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Abstract: Mechanical properties of Q370qE carbon steel can be improved by cladding it with 316L
stainless steel. After rolling these materials together, microstructure, hardness, shear strength, and
corrosion properties of the cladded metals were evaluated. Hardness and shear tests were performed
according to appropriate standards to evaluate the bonds. The results show that the remarkable
diffusion of Ni and Cr formed a hard transition zone. The width of this diffusion zone increases
with increasing temperature. The shear strength of the clad interface reached a minimum of 385
MPa. In addition, the surfaces of samples were examined by neutral salt spray (NSS) tests and
potentiodynamic polarization tests to examine corrosion behavior. The 316L side primarily exhibited
pitting corrosion, while the Q370qE side was dominated by uniform corrosion.
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1. Introduction

Roll-bonded cladding of metals produces large bonding areas between metal plates. Our stainless
clad plate is made of cladding 316L stainless steel and Q370qE carbon steel. It is less costly than
using the cladding layer alone (316L) and is widely used in chemical, petrochemical, and marine
applications for its good corrosion resistance and mechanical properties [1,2]. There are many methods
for producing stainless steel clad plate, among which, hot roll-cladding is the most economical and
efficient manufacturing process. Kang et al. [3] believed that roll bonding was a solid-state welding
process that connects similar or dissimilar metals. It is a mature and widely used manufacturing
technique. For stainless steel clad plates, the performance is determined by both stainless steel and
carbon steel, and the elemental and structural changes of the two metals influence the subsequent
processing properties of the material. Rao et al. [4] studied the 304 stainless steel clad plate and observed
the highest hardness at the interface because of the diffusion of chromium and nickel. Li et al. [5]
studied the amount of oxides at the interface of stainless steel clad plates at different degrees of vacuum,
and the results showed that the surface oxidation was more obvious at lower vacuum. Peng et al. [6]
found that the fracture of oxides during the rolling process achieved a strong metallurgical bond
between the metals on both sides of the interface, with finer oxides being more favorable for interface
bonding. Although metallurgical and mechanical properties are heavily influenced by interface
characteristics, there is little information in the literature on the bimetallic interface produced by
cladding welding processes.

In this study, Q370qE is used as the base material and 316L is the cladding material. Because
metallurgical and mechanical properties are greatly influenced by interface characteristics, the current
research work is to study the interdiffusion phenomenon and interface microstructure after heat
treatment at 500 ◦C, 600 ◦C, 800 ◦C and 1000 ◦C.
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2. Experiments

As mentioned above, the flyer plate is 316L and the parent plate is Q370qE. A schematic
representation of the process for 316L/Q370qE clad plate is shown in Figure 1. It includes three steps:
surface cleaning, assembly, heating and rolling. The primary chemical compositions of 316L and
Q370qE are given in Table 1. The samples were heat-treated at 500 ◦C, 600 ◦C, 800 ◦C and 1000 ◦C for
30 min.

Table 1. Chemical composition of 316L/ Q370qE steel (wt %).

Elements C Si Mn S P Cr Ni Mo Fe

316L 0.02 0.56 1.33 0.002 0.031 17 10 2 balance
Q370qE 0.10 0.20 1.55 0.003 0.015 – – – balance
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Figure 1. Schematic representation of the process for 316L/Q370qE clad plate (a) surface treatment and
stacking; (b) hot rolling; (c) sampling schematic.

The test samples had a cross-sectional area of approximately 100 mm2 (10 mm × 10 mm). Both
surfaces were etched: Q370 with 4% nitric acid alcohol solution and 316L with aqua regia. After the
tests, the surfaces of the samples were examined using a scanning electron microscope (SEM, Carl
Zesis AG, Jena, Germany) and subjected to mechanical and electrochemical testing. Vickers hardness
tests were performed on a Huayin310HVS-5-type Vickers hardness machine (Laizhou Huayin Testing
Instrument Co., Ltd., Laizhou, China) with a 100 g load for 10 s. The shear test was carried out on
a Universal Testing Machine with reference to the Chinese standard GB/T 6396-2008. The cladding
plates were subjected to neutral salt spray tests with 5% solution of NaCl in distilled water at room
temperature. Polarization tests were performed in a 3.5 pct NaCl solution at room temperature using a
CS350 electrochemical workstation (Corrtest, Wuhan, China) with a three-electrode device consisting
of a silver chloride reference electrode, a platinum auxiliary electrode, and the samples. The scanning
potential was in the range of −1~0.5 V, and the scan rate was 0.05 mV/s.

3. Results and Discussion

3.1. Metallographic Examination

It can be seen from Figure 2 that the Q370qE microstructure is mainly strip-like ferrite and lamellar
pearlite. As the heat treatment temperature is increased from 500 ◦C to 1000 ◦C, the grain volume
near the interface becomes larger. This is because grains at the interface are severely deformed during
the rolling process and subsequently recrystallized during heat treatment. As shown in Figure 1a–c,
this region is referred to as the full ferrite region or semi-decarburized region because no pearlite is
present [7]. Since the mass fraction of the carbon steel side C is 0.10%, the mass fraction of the stainless
steel side C is 0.02%, the C content on both sides of the composite interface has a higher concentration
gradient, and the carbon atom size is also fine, which is a typical gap diffusion and diffusion speed
fast. The pearlite grains form a decarburized layer near the composite interface. As the temperature
increases, the width of the decarburized layer becomes wider. The heat treatment temperature of the
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composite plate increases, and the C atoms belong to the gap diffusion, so the distant C atoms diffuse
to the composite interface, thereby increasing the width of the decarburization layer.
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It can be seen from Figure 3 that the microstructure of the 316L side is austenite with clear grain
boundaries and substantial twinning. The grain boundary at 800 ◦C is the most obvious. Because
of the heat treatment at 800 ◦C, carbon and chromium easily form chromium carbides, reducing the
chromium content at the grain boundary and forming a chromium-depleted zone [8,9]. Heat treatment
causes the carbon and alloying elements in the 316L stainless steel and the carbon steel Q370qE to
diffuse to the grain boundaries, thereby causing more carbide particles at the grain boundaries. This
can seriously affect the performance of the composite sheet.



Materials 2019, 12, 1556 4 of 9  

Materials 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/materials 

  

(a) (b) 

  

(c) (d) 

Figure 3. Microstructures of the 316L side and SEM results: (a) 500 °C; (b) 600 °C; (c) 800 °C; (d) 1000 
°C. 

Figure 4a–f shows the diffusion curves of Fe, Ni, and Cr at the bonding interface of the 
composite plate after heat treatment at 500 °C, 600 °C, 800 °C, and 1000 °C, respectively. Because 
316L stainless steel contains more chromium and nickel, while carbon steel Q370qE contains more 
iron, at high temperatures, chrome and nickel diffuse into Q370qE and carbon diffuses into 316L. 
Obviously, the diffusion of elements such as Cr and Ni is not conducive to the corrosion resistance of 
the stainless steel side. It can be seen from the figure that a diffusion region appears at the interface. 
At 500 °C, 600 °C, 800 °C, and 1000 °C, the diffusion regions were 4.05 μm, 4.12 μm, 8.90 μm, and 
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Figure 3. Microstructures of the 316L side and SEM results: (a) 500 ◦C; (b) 600 ◦C; (c) 800 ◦C; (d) 1000 ◦C.

Figure 4a–f shows the diffusion curves of Fe, Ni, and Cr at the bonding interface of the composite
plate after heat treatment at 500 ◦C, 600 ◦C, 800 ◦C, and 1000 ◦C, respectively. Because 316L stainless
steel contains more chromium and nickel, while carbon steel Q370qE contains more iron, at high
temperatures, chrome and nickel diffuse into Q370qE and carbon diffuses into 316L. Obviously, the
diffusion of elements such as Cr and Ni is not conducive to the corrosion resistance of the stainless
steel side. It can be seen from the figure that a diffusion region appears at the interface. At 500 ◦C,
600 ◦C, 800 ◦C, and 1000 ◦C, the diffusion regions were 4.05 µm, 4.12 µm, 8.90 µm, and 10.61 µm thick,
respectively. It can be concluded that as the temperature increases, the degree of elemental diffusion
also increases.
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3.2. Microhardness Tests

Hardness and shear tests were used to evaluate quality in this study. The cladded plates were
harder than either the 316L or Q370qE. The hardness distribution at the interface is shown in Figure 5.
The cladding plate treated at 800 ◦C has the highest hardness and the best performance. This is because
carbon and chromium easily form chromium carbide at 800 ◦C heat treatment. As demonstrated in
Figure 1, combined with the results of the microstructure analysis of the composite interface and the
element distribution, it can be seen that the change in hardness is consistent with the decarburization
layer and the diffusion layer of the base layer. A peak is reached at the boundary, indicating that
at this boundary, the proportion of each element is more likely to form carbides. The hardness
near the interface on the Q370qE side is low because the carbon diffuses to the 316L side, forming
a decarburized layer consisting primarily of low hardness ferrite. This is confirmed with Figure 2.
When the diffusion layer was measured, the hardness sharply increased and reached a peak at the
interface, and the hardness began to decrease after leaving the interface. This can be seen in conjunction
with Figure 5, because the Cr and Ni in the complex diffuse to the composite interface due to the
concentration gradient and react with the diffused C in the carbon steel to form carbides, thereby
increasing the hardness.

The shear tests were carried out in accordance with the Chinese standard GB/T 6396-2008, which
states that the shear strength of the cladding plates shall not be less than 210 MPa. As described
elsewhere [10], the shear strength of the cladded joint should be higher than that of either component,
the shear strength of 316L/Q370qE cladding above 370 MPa. Figure 6 shows that the shear strength of
the samples was greater than both the national standard of 210 MPa and 350 MPa. This indicates that
the interface bonding effect is good.
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3.3. Neutral Salt Spray Tests

The clad metal was subjected to a neutral salt spray test in a 5% NaCl solution to check its corrosion
behavior. As shown in Figure 7, Q370qE suffers severe corrosion, and the gap trench and etch pit are
clearly visible. In contrast, the corrosion rate of 316L stainless steel is much lower than that of the
Q370qE. In the 5% NaCl solution, since the volume of Cl− is fine, it can cause corrosion. However,
Mo is added to 316L, which together with Cr constitutes a higher density oxide film, so that Cl− is
difficult to enter. Thus, 316L corrosion resistance is very good. Figure 7 shows that etching causes the
most severe corrosion in cladded plates heat treated at 800 ◦C, as these composite sheets appear to
be sensitized.
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3.4. Potentiodynamic polarization tests

Figure 8 and Table 2 show the results of the polarization tests of the samples in 3.5% NaCl solution.
An evaluation of the potentiodynamic test results showed that the cladding composite treated at
500 ◦C had the lowest Icorr and therefore the best corrosion resistance. Since the sample after 800 ◦C
heat treatment is sensitized, the precipitated phases in the grain boundary increase the current and
corrosion tendency. Thus, the sample after heat treatment at 800 ◦C has the worst corrosion resistance.
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t/◦C 500 600 800 1000

E/V −0.82 −0.85 −0.81 −0.837

I/A cm−2 4.79 × 10−7 2.07 × 10−6 8.65 × 10−6 6.41 × 10−7

4. Conclusions

(1) In the 316L/Q370qE composite plate structure, the Q370qE was predominately ferrite with a
refined grain structure. Decarburization occurs near the interface. The 316L is solely austenite with
a uniform grain size. At the interface of the composite plates, a diffusion region appears in which
chromium carbide is precipitated.

(2) The composite plates are well bonded at the interface. The mechanical properties of the
composite plate are improved due to grain refinement, and diffusion improves the bonding performance.
The hardness of 316L increased in proximity to the joint, and the hardness of Q370qE decreased on
approaching the joint. When the heat treatment temperature was 500 ◦C, the shear strength was the
highest and the interface was the strongest. The interface shear strength decreased with rise of heat
treatment temperature.

(3) Neutral salt spray tests and polarization tests show that when the heat treatment temperature
was 800 ◦C, the chromium content near the grain boundary and the corrosion resistance decreases.
The corrosion resistance of the composite plate is worst after heat treatment at 800 ◦C.
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