31]
357 F g−1 1A g−1 MnO2 [32]

529.5 F g−1 1A g−1 MnO2 Our work

The chronoamperometry (CA) of samples was carried out to evaluate the stability of different
MnO2 electrodes. Figure 5e shows the CA curve of MnO2 in 40 s at the given potential of 0.6 V.
The current density value of all samples decreased rapidly in the early stage, and then gradually
decreased slowly to a stable value. It was easily observed that the MnO2 electrode deposited into the
0.06 M precursor has higher electrochemical performance in terms of both the initial and steady states
of the current density.

The cycling performance of the MnO2 (0.06 M) was evaluated by GCD measurements in 1 M
Na2SO4 at a current density of 5 A g−1 for cycles up to 2000 (Figure 5f). The decrease in capacitance
performance in the initial stage is mainly due to the dissolution of manganese dioxide in sodium sulfate
solution, where during the testing phase we also observed that the sodium sulfate solution turned
brown. Due to the improvement of the process, the adhesion strength of the deposited manganese
dioxide has been improved, and the initial specific capacitance of 79.8% is still maintained after 2000
high current density (5 A g−1) cycles.

Power density and energy density are also one of the important electrochemical properties of
supercapacitors, as shown in Figure 6, the MnO2 deposited under the concentration of a 0.06 M
precursor has a very high energy density (59.46 Wh Kg−1), and even at a power density of 3756 W Kg−1,
it can reach an energy density of 24.9 Wh Kg−1. The energy density of other samples decreases with
the increase of the precursor concentration, which is consistent with the GCD results.
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EIS analysis is one of the effective methods to test the performance of electrode materials. Figure 6
reveals the Nyquist plots of the MnO2 electrode at a frequency range of 0.01–100,000 HZ (vs. Ag/AgCl)
with 5 mV amplitude [33,34], the impedance data was analyzed by Zsimp Win V3.10 software.

As shown in Figure 7a, the prepared electrode exhibited typical capacitive behavior in 1 M Na2SO4

solution, In the low frequency region, the capacitor has a large resistance, while in the high frequency
region, the resistance of the capacitor is very low (the impedance modulus is even lower than 1 Ω above
1 kHz). In the Nyquist plot, the high frequency region is semicircular, and the diameter of the semicircle
represents charge transfer resistance (Rct), whereas the intercept on the real axis represents the solution
resistance [11,35] (Rs, including the inherent resistance of the electrode, the contact resistance between
the electrode and the electrode, etc.). In the equivalent circuit diagram, Cdl represents the electric
double layer capacitor, Zw is Warburg resistance, which is caused by ion diffusion in the active
material [36]. With the increase of the concentration of precursors, the Rs are (is) 1.183, 1.201, 1.299
and 1.312 Ω, and the Rct are 0.84, 0.93, 1.07 and 1.33 Ω, respectively. This result shows again that the
0.06 M sample has excellent supercapacitor performance.
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4. Conclusions 

In summary, manganese dioxide was directly electrodeposited on a foamed nickel substrate by 
changing the precursor concentration after ethanol immersion. An alcohol immersion process can 
improve the uniformity and electrochemical performance of manganese dioxide film, where all the 
obtained MnO2 material is a porous nanostrip, the diameter of the nanostrip is about 30–50 nm and 
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4. Conclusions

In summary, manganese dioxide was directly electrodeposited on a foamed nickel substrate by
changing the precursor concentration after ethanol immersion. An alcohol immersion process can
improve the uniformity and electrochemical performance of manganese dioxide film, where all the
obtained MnO2 material is a porous nanostrip, the diameter of the nanostrip is about 30–50 nm and the
length of which is about 300–500 nm. XPS results show that Mn3+ and Mn4+ coexist in the prepared
materials. The MnO2 electrode obtained in the 0.06 M precursor has a very high specific capacitance
(529.5 F g−1 at the current density of 1 A g−1), low solution resistance (1.183 Ω) and charge transfer
resistance (0.84 Ω); in addition, the energy density can even reach 59.4 Wh Kg−1 at the high power
density of 3756 W Kg−1. By improving the process, the adhesion strength of manganese dioxide was
increased, and the prepared manganese dioxide film has a capacity retention rate of 79.8% after being
cycled 2000 times under a large current density. This work provided a promising direction for the
electrodeposition preparation of high specific capacitance MnO2 supercapacitors.
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