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Abstract: Neuromorphic computing has emerged as one of the most promising paradigms to overcome
the limitations of von Neumann architecture of conventional digital processors. The aim of neuromorphic
computing is to faithfully reproduce the computing processes in the human brain, thus paralleling its
outstanding energy efficiency and compactness. Toward this goal, however, some major challenges have
to be faced. Since the brain processes information by high-density neural networks with ultra-low power
consumption, novel device concepts combining high scalability, low-power operation, and advanced
computing functionality must be developed. This work provides an overview of the most promising
device concepts in neuromorphic computing including complementary metal-oxide semiconductor
(CMOS) and memristive technologies. First, the physics and operation of CMOS-based floating-gate
memory devices in artificial neural networks will be addressed. Then, several memristive concepts
will be reviewed and discussed for applications in deep neural network and spiking neural network
architectures. Finally, the main technology challenges and perspectives of neuromorphic computing
will be discussed.

Keywords: neuromorphic computing; Flash memories; memristive devices; resistive switching;
synaptic plasticity; artificial neural network; spiking neural network; pattern recognition

1. Introduction

The complementary metal-oxide semiconductor (CMOS) technology has sustained tremendous
progress in communication and information processing since the 1960s. Thanks to the continuous
miniaturization of the metal-oxide semiconductor (MOS) transistor according to the Moore’s law [1]
and Dennard scaling rules [2], the clock frequency and integration density on the chip have seen an
exponential increase. In the last 15 years, however, the Moore’s scaling law has been slowed down by
two fundamental issues, namely the excessive subthreshold leakage currents and the increasing heat
generated within the chip [3,4]. To overcome these barriers, new advances have been introduced,
including the adoption of high-k materials as the gate dielectric [5], the redesign of the transistor with
multigate structures [6,7], and 3D integration [8]. Besides the difficult scaling, another crucial issue
of today’s digital computers is the physical distinction between the central processing unit (CPU)
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and the memory unit at the origin of extensive data movement during computation, especially for
data-intensive tasks [9]. Solving the memory bottleneck requires a paradigm shift in architecture,
where computation is executed in situ within the data by exploiting, e.g., the ability of memory arrays
to implement matrix-vector multiplication (MVM) [10,11]. This novel architectural approach is referred
to as in-memory computing, which provides the basis for several outstanding applications, such as
pattern classification [12,13], analogue image processing [14], and the solution of linear systems [15,16]
and of linear regression problems [17].

In this context, neuromorphic computing has been receiving increasing interest for its ability
to mimic the human brain. A neuromorphic circuit consists of a network of artificial neurons and
synapses capable of processing sensory information with massive parallelism and ultra-low power
dissipation [18]. The realization of scalable, high density, and high-performance neuromorphic circuits
generally requires the extensive adoption of memory devices serving the role of synaptic links and/or
neuron elements. The device structure and operation of these memory devices may require specific
optimization for neuromorphic circuits.

This work reviews the current status of neuromorphic devices, with a focus on both CMOS and
memristive devices for implementation of artificial synapses and neurons in both deep neural networks
(DNNSs) and spiking neural networks (SNNs). The paper is organized as follows: Section 2 provides
an overview of the major neuromorphic computing concepts from a historical perspective. Section 3 is
an overview of the operating principles of mainstream NAND and NOR Flash technologies, and their
adoption in neuromorphic networks. Section 4 describes the most important memristive concepts being
considered for neuromorphic computing applications. Section 5 addresses the adoption of memristive
devices in DNNs and SNNs for hardware demonstration of cognitive functions, such as pattern
recognition and image/face classification. Finally, Section 6 discusses issues and future perspectives for
large-scale hardware implementation of neuromorphic systems with CMOS/memristive devices.

2. Neuromorphic Computing Concepts

The origin of neuromorphic computing can be traced back to 1949, when McCulloch and Pitts
proposed a mathematical model of the biological neuron. This is depicted in Figure 1a, where the
neuron is conceived as a processing unit, operating (i) a summation of input signals (x3, X3, X3, ... ),
each multiplied by a suitable synaptic weight (w1, wy, ws, ... ) and (ii) a non-linear transformation
according to an activation function, e.g., a sigmoidal function [19]. A second landmark came in
1957, when Rosenblatt developed the model of a fundamental neural network called multiple-layer
perceptron (MLP) [20], which is schematically illustrated in Figure 1b. The MLP consists of an input
layer, one or more intermediate layers called hidden layers, and an output layer, through which the
input signal is forward propagated toward the output. The MLP model constitutes the backbone for
the emerging concept of DNNs. DNNs have recently shown excellent performance in tasks, such as
pattern classification and speech recognition, via extensive supervised training techniques, such as
the backpropagation rule [21-23]. DNNSs are usually implemented in hardware with von Neumann
platforms, such as the graphics processing unit (GPU) [24] and the tensor processing unit (TPU) [25],
used to execute both training and inference. These hardware implementations, however, reveal all the
typical limitations of the von Neumann architecture, chiefly the large energy consumption in contrast
with the human brain model.
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Figure 1. (a) Conceptual illustration of McCulloch and Pitts artificial neuron architecture, where the
weighted sum of the input signals is subject to the application of a non-linear activation function
yielding the output signal. (b) Schematic representation of a multilayer perceptron consisting of two
hidden layers between the input and the output layer.

To significantly improve the energy efficiency of DNNs, MVM in crossbar memory arrays has
emerged as a promising approach [26,27]. Memory devices also enable the implementation of learning
schemes able to replicate the biological synaptic plasticity at the device level. CMOS memories, such
as the static random access memory (SRAM) [28,29] and the Flash memory [30], were initially adopted
to capture synaptic behaviors in hardware. In the last 10 years, novel material-based memory devices,
generically referred to as memristors [31], have evidenced attractive features for the implementation of
neuromorphic hardware, including non-volatile storage, low power operation, nanoscale size, and
analog resistance tunability. In particular, memristive technologies, which include resistive switching
random access memory (RRAM), phase change memory (PCM), and other emergent memory concepts
based on ferroelectric and ferromagnetic effects, have been shown to achieve synapse and neuron
functions, enabling the demonstration of fundamental cognitive primitives as pattern recognition in
neuromorphic networks [32-35].

The field of neuromorphic networks includes both the DNN [36], and SNN, the latter more
directly inspired by the human brain [37]. Contrary to DNNSs, the learning ability in SNNs emerges
via unsupervised training processes, where synapses are potentiated or depressed by bio-realistic
learning rules inspired by the brain. Among these local learning rules, spike-timing-dependent
plasticity (STDP) and spike-rate-dependent plasticity (SRDP) have received intense investigation for
hardware implementation of brain-inspired SNNs. In STDP, which was experimentally demonstrated
in hippocampal cultures by Bi and Poo in 1998 [38], the synaptic weight update depends on the relative
timing between the presynaptic spike and the post-synaptic spike (Figure 2a). In particular, if the
pre-synaptic neuron (PRE) spike precedes the post-synaptic neuron (POST) spike, namely the relative
delay of spikes, At = tpost — tpre, is positive, then the interaction between the two spikes causes the
synapse to increase its weight, which goes under the name of synaptic potentiation. On the other
hand, if the PRE spike follows the POST spike, i.e., At is negative, then the synapse undergoes a
weight decrease or synaptic depression (Figure 2b). In SRDD, instead, the rate of spikes emitted
by externally stimulated neurons dictates the potentiation or depression of the synapse, with high
and low frequency stimulation leading to synaptic potentiation and depression, respectively [39].
Unlike STDP relying on pairs of spikes, SRDP has been attributed to the complex combination of
three spikes (triplet) or more [40-43]. In addition to the ability to learn in an unsupervised way and
emulate biological processes, SNNs also offer a significant improvement in energy efficiency thanks to
the ability to process data by transmission of short spikes, hence consuming power only when and
where the spike occurs [18]. Therefore, CMOS and memristive concepts can offer great advantages in
the implementation of both DNNs and SNNSs, providing a wide portfolio of functionalities, such as
non-volatile weight storage, high scalability, energy efficient in-memory computing via MVM, and
online weight adaptation in response to external stimuli.
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Figure 2. (a) Sketch of the spike-timing-dependent plasticity (STDP) learning rule. If the PRE spike
arrives just before the POST spike at the synaptic terminal (At > 0), the synapse undergoes a potentiation
process, resulting in a weight (conductance) increase (top). Otherwise, if the PRE spike arrives just
after the POST spike (At < 0), the synapse undergoes a depression process, resulting in a weight
(conductance) decrease (bottom). (b) Relative change of synaptic weight as a function of the relative
time delay between PRE and POST spikes measured in hippocampal synapses by Bi and Poo. Reprinted
with permission from [38]. Copyright 1998 Society for Neuroscience.

3. Mainstream Memory Technologies for Neuromorphic and Brain-Inspired Systems

3.1. Memory Transistors and Mainstream Flash Technologies

The memory transistor represents the elementary building unit at the basis of modern mainstream
non-volatile storage technologies. It consists of a mainstream MOS transistor whose structure is
modified to accommodate a charge-storage layer in its gate stack, allowing carriers to be confined in a
well-defined region due to the resulting potential barriers. As shown in Figure 3, the most adopted
solutions for such a layer are based either on highly doped polycrystalline silicon (polysilicon) or a
dielectric material able to capture and release electrons and holes thanks to its peculiar high density
of defects. The charge storage layer is usually referred to as floating gate in the former case, and
charge-trap layer in the latter one. However, in both cases, storing a net charge in the memory transistor
floating gate or charge-trap layer results in a shift of the drain current vs. gate voltage (Ips — Vgs) curve
due to the corresponding variation of the device threshold voltage (V). In particular, such variation is
mainly ruled by the capacitance between the transistor gate and the charge-storage layer, Cs¢, according
to AVt = —Qs/Csq, meaning that a net positive or negative stored charge (Qs) is reflected in a negative
or positive Vr shift (AVT), respectively. As a consequence, a proper discretization of the stored charge
in each memory transistor allows one or multiple bits of information to be stored that can be accessed
through a Vr read operation.
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Figure 3. Schematic of a memory cell exploiting (left) a highly doped polysilicon layer and (right) a
dielectric layer with a high density of microscopic defects for charge storage.
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In order to reliably accomplish the tuning of the stored charge and, consequently, the modification
of the information content through the program (making the stored charge more negative) and
erase (making the stored charge more positive) operations, suitable physical mechanisms must be
selected. As schematically depicted in Figure 4, the most widely adopted physical mechanisms are
the Fowler-Nordheim (FN) tunneling, for both program and erase operations, and the channel hot
electron injection (CHEI), for program operation only. In the former case, the bias voltages applied to
the memory transistor contacts are chosen to generate large vertical electric fields that activate carrier
exchange between the substrate and the storage layer by the quantum mechanical current through
the energy barrier separating them. In the latter case, instead, CHEI is achieved by accelerating the
transistor on-state current electrons by applying a positive drain-to-source voltage drop (Vps). If Vpg
is large enough, the energy acquired by the channel electrons is sufficient for them to overcome the
tunnel-oxide energy barrier and to be redirected to the charge-storage layer due to the positive Vg.
Moreover, it is worth mentioning that, for a target AVt to be achieved over comparable time scales,
CHEI requires much lower voltages to be applied with respect to FN tunneling. On the contrary,
its injection efficiency is of the order of 10~ only, much smaller than that of FN tunneling (very close to
one). A final but important remark is that for both CHEI and EN tunneling, the maximum number of
program/erase cycles that can be performed on the devices is usually smaller than 10°; in fact, for larger
cycling doses, the number of defects generated in the tunnel oxide by the program/erase operations
severely undermines the transistor reliability.

VG <0 VG >0
{ {
| Gate | | Gate
Float. I _ Floating Gate I Float. I Floating Gate

—;—_l

\ n+ n* g o
Drain Source /.,

Figure 4. Physical mechanisms and corresponding voltage schemes exploited to change the amount
of charge in the cell storage layer, consisting of (left) Fowler-Nordheim (FN) and (right) channel
hot-electron injection (CHEI).

Starting from the schematic structure shown in Figure 3, the arrangement of memory transistors
to build memory arrays and their working conditions are strictly related to the specific targeted
application. In particular, two solutions that have ruled the non-volatile memory market since their
very first introduction are the NAND Flash [44] and NOR Flash [45] architectures (Figure 5). Although
they share the important peculiarity that the erase operation, exploiting FN tunneling to reduce the
amount of the stored negative charge, involves a large number of cells at the same time (a block of cell),
some relevant differences can be mentioned.

NAND Flash technology is the main solution for the storage of large amounts of data, therefore
achieving large bit storage density, i.e., the ratio between the chip capacity and its area is a mandatory
requirement. For this purpose, NAND Flash memory transistors are deeply scaled (up to a feature
size as small as 15 nm) and arranged in series connection, making the memory cells belonging to each
string accessible only through the contacts at their top and bottom ends (Figure 5a). In such a way,
the area occupancy of each cell is minimized; on the other hand, the attempt to minimize the array
fragmentation and to reduce the area occupancy of the control circuitry makes the random access time
to the cells quite long (tens of us), due to the consequent delays of the signals propagating over the
long WLs and BLs. For this reason, programming schemes taking advantage of the low current and
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high injection efficiency of FN tunneling were developed to program many memory transistors at the
same time, allowing extremely high throughputs (tens or even hundreds of Mbytes/s) to be achieved.

The NOR Flash technology, on the other hand, is mainly intended for code storage, making the
storage and retrieval of small packets of data (a few bytes) as fast as possible a mandatory requirement.
As a consequence, in order to make each memory cell directly accessible through dedicated contacts,
the memory transistors are connected in parallel, as shown in Figure 5b. Thanks to this architecture,
a fast and single-cell selective program operation can be easily achieved exploiting CHEI. From the
cell design standpoint, this results in a limited channel scalability, due to the need for the cell to
withstand relatively high Vpg during its operation. Even though these features determine a larger cell
footprint and, in turn, a higher cost of NOR Flash with respect to NAND Flash technologies, they allow
NOR Flash arrays to guarantee a superior array reliability, being an important requirement for code
storage applications.
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Figure 5. Schematic of memory arrays based on (a) NAND Flash and (b) NOR Flash architecture.

3.2. Memory Transistors as Synaptic Devices in Artificial Neural Networks

The first proposal of exploiting memory transistors as artificial synapses in artificial neural
networks (ANNSs) and brain-inspired neural networks dates back to the 1990s directly from the
pioneering work presented in ref. [46]. The basic idea proposed there is to take advantage of the
subthreshold characteristic Ips — Vs of an n-channel floating-gate memory transistor to reproduce the
biologically observed synaptic behavior and to exploit it to build large-scale neuromorphic systems.
In fact, when operated in a subthreshold regime, a memory transistor exhibits an Ipg — Vg relation
that can be expressed as:

WG(VGS - V;ff) '

mkT M

- AV
Ips = Iy - exp [ 176 T],

mkT

where Ij is the current pre-factor, g is the elementary charge, m is the subthreshold slope ideality
factor, kT is the thermal energy, a is the gate-to-floating-gate capacitive coupling ratio, and AV is the
floating-gate transistor Vr shift from an arbitrary chosen V;ﬁe .

With reference to the previous equation, Ipg can be decomposed in the product of two contributions.
an(VGS—V;“f)

The first factor, I - exp T

l, is a function of Vg only, and represents the input presynaptic

signal; the remaining scaling factor, W = exp[_qif—éw], instead, depending on AVt but not on Vg,

can be thought of as the synaptic weight.
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When compared with other modern approaches based on emerging memory technologies,
this solution presents the clear advantages of (i) limited power consumption, thanks to the reduced
currents peculiar of transistors operated below the threshold; (ii) fine weight granularity, coming to the
virtually analog and bidirectional V7 tuning; and (iii) a mature and well-established CMOS fabrication
technology. In particular, the relevance of the last point can be easily understood by considering the
possibility of arranging a large number of floating-gate transistors in very dense and reliable memory
arrays, normally employed for storage purposes. However, when exploited as synaptic arrays in
neuromorphic applications, such memory arrays must meet the mandatory condition of single-cell
selectivity during both program and erase operations, meaning that both the positive and negative
tuning of the Vr (weight) of each memory cell (synapse) must be guaranteed. Even if this consideration
makes a NOR-type array inherently more suitable to be used in these fields because of its architecture
that allows direct access to each cell by dedicated contacts, its standard block-erase scheme must
still be overcome. For this reason, since its very first proposal, the synaptic transistor introduced in
refs. [46-48], and tested on LTD and LTP based on the STDP learning rule in refs. [30,48], includes
an additional contact with respect to standard n-channel floating-gate transistors (Figure 6) to be
connected to signal lines running orthogonal to the WLs [46]. While keeping CHEI for the program,
the erase operation takes place by removing stored electrons by FN tunneling when a sufficiently high
electric field is developed between the tunneling contact and the transistor floating gate that, as shown
in Figure 3, is properly extended in close proximity of such a contact. Note that this erase scheme
is indeed single-cell selective because the substrate contact, common to all the array cells, is kept to
the ground.

p substrate CG FG
implant

1
IGD oxide

tunnel-oxide electron tunnel-oxide electlrlqn
injection tunnelling

p” substrate

Figure 6. Top view (up) and side view (down) of the synaptic transistor. Physical mechanisms exploited
for program (electron injection) and erase (electron tunneling) are highlighted too. Adapted with
permission from [48]. Copyright 1997, IEEE.

Although, recently, some more effort was devoted to build new custom synaptic devices and test
them in SNNs [49-51], a more convincing proof of the feasibility of the floating-gate transistor to build
large-scale neuromorphic systems comes from a different approach. The basic idea consists in slightly
modifying the routing of commercially available NOR Flash memory arrays to enable a single-cell
selective erase operation while keeping the cell structure unchanged. For this purpose, NOR memory
arrays developed with a 180 nm technology by Silicon Storage Technology, Inc. (SST) [52] are chosen
in refs. [53-56]. The basic memory cell, as depicted in Figure 7a, features a highly asymmetric structure
presenting a floating gate only near the source side, with the gate stack at the drain side made only of
the tunneling oxide. In spite of this structure, the program operation can still be performed by CHEI at
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the source side; as for the erase operation, instead, a positive voltage is applied between the gate and
source, resulting in the emission of stored electrons toward the gate by FN tunneling.
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Figure 7. (a) Schematic cross-section of the Silicon Storage Technology (SST) cell structure (top) and its
equivalent circuit (bottom) and NOR array with (b) classic and (c) modified routing together with the
respective erase protocol. Reprinted with permission from [53]. Copyright 2015, IEEE.

The arrangement of such SST cells to make a NOR array is shown in Figure 7b, where the erase
voltages are highlighted too. Since both WLs and SLs run parallel to each other and orthogonal to the
BLs, the erase protocol involves all the cells in a row at the same time. For this reason, in refs. [54],
a modification to the array routing as reported in Figure 7c is proposed, with the WLs now running
parallel to the BLs. In this way, single-cell selectivity is achieved during both the program (involving
WL, BL, and SL) and erase (involving WL and SL only).

In refs. [54,55], two SST NOR arrays, re-routed as explained before, are employed to build and
test a fully integrated three-layer (784 x 64 x 10) ANN, trained offline on the Modified National
Institute of Standards and Technology (MNIST) database for handwritten digit recognition via the
backpropagation algorithm [21-23]. In particular, in order to enable the implementation of negative
weights, and also to reduce random drifts and temperature sensitivity, a differential solution is adopted.
As shown in Figure 8a, following this approach, each couple of adjacent memory cells implements
a synaptic weight, with the resulting BL currents summed and read by CMOS artificial neurons
built exploiting a differential current operational amplifier. The whole one-chip integrated network,
whose schematic structure, including two synaptic arrays together with two neuron layers and some
additional circuitry, is reported in Figure 8b, has shown a 94.7% classification fidelity with one-pattern
classification time and energy equal to 1 us and less than 20 nJ, respectively. Moreover, a reduction
of the total chip active area, amounting to 1 mm? in the discussed work, is expected together with
an increase of its performance when moving to the next 55 nm SST technology. In this regard, some
preliminary results about MVM were already presented in ref. [56].

Although this solution based on re-routing commercially available NOR arrays appears promising,
it comes together with its main drawback consisting in the increased area occupancy (the single-cell area
in the modified array is 2.3 times larger than the original one). A different approach aiming at avoiding
this disadvantage is proposed in [57-59]. Here, the authors suggest a modified working scheme for a
mainstream double-polysilicon common-ground NOR Flash arrays developed in a 40 nm embedded
technology by STMicroelectronics (Figure 9a) without any change needed in the cell or array design.
While keeping CHEI as the physical mechanism for the program, single-cell selectivity during the erase
is achieved by employing hot-hole injection (HHI) in the cell floating gate. In particular, by keeping
the source and substrate contacts to the ground while applying a positive and negative voltage to
the drain and to the gate, respectively, the developed electric field triggers the generation of holes by
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band-to-band tunneling at the drain side and accelerates them (Figure 9b); if the applied voltages are
high enough, the energy acquired by the holes allows them to overcome the energetic barrier of the
tunnel oxide and to be redirected toward the floating gate thanks to the negative gate voltage.
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neuron, consisting of a differential summing operational amplifier and an activation-function block.
(b) High-level architecture of the artificial neural network and needed additional circuitry. Reprinted

with permission from [55]. Copyright 2018, IEEE.
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Figure 9. (a) Schematic for a mainstream common-ground NOR Flash array and (b) proposed physical
mechanism exploited for the erase operations. Reprinted with permission from [57]. Copyright

2018, IEEE.

To validate this program/erase scheme in a brain-inspired neural network, the authors
demonstrated long-term potentiation/depression through the design of the presynaptic and postsynaptic
waveforms as shown in Figure 10a. The short rectangular pulse applied to the BL as a consequence
of a postsynaptic fire event overlaps with a positive or negative WL voltage according to the time
distance between the presynaptic and postsynaptic spike, At. In particular, At > 0 leads to long-term
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potentiation by HHI and At < 0 leads to long-term depression by CHEI To further confirm the validity
of this protocol, a prototype two layers 8 x 1 SNN was tested on pattern recognition, producing
encouraging results as shown in Figure 10b; in fact, as expected, while the synapses corresponding to
the input pattern are quickly potentiated, the remaining ones are gradually depressed.
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Figure 10. (a) Pulse scheme proposed to implement the spike-timing-dependent plasticity (STDP)
waveform exploiting the erase mechanism shown in Figure 9b and (b) evolution of the weights of the
implemented NOR Flash-based spiking neural network during the learning phase. Reprinted with
permission from [57]. Copyright 2018, IEEE.

A final remark, being of great relevance especially in DNN inference, is the finite tuning precision
of the cells array, V1, and its stability after the offline training phase. In the case of ANN based on
NOR Flash memory arrays, two of the most relevant physical mechanisms causing reliability issues
of this kind are program noise (PN), determining an inherent uncertainty during the program phase
due to the statistical nature of electron injection in the floating gate, and random telegraph noise
(RTN), inducing VT instabilities arising from the capture and release of charge carriers in tunnel-oxide
defects. In ref. [60], the authors assess the impact of both PN and RTN on a neuromorphic digit
classifier through parametric Monte-Carlo simulations. The main result, relevant in terms of projection
of the previously discussed results on future technological nodes, is that such non-idealities play a
non-negligible role, setting a stringent requirement both on the maximum scalability of the array cell
and on the adopted program/erase schemes.

4. Memristive Technologies

To replicate neural networks in hardware, memristive devices have been recently investigated for
the realization of compact circuits capable of emulating neuron and synapse functionalities. Increasing
interest toward these novel device concepts first results from their ability to store information at the
nanoscale in an analogue and non-volatile way. Also, they allow the memory to be combined with the
computing function, enabling in-situ data processing, also referred to as in-memory computing [11],
which is currently the major approach toward the achievement of energy-efficient computing paradigms
beyond the von Neumann bottleneck. In detail, the landscape of memristive technologies can be
divided into the classes of memristors with two or three terminals, which are explained in the
following subsections.

4.1. Memristive Devices with 2-Terminal Structure

As shown in Figure 11, the class of memristive devices with a two-terminal structure covers various
physical concepts, such as resistive switching random access memory (RRAM), phase change memory
(PCM), spin-transfer torque magnetic random access memory (STT-MRAM), and ferroelectric random
access memory (FeRAM), which share a very simple structure consisting of a metal-insulator-metal
(MIM) stack, where an insulating layer is sandwiched between two metallic electrodes called the top
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electrode (TE) and bottom electrode (BE), respectively. As a voltage pulse is applied, these devices
undergo a change of physical properties of the material used as the switching layer, which results in a
change of the resistance for RRAM and PCM, magnetic polarization for STT-MRAM, and electrical
polarization for FeERAM. Importantly, all these memristive elements offer the opportunity to read,
write, and erase the information in memory states by electrical operations on the device, thus making
them potentially more attractive in terms of scalability than other memory concepts, such as the Flash
memories based on charge storage.
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Figure 11. Sketch of the most promising two-terminal memristive devices used in neuromorphic
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computing applications. (a) Structure of resistive switching random access memory (RRAM) device
where the insulating switching layer is sandwiched between two metal electrodes. (b) Current-voltage
characteristics of RRAM displaying that the application of a positive voltage causes an abrupt resistance
transition, called set, leading the device from the high resistance state (HRS) to the low resistance
state (LRS) while the application of a negative voltage causes a more gradual resistance transition,
called reset, leading the device from LRS to HRS. (c) Structure of phase change memory (PCM) device
where a chalcogenide active layer is sandwiched between two metal electrodes. (d) Resistance-voltage
characteristics of PCM displaying that the crystallization process in the active layer gradually leading the
PCM from HRS to LRS is achieved at voltages below the melting voltage, Vi, while the amorphization
process gradually leading the PCM from LRS to HRS is achieved at voltages above V. (e) Structure
of spin-transfer torque magnetic random access memory (STT-MRAM) device, where a tunnel layer
is sandwiched between two ferromagnetic metal electrodes. (f) Resistance-voltage characteristics of
STT-MRAM displaying two binary resistance transitions leading the device from the anti-parallel (AP)
to the parallel (P) state (set) at positive voltage and from P to AP (reset) at negative voltage. (g) Structure
of ferroelectric random access memory (FeERAM) device, where a ferroelectric layer is sandwiched
between two metal electrodes. (h) Polarization-voltage characteristics displaying binary operation
between two states with a positive residual polarization, +P;, and a negative residual polarization, —P;,
achieved by application of a positive and negative voltage, respectively. Reprinted with permission
from [11]. Copyright 2018, Springer Nature.

Figure 11a shows the MIM stack of the RRAM device, where an insulating oxide material serves
as the switching layer [61-63]. To initiate the device, a preliminary electrical operation called forming
is performed by application of a positive voltage at TE by causing a soft breakdown process, leading to
the creation of a high conductivity path containing oxygen vacancies and/or metallic impurities, also
known as a conductive filament (CF), within the oxide layer. This results in the change of the resistance
of the device from the initial high resistance state (HRS) to the low resistance state (LRS). After forming,
in the case of bipolar RRAM devices, the application of negative/positive voltage pulses at TE leads the
device to experience reset and set transitions, respectively. The application of a negative pulse causes
the rupture of CF (reset process), leading to the opening of a depleted gap via drift/diffusion migration
of ion defects from BE to TE, hence to the HRS. On the other hand, the application of a positive pulse
allows the gap to be filled via field-driven migration of ion defects from TE to BE, thus leading the
device back to LRS (set process) [64,65]. Two resistance transitions can be noted by the current-voltage
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characteristics shown in Figure 11b, which evidence both the abrupt nature of the set process due to
the positive feedback loop involving the two driving forces for ion migration, namely the electric field
and temperature, and the more gradual dynamics of the reset process due to the negative feedback
occurring within the device as a negative pulse is applied [66]. Similar to the bipolar RRAM described
in Figure 11b, which typically relies on switching layers, including HfOy [67], TaOx [68], TiOx [69],
SiOy [70], and WOy [71], the conductive-bridge random access memory (CBRAM), where metallic
CFs are created/disrupted between active Cu/Ag electrodes, has also received strong interest in recent
years [72]. In addition to bipolar RRAM concepts, another type of filamentary RRAM called unipolar
RRAM, typically based on NiO [73-75], has been widely investigated, evidencing that pulses with the
same polarity can induce both set and reset processes as a result of the key role played by Joule heating
for the creation/disruption of CF [73,75]. Moreover, the RRAM concept also includes non-filamentary
devices referred to as uniform RRAM, exhibiting an interface resistive switching due to the uniform
change of a Schottky or tunneling barrier on the whole cell area [76]. One of the fundamental features
making RRAM suitable for in-memory computing is the opportunity to modulate its resistance in an
analog way, thus enabling multilevel operation via the storage of at least 3 bit [77-81]. In addition to
multilevel operation, it also combines high scalability up to 10 nm in size [82] and the opportunity to
achieve 3D integration [83].

Figure 11c shows the schematic structure of a PCM device, which relies on a chalcogenide material,
such as GepSb;yTes (GST) [84], as the switching layer. Here, resistance variation arises from an atomic
configuration change within the active layer from the crystalline to the amorphous phase and vice-versa
via application of unipolar voltage pulses at TE [85-87]. As a voltage higher than the voltage, Vi,
needed to induce the melting process within the active layer is applied across the cell, local melting
takes place within the chalcogenide material, leading the device to HRS as a result of the pinning of
the Fermi level at the midgap. Otherwise, if the applied voltage is below Vp,, a gradual crystallization
process is triggered via local Joule heating, leading PCM to LRS [88]. These physical processes can
be better visualized by the resistance-voltage characteristics in Figure 11d, where the set transition
displays a gradual behavior due to the gradual crystallization process induced by Joule heating while
the reset transition displays faster dynamics than the set transition. Compared to RRAM, where the
HRS/LRS ratio is about 10, PCM offers a higher resistance window, ranging from 100 to 1000, which
makes PCM very attractive for multilevel operation as reported in [89], where a 3 bits/cell PCM device
was demonstrated. Moreover, in addition to classic GST, other materials, such as GeSb [90], doped
In-Ge-Te [91], and Ge-rich GST [92], have been investigated, receiving strong interest since they offer
higher crystallization temperatures for enhanced retention performances.

Figure 11e shows the schematic structure of an STT-MRAM device based on an MIM stack
called magnetic tunnel junction (MT]), including an ultrathin tunneling layer (TL), typically in MgO,
interposed between two ferromagnetic (FM) metal electrodes, typically in CoFeB, called the pinned
layer (PL) and free layer (FL), respectively [93-95]. Unlike RRAM and PCM enabling multilevel
operation, STT-MRAM allows only two states to be stored, with a very small resistance window of
the order of a factor 2 [94] because of the tunnel magneto-resistance (TMR) effect [96]. The two states
are encoded in the relative orientation between PL magnetic polarization, which is fixed, and FL
magnetic polarization, which is instead free to change via the spin-transfer torque physical mechanism
discovered by Slonczewski [97] and Berger [98] in 1996. As a positive voltage is applied at TE, a current
of electrons with the same spin-polarization of the fixed layer is transmitted through the tunneling layer,
causing the transition of the polarization orientation from anti-parallel (AP) to parallel (P), which leads
the device to LRS. In contrast, as a negative bias is applied, the reflection back of electrons entering
from the free layer with the opposite magnetization takes place, thus causing the transition from the P
to AP state, hence from LRS to HRS. Figure 11f shows the resistance response of the STT-MRAM device
as a function of the applied voltage, evidencing that the application of positive/negative voltage pulse
induces set/reset transition with very abrupt dynamics, which further supports the incompatibility of
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STT-MRAM with multilevel applications. However, STT-MRAM has shown high potential in scalability,
as reported in ref. [99], fast switching speed [100], and almost unlimited cycling endurance [101,102].

Figure 11g shows the MIM stack of FeRAM, where an insulating layer based on a ferroelectric (FE)
material, typically in doped HfO, [103] or perovskite materials [104,105], is sandwiched between two
metal electrodes. Its operation principle relies on the polarization switching within the FE layer due to
the rotation of electrical dipoles under an external bias [106]. As shown by the polarization-voltage
characteristics in Figure 11h, a positive voltage above the coercive voltage, +V., at TE induces the
set transition, leading the device to exhibit a positive residual polarization, +P;, whereas a voltage
more negative than —V. leads the device to exhibit a negative residual polarization, —P,. Importantly,
note that the FE switching process does not impact on the device resistance, which makes FeRAM
unusable as resistive memory.

4.2. Memristive Devices with Three-Terminal Structure

In addition to the two-terminal devices, memristive concepts also include the class of three-terminal
devices whose main examples are those depicted in Figure 12, namely (a) the ferroelectric field-effect
transistor (FeFET) [107], (b) the electro-chemical random access memory (ECRAM) [108], and (c)
the spin-orbit torque magnetic random access memory (SOT-MRAM) [109]. Other interesting
three-terminal concepts that have been recently investigated for neuromorphic computing applications
are the 2D semiconductor-based mem-transistors [110,111] and the domain-wall-based magnetic
memories [112,113].

Iread

Figure 12. Sketch of three fundamental examples of three-terminal memristive devices. (a) Schematic
structure of ferroelectric field-effect transistor (FeFET) device, where the ferroelectric switching
phenomenon allows the transistor threshold voltage to be modulated, thus gradually changing the
channel conductivity. (b) Schematic structure of electro-chemical random access memory (ECRAM)
device, where the channel conductivity is controlled by the migration of ion species, e.g., Li* ions,
into an electrolyte material being induced by the voltage applied at the gate terminal. (c) Schematic
structure of spin-orbit torque magnetic random access memory (SOT-MRAM), where the current flow
in a heavy metal (HM) line causes a polarization switching in the MT]J-free layer, resulting in a device
conductance change. Reprinted with permission from [107,108]. Copyright 2017, IEEE. Copyright
2018, IEEE.

Figure 12a shows the structure of the FeFET consisting of an MOS transistor with an FE material,
such as doped-HfO; [103], and perovskites [106], serving as the gate dielectric. Here, the application
of external pulses at the gate terminal induces a non-volatile polarization switching within the FE
dielectric, leading to a change of the transistor threshold, hence of the channel conductivity, which
can be probed simply by reading the current at the drain terminal. As a result, the FeFET concept
allows significant issues due to transient read currents and destructive read operation limiting FeRAM
operation to be overcome. This three-terminal device has recently been operated into memory
arrays with 28 nm CMOS technology [114] and exhibits a strong potential for the development of 3D
structures [115]. Also, it has been operated to replicate synapse [116] and neuron [117,118] functions,
which, combined with 3D integration opportunity, makes it a strong candidate for neuromorphic
computing applications.
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Figure 12b illustrates the device structure of the ECRAM consisting of an MOS transistor
where a solid-state electrolyte based on inorganic materials, such as lithium phosphorous oxynitride
(LiPON) [108,119], or organic materials, such as poly (3, 4-ethylenedioxythiophene):polystyrene
sulfonate (PEDOT:PSS) [120], is used as the gate dielectric. Its operation relies on the
intercalation/de-intercalation of ions in a channel layer to tune the device conductance. As reported
in [108], the intercalation of Li* ions into the WOj layer by application of a positive voltage at the gate
terminal leads the device to experience a conductance increase whereas the de-intercalation of Li* ions
under negative bias leads the device to experience a conductance decrease. The linear conductance
change is achievable in ECRAM thanks to the decoupling of read/write paths, which makes this device
concept very attractive for synaptic applications, mainly for hardware implementation of synaptic
weights in ANNs, where analog and symmetric weight updates play a crucial role. Also, the device
investigated in [108] provides fast operation at the nanosecond timescale, thus opening the way toward
a significant acceleration of the training process in hardware ANNS.

Figure 12c shows the device structure of the SOT-MRAM, where a heavy metal (HM) line, typically
in Pt [121] or Ta [122], is located under an MT]J. This three-terminal device is programmed by the flow
of a horizontal current through the HM line, which induces a spin accumulation as a result of the
spin Hall or the Rashba effects [123,124], leading to the switching of magnetic polarization in the MTJ
FL. Unlike the program operation, the read operation can be performed by measuring the vertical
current flowing in MT] as a result of the TMR effect, which means that the three-terminal structure of
SOT-MRAM offers the opportunity to decouple read/write current paths and consequently improve
the endurance performance compared with STT-MRAM. Regarding device applications, SOT-MRAM
was used to implement neuromorphic computing in ANNSs, by exhibiting the synapse function [125],
the neuron function [126], and the associative memory operation [127].

5. Memristive Neuromorphic Networks

Thanks to their rich physics and nanoscale size, memristive concepts are believed to be promising
candidates to achieve the huge density and behavior of real synapses and neurons, thus enabling
brain-like cognitive capabilities in hardware neural networks. Based on this appealing approach, many
hardware or mixed hardware/simulation implementations of the neural networks currently dominating
the neuromorphic computing scenario, namely the DNNs and the SNNs, have been proposed.

5.1. DNNs with Memristive Synapses

DNNs encompass various ANN architectures, such as feedforward MLP and convolutional neural
network (CNN) [36], that have attracted wide interest in the neuromorphic computing scenario thanks
to the excellent performance achieved in machine learning tasks, such as image classification [128],
face verification [129], and speech recognition [130]. Because of the very high complexity of the
CNN architecture, which consists of a deep hierarchy of convolutional layers followed by some fully
connected layers, and processing strategy, which is based on the extraction of the most significant
features of submitted images via the application of large sets of filters, hardware implementation of
DNN tasks with memory devices has mostly been focused on feedforward MLP networks. In this type
of ANN, the training phase is based on a supervised learning algorithm called backpropagation [21-23]
and consists of three sub-procedures called forward propagation, backward propagation, and weight
update [36]. Note that although the backpropagation algorithm is chiefly considered lacking in
biological plausibility [131], recent works have questioned this aspect [132]. During training, upon any
input presentation from a training database containing images of objects, digits, or faces, the input signal
propagates in the forward direction from the input to output layer, passing through the multiplication by
synaptic weights of each layer and the summation at the input of each hidden/output neuron. Forward
propagation yields an output signal, which is compared with the target response of the network,
namely the label of the submitted image, thus leading to the calculation of the corresponding error
signal. At this point, the calculated error signal is propagated in the backward direction from the output
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to the input layer and is used to update all the synaptic weights, hence the name backpropagation.
Repeating this scheme for every image of the training database for a certain number of presentation
cycles or epochs, the optimization of synaptic weights is achieved, leading the network to specialize on
the training database. After, the training phase is followed by the test phase, namely the phase where
the classification ability of DNN is evaluated by submitting another database, called the test dataset,
only once, via forward propagation of the signal encoded in all the test examples [36].

The downside of the outstanding results achieved running DNNs in software on high-performance
digital computers, such as GPU and TPU, or very large servers is given by the excessive power
consumption and latency due to the von Neumann architecture. To overcome this issue, memristive
devices, in particular RRAM and PCM, have been intensively investigated to accelerate artificial
intelligence (AI) applications in hardware thanks to their ability to execute in-memory computing
with extremely high energy efficiency and speed by exploiting basic physical laws, such as the Ohm’s
law and Kirchhoff’s law [11]. However, hardware implementation of a real in-situ weight update for
DNN training has been challenged by critical non-idealities affecting the conductance response of the
majority of memristive devices, mainly RRAM and PCM, during set (potentiation) and reset (depression)
processes, such as the non-linearity, the asymmetry, and the stochasticity [34,133,134]. Motivated
by these significant limitations, a wide range of alternative materials and technologies have been
intensively investigated, leading to the recent emergence of novel concepts, such as ECRAM [108] and
the ionic floating gate [135], thanks to their highly linear, symmetric, and analog conductance behavior.

In thelast 10 years, great advances in crossbar-based demonstrations of DNNss for pattern classification
have been achieved using RRAM and PCM devices [12,13,136-138]. In ref. [12], a medium-scale crossbar
array containing 165,000 PCM devices with a one-transistor-one-resistor (1T1R) structure was used to
demonstrate an image classification task by hardware implementation of the three-layer DNN schematically
shown in Figure 13a. This network is based on an input layer with 528 input neurons, a first hidden layer
with 250 neurons, a second hidden layer with 125 neurons, and an output layer with 10 neurons, and was
operated on a cropped version (22 X 24 pixels) of handwritten digit images from the MNIST database
for training and test operations. To implement positive and negative synaptic weights of the network,
Burr et al. proposed a differential configuration based on pairs of 1T1IR PCM cells with conductance,
G* and G, respectively, as shown in Figure 13b. According to this structure, each weight can be potentiated
or depressed by increasing G* with fixed G- or increasing G- with fixed G*, respectively. Also, the network
was implemented with software neurons, providing the conversion of the sum of input currents into
an output voltage by application of the tanh non-linear function. After the training process, which was
carried out on 5000 MNIST images by using a complex pulse overlap scheme, the network’s classification
ability was evaluated, leading to a best performance of only 83% due to the asymmetry and non-linearity
of the PCM G-response (Figure 13c). To tackle this limitation, a novel artificial synapse combining the 1T1R
differential pair with a three-transistor/one-capacitor (3T1C) analog device was presented in ref. [138].
This led the PCM-based DNNs with improved hardware synapses to match the software performance
on both the MNIST and CIFAR databases [139]. Later, other DNN implementations in small-scale 1T1R
RRAM crossbar arrays were demonstrated, enabling MNIST classification with 92% test performance [137]
and gray-scale face classification on the Yale face database with 91.5% performance [136], thanks to
the RRAM conductance responses displaying high linearity and symmetry in both update directions.
Moreover, an alternative approach aiming at combining high performance with high energy efficiency
was proposed in ref. [140]. Here, after an off-line training resulting in the optimization of synaptic weights
in the software, the floating-point accuracy of synaptic weights was reduced only to five levels, which
were stored in a hardware 4 kbit HfO, RRAM array using a novel multilevel programming scheme.
The following execution of the inference phase with the experimental conductances stored into the 4 kbit
RRAM array led to a maximum classification accuracy of 83%. A simulation-based study showed that the
implementation of synaptic weights using more conductance levels can move performance beyond 90%
with larger arrays.
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Figure 13. (a) Schematic representation of a three-layer DNN operated on the MNIST database for an
image classification task. (b) Weight implementation in DNN by differential pairs of 17TIR PCM cells
with conductances Gj;* and G;;~, which provide a positive current and a negative current, respectively.
(c) Experimental classification accuracy achieved by three-layer DNN during the inference phase.
Reprinted with permission from [12]. Copyright 2014, IEEE. Deep neural networks, DNNs; Modified
National Institute of Standards and Technology, MNIST; one-transistor-one-resistor, 1T1R.

5.2. SNNs with Memristive Synapses

Although DNNs have shown to be capable of excellent performance in fundamental cognitive
functions, exceeding the human ability in some cases [128,141], the interest in SNNs is rapidly increasing
thanks to their attempt to replicate structure and operation principles of the most efficient computing
machine found in nature, which is the biological brain. The brain can efficiently learn, recognize, and
infer in an unsupervised way thanks to the plasticity of biological synapses controlled by local rules,
such as STDP, which has recently inspired many hardware implementations of synaptic plasticity at
the device and network level exploiting the attractive physical properties of memristive devices.

One of the earliest STDP demonstrations at the memristive device level was performed by Jo and
coauthors in ref. [142] by using an Ag/Si-based CBRAM device as the synapse and a time-division
multiplexing approach based on synchronous time frames which was designed to achieve STDP
characteristics thanks to the conversion of the time delay into the amplitude of the pulse to be
applied across the synaptic device. After this precursor implementation, another scheme based on
voltage overlap at the terminals of memristive synapses was experimentally demonstrated in both
RRAM [143] and PCM [144]. Both works demonstrate potentiation and depression characteristics very
close to biological STDP, exploiting the analog modulation of device conductance achieved via the
superposition of voltage spikes with suitably tailored waveforms. Specifically, Kuzum et al. proposed
the voltage waveforms shown in Figure 14a as PRE and POST spikes for achieving potentiation in PCM
devices [144]. As the relative delay is positive, in this case At = 20 ms, the overlap of the PRE spike,
which consists of a sequence of high positive pulses with increasing amplitudes followed by another
sequence of small positive pulse with decreasing amplitudes, with the POST spike, which consists of a
single 8 ms long negative pulse, leads the total voltage across the PCM cell, Vpre — Vpost, to only cross
the minimum threshold for potentiation, vp, thus leading the synapse to undergo potentiation via a
set process within PCM. Changing the sign of At, depression was also demonstrated, thus allowing
the STDP characteristics shown in Figure 14b to be achieved, which exhibit a very nice agreement
with the Bi and Poo measurements [38]. Moreover, note that this scheme offers the opportunity to
finely tune the shape of STDP characteristics, by suitably designing the PRE spike waveform [144].
Taking inspiration from this approach based on overlapping spikes across the memristive device, more
recently, other significant STDP demonstrations were achieved in individual two-terminal memristive
devices, thus enabling unsupervised learning in small-scale memristive SNNs [145-149]. However, the
synapse implementation using individual two-terminal memristive devices might suffer from serious
issues, such as (i) the requirement to control the current during set transition in RRAM devices to avoid
an uncontrollable CF growth [64], which would reduce the synapse reliability during potentiation;
(ii) the sneak paths challenging the operation of crossbar arrays; and (iii) the high energy consumption.
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Figure 14. (a) PRE and POST spike waveforms applied at terminals of a PCM-based synaptic device to
change its weight via an overlap-based STDP scheme. The application of a positive time delay of 20 ms
leads to a conductance increase (potentiation) in the PCM synapse since the spike overlap leads the
effective voltage across the PCM to cross the potentiation threshold whereas the higher depression
threshold is not hit. (b) Measured weight change as a function of the spike timing achieved using a
PCM synapse against experimental data collected by Bi and Poo in biological synapses. Reprinted with
permission from [144]. Copyright 2012, American Chemical Society.

To overcome these drawbacks, a novel hybrid CMOS/memristive STDP synapse using the 1T1R
structure was proposed in refs. [150,151]. Figure 15a shows the schematic structure of the 1T1R device
presented in ref. [151], where a Ti/HfO,/TiN RRAM is serially connected to the drain of an MOS
transistor acting as selector and current limiter. As schematically shown in Figure 15b, the ability of
the 1T1R cell to operate as a synapse capable of STDP was validated in the hardware [152]. The 1T1R
synapse operation can be explained as follows. The application of a pulse designed as a PRE spike at the
gate terminal of the transistor combined with the low voltage bias applied at the TE of the RRAM device
activates a current flowing toward the BE. At this point, the current enters in an integrate-and-fire
circuit implementing POST where it is integrated, causing an increase of the POST internal potential,
Vint- As a sequence of PRE spikes leads the POST to cross its internal threshold, the POST emits both
a forward spike toward the next neuron layer and a suitably designed spike, including a positive
pulse followed by a negative pulse, being delivered at TE, thus creating the conditions for synaptic
weight update according to STDP [151]. As shown in Figure 15¢, if the PRE spike anticipates the
POST spikes (At > 0), only the positive pulse of the POST spike with amplitude V1g; (V1E+ > Viet)
overlaps with the PRE spike, thus inducing a set transition within the RRAM device, leading RRAM
to LRS, and, therefore, the synapse to be potentiated. Otherwise, if the PRE spike follows the POST
spike (At < 0), only the negative pulse with amplitude Vg_ ([VTg—| > [Vreset]) overlaps with the PRE
spike, thus inducing a reset transition within the RRAM device, leading RRAM to HRS, and, therefore,
the synapse to be depressed (not shown). Thanks to this operation principle, the 1T1R synapse was
shown to capture STDP functionality implementing the 3D characteristics shown in Figure 15d, where
the relative change in conductance, n = log;9(Ro/R), is plotted as a function of the initial resistance state,
Ry, and relative delay, At. They support potentiation/depression at positive/negative At, evidencing
that maximum potentiation is obtained for Ry = HRS, whereas maximum depression is obtained for
Ry = LRS. If the 1T1R synapse is initially in LRS/HRS, no potentiation/depression occurs because it
cannot overcome the boundary conductance values set by LRS and HRS [151-153]. Importantly, note
that the weight change in the 1T1R synapse can be induced only via spike overlap, hence only for
delays in the range —10 ms < At < 10 ms in this experiment [152].
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Figure 15. (a) Schematic structure of the 1TIR RRAM structure. (b) Schematic representation of the
1T1R structure as a synapse to achieve STDP in hardware via overlapping PRE and POST voltage
spikes applied at the gate terminal and RRAM top electrode, respectively. (c) Schematic sketch of PRE
and POST overlapping spikes leading to synapse potentiation via the activation of a set process in
the RRAM cell. (d) STDP characteristics experimentally demonstrated in the 1TIR RRAM synapse.
Adapted with permission from [151,152]. Copyright 2016, IEEE.

Although the STDP characteristics achieved in the 1T1IR RRAM synapse [151,152] display a
squared shape due to binary operation of the RRAM cell instead of the exponentially decaying
behavior observed in biological experiments, the plasticity of the 1T1R synapse was exploited
in many SNN implementations enabling neuromorphic tasks, such as unsupervised learning of
space/spatiotemporal patterns [151,152,154,155], the extraction of auditory/visual patterns [156,157],
pattern classification [158-160], and associative memory [161-163], in both simulation and hardware.

Figure 16a shows the schematic representation of the RRAM-based SNN used in ref. [152] to
demonstrate unsupervised learning of visual patterns in hardware. This perceptron SNN consists
of 16 PREs connected to a single POST via individual synapses with the 1TIR RRAM structure of
Figure 15a. Pattern learning experiment is based on three sequential phases where only one 4 x 4
visual pattern among Pattern #1, Pattern #2, and Pattern #3 shown in Figure 16b is submitted to the
input layer, and was conducted using a stochastic approach according to which the probability to
submit the pattern image or a random noise image similar to the last 4 x 4 pattern in Figure 16b at
every epoch is 50%. Using this training approach, Figure 16c shows that the submission of three
patterns alternated with noise resulted in the on-line adaptation of SNN synapses to the presented
pattern in all three phases, evidencing a selective potentiation of synapses within the submitted pattern
due to the correlated spiking activity of corresponding PREs and the depression of synapses outside
the pattern, typically called background synapses, due to the uncorrelated nature of noise inducing
POST spike-PRE spike depression sequences for the background with a high probability [151,152].
Note that the frequency and amount of submitted noise has to be carefully designed to prevent learning
dynamics from becoming unstable [164]. To further support the unsupervised pattern learning ability
of SNN with 1T1R RRAM synapses, Figure 16d shows the raster plot of spikes generated by PREs
during the whole experiment, leading to the time evolution of synaptic conductance evidenced in
Figure 16e, where the pattern/background synaptic conductance converges to LRS/HRS at the end of
each training phase. Note that the stochastic approach used in this experiment also allowed for the
implementation of multiple pattern learning by a winner-take-all scheme [165] based on the use of
software inhibitory synapses between 2 POSTs, and unsupervised learning of gray-scale images [152].
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Figure 16. (a) Schematic sketch of a single-layer perceptron network where a 4 x 4 input layer is fully

connected to a single POST. (b) Sequence of three visual patterns (Pattern #1, Pattern #2, and Pattern #3)
submitted to the neural network during training process and an example of a random noise image, which
is alternatively applied to patterns according to a stochastic approach. (c¢) Conductance/weight color
plots measured at epochs 0, 300, 600, and 1000 evidencing the ability of the synaptic weights to adapt to
submitted patterns thanks to selective potentiation of pattern synapses and noise-induced depression of
background synapses. (d) Raster plot of PRE spikes applied to pattern and background input channels
during the learning experiment. (e) Time evolution of the measured synaptic conductance during three
phases of the unsupervised learning experiment showing convergence of pattern/background synapses
to LRS/HRS. Reprinted from [152].

The main drawbacks generally limiting the implementation of synaptic plasticity in overlap-based
synaptic concepts, such as the 1IT1R synapse, are the pulse duration and energy efficiency. Overlap-based
implementations first require a pulse width of the order of time delays to allow for conductance change
within the device, which results in pulses with a long duration causing a high power consumption.
In addition to this, the need for long pulses to program overlap-based memristive devices also
causes too slow signal processing in large neuromorphic networks, which leads to low throughput
performance [166].

An alternative approach to achieve synaptic plasticity overcoming the limitations affecting
overlap-based memristive devices consists of the adoption of non-overlap memristive devices, such as
the second-order memristor [167,168]. Unlike first-order memristors, such as RRAM and PCM, where
device conductance can change only if overlapping voltage pulses are applied at device terminals,
resistive switching in second-order memristors can take place by sequential application of two spikes
with a certain At at device terminals as a result of short-term memory effects encoded in the time
evolution of second-order variables, e.g., the internal temperature. As shown in Figure 17a, if Atis long,
two sequential spikes applied at terminals of a second-order memristor induce small independent
changes in temperature, which results in no conductance change. On the contrary, if At is short, the
superposition of the effects of applied spikes results in a large change in temperature thanks to a limited
thermal constant of about 500 ns, thus leading to a long-term conductance variation in the device as
a result of short-term memory effects. Importantly, short memory effects observed in second-order
memristors have recently attracted great interest because they can allow for the emulation in hardware
of a fundamental biological process playing a key role in the real synapse response as the Ca?* ion
dynamics [169,170] and to finely replicate biological STDP and SRDP [168,171]. An interesting STDP
demonstration by a second-order memristor is reported in ref. [168]. Here, a Pt/TaO5_,/TaOy/Pd
RRAM device was operated as a non-overlap synapse to achieve STDP via sequential application of
PRE and POST voltages. As shown in Figure 17b, the PRE spike consists of a positive pulse with
amplitude of 1.6 V and duration of 20 ns followed after 1 us by a longer positive pulse with amplitude
of 0.7 V and duration of 1 pus whereas the POST spike includes a positive pulse with amplitude of 1.1 V
and duration of 20 ns followed after 1 pus by a longer positive pulse with amplitude of 0.7 V and 1 ps
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width. Note that both the first pulse, called the programming element, and the second pulse, called the
heating element, within PRE and POST spikes cannot cause independently a conductance change in
the RRAM device. The application of the PRE/POST spike at TE/BE of the RRAM device results in an
effective voltage drop across the device, evidencing a PRE-POST spike sequence for positive At and
POST-PRE spike sequence for negative At, as shown in Figure 17c. In the case of the PRE-POST spike
sequence (At > 0), the heating effect of the PRE spike affects the POST spike, making the positive change
in conductance due to the negative programming pulse in the POST higher than the negative change in
conductance due to the positive programming pulse in the PRE, hence causing the non-overlap RRAM
synapse to undergo potentiation. On the other hand, in the case of the POST-PRE sequence (At < 0),
the opposite occurrence order of spikes results in an effective negative conductance change in the
Pt/Ta05_,/TaOy/Pd RRAM device, resulting in the depression of the non-overlap synapse. Figure 17d
shows the STDP characteristics experimentally measured in the Pt/TayOs_,/TaOy/Pd RRAM device for
variable At in the range —6 us — 6 us, which exhibit strong similarity with biological data and a good
agreement with simulation results achieved by a numerical model of the second-order memristor.
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Figure 17. (a) Schematic representation of a non-overlap scheme enabling STDP in second-order
memristors. Short-term memory effects observed in second-order physical variables, e.g., internal
temperature, allow for the implementation of potentiation/depression for short/long delays. (b) PRE
and POST spike waveforms applied at top electrode (TE) and bottom electrode (BE) to implement
non-overlap STDP. (c) Effective voltage across a second-order memristor to induce potentiation (left) and
depression (right). (d) STDP characteristics measured in a second-order memristor against calculated
curves achieved by numerical modeling. Reprinted with permission from [168]. Copyright 2015,
American Chemical Society.

Similar to the second-order memristor device, other memristive concepts also allowed bio-realistic
synaptic plasticity to be demonstrated using non-overlap schemes. In ref. [172], an atomic switch
RRAM, whose stack includes a silver BE, an AgyS-based solid electrolyte, and a metal TE separated
from the Ag,S layer by a nanogap, was proposed as an artificial synapse thanks to the short-term
memory effects controlling its physical processes. In fact, the application of voltage pulses at TE
induces the gradual creation of an Ag atomic bridge within the nanogap leading to a short-term
potentiation process after a few pulses, resulting in an incomplete atomic bridge, which is followed by
a long-term potentiation process achieved after many pulses resulting in the formation of a complete
atomic bridge. In addition to short-term plasticity due to the spontaneous relaxation process of the
atomic bridge, this non-overlap device also offers the opportunity to capture SRDP potentiation and
depression depending on whether the frequency of the applied pulses is high or low. Thanks to this
functionality, the sequential learning of visual patterns was demonstrated in a 7 X 7 array of Ag,S
inorganic synaptic devices.

Another memristive concept to implement non-overlap synapses in hardware was recently
presented in ref. [171]. Here, a hybrid device based on the serial configuration of a volatile RRAM with
a SiOxNy:Ag stack serving as the select device and a non-volatile RRAM serving as the resistive device,
also known as a one-selector-one-resistor (1S1R) structure, was designed to demonstrate non-overlap
synaptic plasticity for neuromorphic computing. Exploiting spontaneous relaxation of CF similar to
the one taking place in atomic switches, the introduction of a volatile RRAM or diffusive memristor
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in series to a non-volatile RRAM, where conductance change can only be induced by the electric
field, enabled 1S1R synapses capable of both SRDP and STDP depending on the rate or occurrence
timing of PRE and POST spikes applied in sequence at TE. Note that the strong potential of 1S1R
synapses for neuromorphic computing applications was also investigated in simulation in [173,174].
Moreover, diffusive memristors developed in ref. [171] were used as neurons to build in hardware a
fully memristive neural network, which was shown to achieve outstanding performance in a pattern
classification task by the implementation of unsupervised learning [175].

6. Discussion

While neuromorphic networks have recently demonstrated an excellent ability in fundamental
cognitive computing applications, such as image classification and speech recognition, their large-scale
hardware implementation is still a major challenge. Achieving such a goal primarily requires
nanoscale, energy-efficient, and fast devices capable of emulating faithfully high-density, ultra-low
power operation and low latency of biological synapses and neurons. Moreover, depending on the
architecture (DNN or SNN) and the application of neuromorphic networks, such devices should also
fulfill other significant requirements, such as high retention, high linearity in conductance response,
and long endurance [35]. In Table 1, the CMOS-based and memristive emerging memory devices
investigated for neuromorphic computing we discussed in Sections 3 and 4 are compared in terms of
performance, reliability, and suitability for DNN, with the distinction between training and inference
phases, and SNN applications; however, it is evidenced that no emerging memory device can currently
optimize all the metrics for any network architecture and application.

Table 1. Comparison of key features exhibited by CMOS mainstream memory devices and memristive
emerging memory devices under investigation to implement neuromorphic computing in hardware.
Adapted from [35].

CMOS Mainstream Memristive Emerging Memories

Technology Memories
NOR NAND RRAM PCM STT-MRAM FeRAM FeFET SOT-MRAM Li-ion
Flash Flash
ON/OFF Ratio 104 10* 10-10>  10%-10* 1.5-2 102-10>°  5-50 1.5-2 40-103
Multilevel 2 bit 4bit 2 bit 2 bit 1bit 1bit 5 bit 1bit 10 bit
operation
Write voltage <10V >10V <3V <3V <15V <3V <5V <15V <1V
Write time 1-10 pus 0.1-1 ms <10 ns ~50 ns <10 ns ~30ns ~10 ns <10 ns <10 ns
Read time ~50 ns ~10 ps <10 ns <10 ns <10 ns <10 ns ~10 ns <10 ns <10 ns
Stand-by power Low Low Low Low Low Low Low Low Low
Write energy (J/bit) ~ ~100 pJ ~10 fJ 0.1-1pJ 10 pJ ~100 ] ~100 fJ <11 <100 ] ~100 fJ
Linearity Low Low Low Low None None Low None High
Drift No No Weak Yes No No No No No
Integration density High Very High High High High Low High High Low
Retention Long Long Medium Long Medium Long Long Medium -
Endurance 10° 10* 105108 10°-10° 10%% 1010 >10° >101° >10°
Su1tab1hty f or No No No No No No Moderate No Yes
DNN training
Smtal.)lhty for Yes Yes Moderate  Yes No No Yes No Yes
DNN inference
Suitability
for SNN Yes No Yes Yes Moderate Yes Yes Moderate Moderate
applications

To efficiently execute DNN online training in hardware, high speed and low energy consumption
are two essential features of synaptic devices to maximize the network throughput, namely the rate of
trained patterns, and enable DNNs in embedded systems, respectively. In addition to these features,
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high accuracy in weight update operation imposes the use of devices exhibiting a conductance response
with a high degree of linearity. This functionality makes almost all the emerging devices unsuitable as
synaptic devices for online training. The only exception is represented by novel Li-ion devices, which
appear to be very promising, with a simulated performance of around 98% [119], even though the
necessary technology maturity and high-density integration have not been reached yet. Alternatively,
more complex structures, including multiple pair of memristive devices, such as PCM and RRAM,
could mitigate the need for high linearity, but at the expense of a lower integration density [176].

Differently from DNN online training consisting of forward propagation, backpropagation, and
weight update operations, DNN inference only relies on forward propagation, which means that the
high linearity needed to accurately update the weights is not an essential feature of synaptic devices
for this task. Specifically, hardware suitable for optimizing the inference process should primarily
exhibit low latency to accelerate the classification of each test pattern and low-power consumption to
enable DNN inference at the edge. In addition to these features, high retention of analogue states is
also essential to prevent charge fluctuations in CMOS devices [177], stochastic noise in RRAM [178],
and resistance drift in PCM [179] from degrading the weights programmed in one shot after the off-line
training procedure. These requirements can be fulfilled not only by Li-ion devices, as in the case of
DNN training, but also by CMOS floating gate memory [55], RRAM [137], and PCM [148] devices
thanks to their ability to finely tune the conductance with analog precision to encode the stored weights.

On the other hand, hardware implementation of brain-inspired SNNs for sensors or embedded
systems primarily requires high energy efficiency to enable sensory information processing for long
times even in limited-energy environments. The high endurance of synaptic and neuron devices is also
strongly required in that SNN operation relies on a learning approach based on continuous synaptic
updates and continuous reset operations of integrate-and-fire neurons upon fire events. In addition
to these features, a high resistance window could be useful for accurate continual learning although
multilevel weight storage could be not strictly needed, as shown by significant applications using
binary stochastic memory devices, such as STT-MRAM. Therefore, both NOR Flash memory [57],
despite higher operating voltages, and all the memristive emerging devices show a strong potential for
hardware implementation of SNNs emulating the efficiency and 3D architecture of the biological brain.

Although some limitations currently hinder the large-scale industrialization of memory-centric
neuromorphic technology, the rich physics of memory devices can also offer additional biologically
inspired functionalities and more. For instance, besides synaptic implementation, integrate-and-fire
neuron functionality has been recently demonstrated in various types of memristive devices,
including RRAM [180], volatile RRAM [175], Mott memristor [181], PCM [182], STT-MRAM [183,184],
SOT-MRAM [126], and paramagnetic MTJs [185], thus opening the way for hardware implementation
of high-density fully memristive neural networks with a high area and energy efficiency. Also, thanks
to the short-term memory effects observed in some materials, a more realistic implementation of
biological synaptic behavior taking into account the impact of spatiotemporal patterns has been
achieved [171-173]. Moving from the standpoint of the device to that of the system, in-memory
computing with memristive devices is opening the way to the exploration of new learning algorithms
exhibiting strong similarity with human experience, such as reinforcement learning [186], which has
already been shown to enable complex tasks [187].

Finally, memristive devices are receiving increasing interest for the development of other
computing concepts by neuromorphic networks with high computational power, such as the Hopfield
recurrent neural network [188]. Although high acceleration performance has been achieved for the
solution of hard constraint-satisfaction problems (CSPs), such as the Sudoku puzzle, via CMOS-based
circuits [189], FPGA [190], and quantum computing circuits [191], the use of memristive devices in
crossbar-based neural networks can further speed up computation by the introduction of a key resource
as the noise [192] without the requirement of additional sources [193]. Moreover, very recent studies
have also evidenced the strong potential of memristive devices for the execution of complex algebraic
tasks, including the solution of linear systems and differential equations, such as the Schrédinger
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and Fourier equations, in crossbar arrays in only one computational step [16], thus overcoming the
latency of iterative approaches [15]. Therefore, these achievements suggest CMOS/memristive devices
as enablers of novel high-efficiency computing paradigms capable of revolutionizing many fields of
our society.

7. Conclusions

This work provides an overview of the most promising devices for neuromorphic computing
covering both CMOS and memristive device concepts. Physical MVM in memristive/CMOS crossbar
arrays implementing DNNs and SNNs has enabled both fundamental cognitive applications, such as
image and speech recognition, and the solution of algebraic and constraint-satisfaction problems
in hardware. These milestones can thus pave the way to highly powerful and energy-efficient
neuromorphic hardware based on CMOS/memristive technologies, making Al increasingly pervasive
in future society.
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