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Abstract: The fabrication of Ti-aluminide multi-layered composites have attracted great attention
for their excellent mechanical properties, such as high specific strength, high specific stiffness,
tolerable toughness, and low density. The preparation of the composite produced by a hybrid
procedure composed of Vacuum Hot Pressing (VHP) and Hot Isostatic Pressing (HIP) using Ti foils
and Al foils has been performed. Further, X-Ray Diffraction (XRD) and Scanning Electron Microscopy
(SEM) equipped with Energy Dispersive X-ray Spectrometry (EDXS) were carried out to identify the
microstructure and phase formation of the composite. In addition, an in-situ three-point bending
test was conducted on the notched specimen to observe the crack propagation behavior carefully.
The results indicate that the densified composite was obtained without any apparent voids and pores
which could undesirably develop into the source of cracks. Furthermore, all the pure Al foils were
totally consumed to form a series of the Ti-Al compounds through the diffusive reaction between the
adjacent Ti and Al foils. Moreover, the in-situ observation demonstrates the initiation and propagation
of cracks in the intermetallic layers and the role of residual Ti layers to blunt and bridge the cracks
by their plastic deformation. This study provides a new strategy for fabricating the Ti-aluminide
multi-layered composites.

Keywords: multi-layered composites; hybrid fabrication procedure; in-situ observation;
fracture mechanism

1. Introduction

Advanced materials are critical for scientific and technological progress, as well as for modern
industrial development. During the past decade, scientists and engineers have conducted lots of work
to develop and fabricate a series of new materials that are much stiffer, stronger, and lighter than the
traditional materials, in order to satisfy crucial and specific service requirements [1–6]. Especially in
recent years, studies on the microstructures and mechanical properties of some rigid biological materials
such as abalone and clam shells have shown that the intricately hierarchical microstructure of their
shells is the essential reason why these shells exhibit excellent properties when undergoing an external
load [7,8]. Noticeably, this unique hierarchical microstructure is over various scales and ultimately
shown as a group of alternatively stacked brittle calcium compounds layers and ductile organic layers.
The brittle phases supply the shells with enough strength, and the ductile phases play a vital role
as glue to bond the contiguous brittle phase to form an assembly at last. Hence, this multi-layered
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alternating structure is referenced to do some innovative designations for fabricating materials with
specific functional and mechanical properties [9].

It is well known that lots of studies have been conducted to develop new structural materials
with multi-layered configuration like that of the aforementioned mollusk shells based on bonding
two or three different metal foils, such as Ni-intermetallic laminate composite [10–12], Ti-intermetallic
laminate composite [13,14], and Cu-Al laminate composite [15]. Of these new composites, Ti-aluminide
multi-layered composite is the most investigated and it has many outstanding qualities, such as high
resistance to corrosion, high strength, and low density [16–18]. Hence, Ti-aluminide multi-layered
composite is regarded as a promising material employed for the aerospace industry. Until now,
some fabrication procedures for producing the Ti-aluminide multi-layered composite have been used,
such as reactive foil sintering, hot-roll bonding coupling with subsequent heat treatment, and explosive
welding followed by annealing [19,20]. Generally, a band of collective voids or pores located near
the centerline area of the obtained intermetallic layer always takes place after the fabrication process
mentioned above. These defects could effectively induce to generate some stress concentration area
around them to act as the sources of cracks to deteriorate the mechanical properties of the samples
while loaded externally. In addition, few in-situ observations have been conducted on characterizing
the crack initiation and propagation processes during the loading process. It has been proven that
in-situ scanning electron microscopy (SEM) is a reliable and valid method that can clearly and timely
record some valuable details of the damage process of the specimen [20,21].

Based on the above discussion, to obtain a dense multi-layered composite, a novel hybrid
fabrication procedure composed of Vacuum Hot Pressure (VHP) and Hot Isostatic Pressure (HIP)
was adopted to fabricate this bio-inspired multi-layered material by using the pure Ti and pure Al
foils. Furthermore, the fracture mechanism and crack propagating behavior of this material were
characterized and investigated by three-point bending test coupling with in-situ SEM.

2. Materials and Methods

2.1. Materials and Specimens Preparation

In our research, the commercial Ti foils (purity ≥ 99%, BAO TI Group Co., Ltd., Baoji, China)
and Al foils (purity ≥ 99%) with corresponding thicknesses of 100 µm and 40 µm were adopted.
To improve the bond quality of the adjacent foils, the contaminants and oxidation layers on the surfaces
of the Ti foils and Al foils were respectively cleaned by the 15% HF solution and 20% NaOH solution
(more details can be found in [22]). Finally, the cleaned foils were sandwiched following the stacking
sequence, as can be seen in Figure 1.
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Afterwards, the precursor was moved into the hot pressing furnace (ZT-40-20Y, Shanghai Chenhua
Science Technology Crop., Ltd., Shanghai, China); the sintering parameters of this process are
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schematically shown in Figure 2. Firstly, to obtain a prelaminar contact between adjacent foils,
we increased the temperature to 550 ◦C from the room temperature and kept this temperature for
1 h under a low pressure of 5 MPa. After that, the temperature rose to 653 ◦C while the pressure
was decreased to atmospheric. This step was kept for 2 h to obtain a sufficient reaction and avoid
forcing out any molten Al. Subsequently, the temperature was turned up to 900 ◦C and then cooled
down. During this step, the pressure was increased to 15 MPa for compressing the composite.
Furthermore, the Hot Isostatic Pressing (HIP) was chosen as to densify the composite. During this step,
the sintered sample was encapsulated into an evacuated glass can (5 × 10−4 Pa) and then densified at
900 ◦C for 2 h, while the applied pressure was 120 MPa.
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Figure 2. Schematic illustration of the hybrid processing technology.

After sintering, the specimen was obtained from the fabricated composite by the electro-discharge
machining technology and then inlaid in epoxy resin to form an assembly. Subsequently, the assembly
was ground with metallographic abrasive paper and then polished with the diamond suspensions
(6 µm, 3 µm, 1 µm, and 0.25 µm). To solve the problem of the work-hardening resulting from
conventional grinding, a chemo-mechanical polishing using Al2O3 suspension (particle size: 0.04 µm)
was performed. Scanning Electron Microscopy (SEM, Shimadzu Corporation, Kyoto, Japan) equipped
with Energy Dispersive X-ray Spectrometry (EDXS, X-MaxN OXFORD INSTRUMENT, Oxford, UK) was
used to examine the microstructures and phase composition. At the same time, phase identification was
performed by X-Ray Diffraction (XRD, X’PERT PRO MPD, PANalytical B.V., Almero, the Netherlands).

2.2. In-Situ Three-Point Bending Test

A servo-hydraulic loading system, installed in the vacuum chamber with a scanning electron
microscope (Shimadzu Corporation), was used to conduct the in-situ three-point bending test with
the constant loading speed of 0.1 mm·min−1. In order to record in-situ the crack propagation
behavior, the test was interrupted intermittently to capture the in-situ propagation behavior of cracks.
Then, the load procedure was resumed until the final rupture of the specimen. Figure 3 demonstrates
schematically the dimension of the tested specimen and loading state in the chamber of the SEM,
as well as the supporting distance adopted in this experiment is 20 mm. Herein, it should be noted that
the orientation of the notch in the specimen is perpendicular to that of the layer and this orientation of
the notch is named crack arrester orientation in some other researches [14,23]. Figure 3c shows the
micromorphology of the notched specimen, and none of the cracks can be detected within the sample.
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in a vacuum chamber, and (c) initial morphologies of the area near the notch of the sample.

3. Results and Discussion

3.1. Microstructure Observation And Phase Identification

A typical microstructure of this multi-layered composite surface is illustrated in Figure 4. It can
be seen there is no defect like pores at the adjacent interface in this apparent multi-layered structured
composite. As is mentioned above, even though the pressure applied during the VHP sintering
process was not very enough to fully densify the sample, the super high compressive pressure resulted
from HIP densifying process acted as a useful complementary step to crush the voids to enhance
the density of the sample. Moreover, further observation indicated that the shapes of the alternating
layers exhibited relatively straight at the macro level, but wavy at the micro level. This phenomenon
may be ascribed to the distinguish reaction rates of spots between Ti and Al foils during the sintering
process [18].
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Furthermore, amplification characterization reveals there are four distinctive sub-structures
distributed within the intermetallic layer, as can be seen in Figure 5a. To clarify the compositions
and compounds of the intermetallic layer, EDXS and XRD were adopted. The concentration of
Ti element evidently exhibited a graded distribution along the line crossing the adjacent layers
and the concentration value of Ti element decreased progressively from the residual Ti layer to
the center area of the intermetallic layer opposing to the distribution behavior of Al element.
Subsequently, EDXS point-detection was adopted to identify the chemical compositions of each
sub-structure of the intermetallic layer. The quantified results, as shown in Table 1 revealed that
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they are Al3Ti, Al2Ti, TiAl, Ti3Al, and Ti, labeled as spot 1, spot 2, spot 3, spot 4, and spot 5.
Furthermore, XRD characterization demonstrates the above results, shown in Figure 5b. As mentioned
by some previous papers [18,24,25], solid Ti and liquid Al had the abilities to react with each other to
form some intermetallic compounds such as Al3Ti, Al2Ti, TiAl, Ti2Al5, and Ti3Al. Thermodynamic
calculation on the Gibbs formation free-energy of these aluminides indicates that Al3Ti has relatively
lower formation free-energy among the compounds mentioned above during the temperature range
of 0–800 ◦C [26,27]. Although the Al2Ti and Ti2Al5 possess much lower formation free-energy than
Al3Ti, some researches have been demonstrated that TiAl should be involved as the starting phase
to form those two aluminides formation process [28]. Therefore, it can be deduced that Al3Ti is
the first generated phase prior to other intermetallic phases due to its lowest formation free-energy
at the interfacial temperature around 653 ◦C utilized in our research. After all of the liquid Al
phase has been consumed into generating Al3Ti, in the following temperature post-process stage,
aluminum atomics continuous to diffuse to the residual Ti layers from the Al3Ti compound due to the
gradient concentration of the Al element to form Al2Ti, TiAl, and Ti3Al from the resultant Al3Ti layer
to residual Ti layer [24,29].
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Figure 5. (a) Typical back-scattered electron (BSE) image of the Ti-Al reaction zone and Energy
Dispersive X-ray Spectrometry (EDXS) linescan analysis results, (b) X-Ray Diffraction (XRD) pattern of
this composite.

Table 1. EDXS points analysis shown in Figure 5.

Element Spot 1 (at. %) Spot 2 (at. %) Spot 3 (at. %) Spot 4 (at. %) Spot 5 (at. %)

Ti 24.77 32.89 48.72 74.59 96.33
Al 75.23 67.11 51.28 25.41 3.67

Phase Al3Ti Al2Ti TiAl Ti3Al Ti

3.2. In-Situ Three-Point Bending Test Observation and Detailed Fracture Behavior

Figure 6 presents the typical load-displacement curve. It should be pointed out that the aslant
tails of the line represent that several interruptions were performed during the mechanical test to
capture the constantly changing morphology of the specimen before its catastrophic failure [21,30].
Through analyzing this curve of mechanical response, we divided this curve into two parts using the
dotted line shown in the Figure 6: (1) the line-tendency goes up from the beginning and reaches the
area near the interruption point “d”; (2) the line-tendency shows a drop followed by the first part and
then goes up again before the final fracture. Moreover, lots of micro-fluctuations can be observed by
amplifying the curve marked by an elliptical circle in Figure 6, which are resulted from the formation
and propagation of the micro-cracks within the sample undergoing the external load.
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For comparing the mechanical responses between this composite and its components, the same
testing procedures were conducted on commercial pure Ti and pure Al specimens and the results are
illustrated in Figure 6. It is clear that the strength of the multi-layered composite is much higher than
those of Ti and Al, while the ductility of the composite is lower than those of Ti and Al (typical pure
metallic behavior with a long plateau after the yielding point).

Figure 7a–j shows the detailed deformation morphologies corresponding to some interruption
points indicated in Figure 6. Firstly, at the beginning of load (marked as “a” in Figure 6), several cracks
have been initiated and propagated within the brittle intermetallic layers near the notch site, which are
shown in Figure 7a,b. Especially shown in Figure 7b, it can be seen that there are three categories
of cracks marked by white arrows in the amplified area. According to the orientations of these
cracks, they are named sloping cracks, vertical cracks, and longitudinal cracks, respectively [31].
Furthermore, there have already been some vertical micro-cracks (also marked by white arrow) in this
area. It is clearly demonstrated that the orientations of those initial micro-cracks are perpendicular to
that of the layers. Nevertheless, hardly any deformation traces within the Ti layer can be found at
this time, which is consistent with previous studies [23,32,33]. With the increasing load, the widths of
previous cracks become larger than before coupling with some new cracks generation corresponding
to the point “b” in Figure 6. Meanwhile, some ductile Ti layers closing to the notched area have been
sheared to exhibit plastic deformation and the crack bridging of Ti layers can be seen in Figure 7d,f,
which introduces the cracks in one intermetallic layer to the next intermetallic layer by intermediate Ti
layer, prolonging the cracks greatly. In Figure 7d, slipping bands which are generated during the shear
deformation of Ti layers are detected. Besides that, more and more micro-cracks (shown in Figure 7e)
appeared in intermetallic layers due to the increasing external load. The cracks propagate along the
layers within the intermetallic layer rather than penetrate into the ductile layer and pass through the
specimen directly, resulting from the lower the interfacial bonding strength between intermetallic
layers and ductile layers than the strength to tear the ductile Ti layers. Thus, the brittle intermetallic
layer is thoroughly ruptured due to the excess of the tensile stress (marked by black arrows in Figure 7g)
and this tensile stress also results in plastic deformation, giving rise to strain strengthening of the
ductile Ti layer at the moment of point “c” in Figure 6. Subsequently, at the end of first part (marked
by point “d”), the ductile Ti layers are totally sheared, and the lateral morphologies of the sample at
this point are shown in Figure 7i,j. Following the fracture of Ti layers, the tendency of the curve has
a slight drop at the end of the first part in Figure 6.
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Figure 7. Scanning Electron Microscopy (SEM) micrographs of the in-situ three-point bending test
corresponding to the first part of the Load-displacement curve representing the cracks nucleation
and propagation process: (a,b) represent the detailed deformation morphologies of the specimen
corresponding to the ”Point a” in Figure 6, showing several cracks initiated and propagated within
the brittle intermetallic layers; (c–f) correspond to “Point b” in Figure 6, showing the crack bridging,
slipping bands of Ti layers and more micro-cracks in intermetallic layers; (g,h) correspond to “Point c”
in Figure 6, showing the shearing band in Ti layers and thorough fracture of the intermetallic layers;
(i,j) correspond to “Point d” in Figure 6, showing the thorough fracture of the local Ti layers and
Intermetallic layers.

Then, at the beginning of the second part, the tip of the main crack has been already deflected
and blunted. Herein, additional energy should be provided for the continuous propagation of the
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crack. In Figure 8a, it can be found that lots of micro-cracks formed with the loading process before the
novel main crack exposure. At the same time, the ductile Ti layer is gradually stretched to generate
localized plastic deformation area, which is indicated in Figure 8d,e. Additionally, the distribution of
micro-cracks within the plane exhibits mushroom shape (marked by white dotted loop) caused by the
tensile stress condition [24,34]. Due to the above reasons, the crack density exhibits a graded distribution
from the upside to the opposite side. Finally, with the continued loading process, the specimen is bent
to be fractured. Here, it should be pointed out that the tip of the main crack is not straight, showing the
“zigzag” propagation. And the tip of the main crack is often branched at the interfaces of Ti and Ti-Al
intermetallic compounds, which is noted by white arrows in Figure 8g. Herein, based on the above
observations, it can be shortly summarized that extrinsic toughness mechanism plays an important
role, such as crack deflection and crack blunting et al [23,35].
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Figure 8. SEM micrographs of the in-situ three-point bending test corresponding to the second part of
the Load-displacement curve representing the cracks propagation process and the final morphologies
of the specimen after catastrophic fracture:(a,b) represents the detailed deformation morphologies of
the specimen corresponding to the ”Point e” in Figure 6, showing lots of micro-cracks formed before
the novel main crack exposure; (c–e) correspond to “Point f” in Figure 6, showing the distribution of
micro-cracks with the mushroom shape; (f,g) correspond to “Point g” in Figure 6, showing the “zigzag”
propagation of the main crack

Obviously, due to these mechanisms, the propagating paths of cracks are significantly changed
and prolonged, enhancing energy absorption capacity of the composite [36].

4. Conclusions

In this work, we adopted a hybrid sintering process to fabricate the Ti-aluminide multi-layered
composites, and analyzed the facture behavior with in-situ three-point bending test, the conclusions
can be drawn as follows:

(1) The Ti-aluminide multi-layered composites were successfully fabricated from sintering an
assembly comprising alternatively stacked pure Ti and pure Al foils by a hybrid procedure
composed of Vacuum Hot Pressing (VHP) and Hot Isostatic Pressing (HIP).
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(2) Microstructural observations indicated that all the pure Al foils were totally consumed to form
a series of the Ti-Al compounds through the diffusive reaction between the adjacent Ti and Al
foils, and none of the defects such as pores or voids were detected within the sample.

(3) The failure mechanism and crack propagation behavior of Ti-aluminide multi-layered
composites were carefully observed by in-situ three-point bending test on the notched sample.
Furthermore, the observation indicated that the cracks mainly initiate and propagate along the
intermetallic layers. Moreover, residual Ti layers also play an important role to blunt and bridge
the cracks by their plastic deformation at the tip of those cracks to arrest the cracks propagation
and enhance the toughness of this composite.
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