
materials

Article

Numerical Study on Concrete Pumping Behavior via
Local Flow Simulation with Discrete Element Method

Yijian Zhan 1,* ID , Jian Gong 1,*, Yulin Huang 1,*, Chong Shi 2 ID , Zibo Zuo 1 and Yiqun Chen 3

1 General Engineering Institute of Shanghai Construction Group, Shanghai Construction Group Co., Ltd.,
Shanghai 200080, China; zuozibo@hotmail.com

2 Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China;
scvictory@hhu.edu.cn

3 Shanghai Construction Material Co., Ltd., Shanghai 200086, China; 2011cyq0809@tongji.edu.cn
* Correspondence: zhanyj@scgtc.com.cn (Y.Z.); gongjian@scgtc.com.cn (J.G.); hyl040908@163.com (Y.H.);

Tel.: +86-021-5296-5588 (Y.Z.)

Received: 31 March 2019; Accepted: 26 April 2019; Published: 30 April 2019
����������
�������

Abstract: The use of self-consolidating concrete and advanced pumping system enables efficient
construction of super high-rise buildings; however, risks such as clogging or even bursting of pipeline
still exist. To better understand the fresh concrete pumping mechanisms in detail, the discrete element
method is employed in this paper for the numerical simulation of local pumping problems. By
modeling the coarse aggregates as rigid clumps and appropriately defining the contact models,
the concrete flow in representative pipeline units is well revealed. Important factors related to the
pipe geometry, aggregate geometry and pumping condition were considered during a series of
parametric studies. Based on the simulation results, their impact on the local pumping performance
is summarized. The present work demonstrates that the discrete element simulation offers a useful
way to evaluate the influence of various parameters on the pumpability of fresh concrete.

Keywords: self-consolidating concrete; pumpability; local flow behavior; discrete element method;
parametric study

1. Introduction

The growing peak of landmark buildings, such as the Shanghai Tower (632 m high), Burj Khalifa
(828 m) and the Jeddah Tower (planned to be over 1000 m), is attributable to the continuous theoretical
research and technical development particularly in the field of civil engineering. In high- and super
high-rise building projects, concrete pumping has become a very important part of construction
technology to guarantee the project schedule. The smooth pumping of fresh concrete directly from the
ground surface up to several hundreds of meters height demands an optimal combination of material,
equipment and process. The concrete material itself should be highly flowable, which is now generally
available thanks to the invention of self-consolidating concrete (SCC) in the late 1980s. The pumping
apparatus consists mainly of the pipeline connected to the pump. The pipes should be tough enough
to sustain the pressure and abrasion, and the pump should provide sufficient power for the concrete to
overcome the gravity and friction. Nevertheless, despite the general success in the completed projects,
unexpected situations (for example, inaccurate prediction of pressure, segregation of fresh concrete,
leakage of mortar, clogging of aggregates, bursting of pipes, etc.) can still occur in reality, which may
significantly influence the project schedule and even cause hazards to the people on site.

Substantial understanding of the flow behavior of fresh concrete during pumping will provide
a good foundation for the solution of existing and potential problems in construction projects.
Although fresh concrete is relatively less studied as compared to concrete materials and structures in
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hardened state, scientists and engineers have made considerable efforts in terms of experimental tests,
theoretical analyses and numerical simulations. From the mechanical point of view, fresh concrete
is nothing but a flowable material similar to smog, plasma, petroleum, debris flow, etc., and can be
studied using classical or modern methods for fluids [1].

The flowability, more specifically the rheological property, of fresh concrete is dependent on
various factors such as the mix design, internal action and environmental condition, and also complex
mechanisms between them [2]. Fresh concrete exhibits non-Newtonian behavior under shear, which
can be described by different analytical forms such as Bingham, Herschel-Bulkley or modified Bingham
function [3,4]. Standardized experiments such as the slump test are commonly used to assess the
workability of fresh concrete owing to its simplicity [5–7]. More advanced devices such as rotational
rheometer are developed and applied to investigate the material properties and to evaluate the
flowability of concrete [8–12]. Full-scale pumping tests are occasionally conducted, which allows
directly evaluating the concrete pumping performance [13–17]. In general, experiments are necessary
for obtaining the real information concerning the concrete property and the pumping performance;
however, experiments can be too expensive and inefficient to investigate a large number of different
cases. Based on the experimental data acquired, empirical simplification or theoretical derivation can
be considered to quickly estimate the “pumpability” (more specifically, the relation between pumping
pressure and pumping rate). The slump value, which is easy to obtain, is used by engineers to assess
the pressure loss during pumping [18]. Further research focuses more on the rigorously defined
parameters and theoretical models of fresh concrete. For example, in the framework of rheology theory,
the yield stress and the viscosity describe the relation between shear stress and shear strain rate; these
parameters can be determined from rheometers and introduced into analytical models to evaluate the
pumpability [13,15,19–21]. In those analytical models, the concrete flow in the pipe is divided into
different zones (e.g., the “lubrication layer”, the “shear zone” and the “plug flow”) characterized by
different rheological properties. It has been demonstrated that the analytical approach is capable of
predicting the pumpability efficiently; however, the simplification of models does not allow reflecting
the local complexities of concrete flow. For more detailed analysis of concrete flow behavior, numerical
simulation has become a powerful tool.

The rapid development of the numerical simulation of concrete flow in recent years has brought
a variety of theory and modeling techniques (see, e.g., [22,23] for an overview). One class of model
belongs to the classical computational fluid dynamics (CFD). Typically, the fresh concrete is treated as
single phase fluid described by a specific rheological model (such as the Bingham model characterized
by a constant viscosity). The Navier-Stokes equations are solved so that the flow of concrete in the
problem domain is determined (see, e.g., early work in [24] and recent work in [14]). The CFD
is relatively well developed and has been successfully applied in a wide range of research and
engineering fields such as aerodynamics, biomedical science, civil engineering and analysis of natural
phenomena [25]; however, it is naturally incapable of reflecting the heterogeneity of concrete mixture
and to predict complex phenomena such as concrete segregation and pipe blockage.

Another modeling strategy focuses on the explicit representation of concrete heterogeneity. Almost
all existing materials (smog, blood, soil, etc.) can be treated as continuum at the macroscopic point of
view, because the characteristic length of material ingredient is very small as compared to the problem
domain. If one focuses on the local behavior of material at a length scale where the microstructure is no
longer negligible, discontinuous modeling should be considered [26]. The computational mechanics for
discontinua is a fast-developing field [27]; the discrete element method (DEM) is a typical example of
such modeling strategy. The DEM referred to in the present paper can be traced back to the 1970s [28,29];
it was originally proposed for the research of granular assemblies, particularly geomaterials such
as rock. Recently, the DEM is also used for the simulation of concrete flow, where the aggregates
are represented via particles, and the motion of particles is governed by the Newton’s laws [30,31].
Prior to a DEM simulation, efforts should be made to correlate the mesoscopic modeling parameters
and the macroscopic material properties, so that the particle assembly appropriately reflects the
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real behavior of material. Researchers have also proposed a number of coupled models [32] such
as those treating the fresh concrete as fluid containing suspension. The fluid phase represents the
mortar and the particle suspension models the aggregates; the flow of mortar is mainly simulated
according to CFD and the motion of discrete particles is tracked, with or without further considering
the interactions between particles (see, e.g., [33–37]). This way of treating multi-phase material has
been also considered in many other topics where the interaction between different phases is significant
(see, e.g., the research on gas–solid separation [38], on blood flow [39,40], on fracturing solids [41], etc.)
Nevertheless, considering the volume fraction of solid phase in fresh concrete, the accuracy of these
methods should be further investigated, since the aggregate packing feature strongly influences the
rheological properties of suspension [42].

Concerning the specific concrete pumping problem, few publications report its numerical
simulation. As a first choice, CFD is used to simulate the concrete flow as viscous fluid in the
pipe; as a result, the total pressure-flow rate relationship is obtained and compared with a real-size
pumping experiment [14,43]). In [35], the concrete flow through a bend of pipe is considered, where
the DEM is applied in association with CFD in order to investigate the pressure and velocity field
and to study the reaction force at pipe wall. As suggested above, CFD is more suitable for the full
simulation of pumping under normal conditions, while DEM and coupled methods are more powerful
for the analysis of potential hazards during pumping by means of capturing the flow details of
aggregate motion.

This article reports a systematic DEM study of local behavior of fresh concrete during pumping
(Figure 1). We investigate the impact of several different factors on the local pumping performance.
The main part of paper consists of an introduction of the fundamentals of DEM, the details of modeling
and the numerical simulation of representative cases.

(b)(a) (c)

Fs

Fn

F, ẍM, θ̈

Figure 1. Concept for the concrete pumping analysis: (a) material behavior at the mesoscale; (b) local
concrete flow in pipe; and (c) whole system during construction.

2. Fundamentals of Discrete Element Method

The discrete element method specifically employed in this paper was initially referred to as the
distinct element method and was proposed for the study of granular assemblies [28,29]. In the past
decades, the DEM has gained much attention; it has been considerably enriched for the analyses of
various granular materials subjected to discontinuous deformation or motion, such as collision of wet
agglomerates, shear bands in the microstructure of materials, flow of irregular particles, fracture in
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cementitious materials and structures, deformation of underground space, natural hazard of land slide,
etc. (see, e.g., [44–51]).

The DEM basically describes the motion of particles (Figure 1a). The particle motion is controlled
by the Newton’s second law:

mẍ = F, Iθ̈ = M (1)

where ẍ and θ̈ stand, respectively, for the second-order time derivatives of position x and orientation
θ vectors of a specific particle (i.e., the translational and angular acceleration); m and I represent its
mass and moment of inertia; and F and M are the total force and moment vectors resulted from the
constitutive behavior at contacts and external body force such as gravity.

The translational and angular velocity (ẋ and θ̇) are computed based on the integration of
acceleration, following a time-centered integration scheme:

ẋ(n+1/2) = ẋ(n−1/2) + ẍ(n)∆t, θ̇(n+1/2) = θ̇(n−1/2) + θ̈(n)∆t (2)

The position and orientation are updated as

x(n+1) = x(n) + ẋ(n+1/2)∆t, θ(n+1) = θ(n) + θ̇(n+1/2)∆t (3)

where ∆t is the time step size; and the subscripts (n− 1/2), (n), (n + 1/2) and (n + 1) refer to the
values at time tn − ∆t/2, tn, tn + ∆t/2 and tn + ∆t, respectively. This explicit feature allows DEM to
simulate complex nonlinear behavior of granular assemblies with limited use of computer memory;
however, a small time step is required, which should be considered as a limitation while using DEM in
large scale simulations.

The obtained new position and velocity of particles are used to determine the spatial relations
among different contact entities (i.e., particles and boundaries) and to calculate contact forces Fc

according to the constitutive laws defined for the contacts:

Fc = Fc(g, ġ) (4)

where g and ġ are the gap and its time derivative at a specific contact. This equation implies that,
in general, the reaction force at contact is dependent on the contact gap (e.g., a spring), and can also be
influenced by the changing rate of gap (e.g., a dashpot). A contact model consisting of the normal and
shear components can be used for both the particle-particle and particle-boundary contacts (Figure 1a).
In the literature, a variety of contact models can be found.

3. Modeling of Fresh Concrete with DEM

3.1. Geometrical Representation

Concrete is a heterogeneous material composed of coarse aggregates, fine aggregates, dry cement,
water and other chemical additives. In a DEM simulation of concrete flow, the goal is to capture the
motion of aggregates that directly reflects the flow behavior of fresh concrete. In the DEM model,
an individual particle represents a specific piece of aggregate. Usually in the model, a particle is simply
a ball (a disc in 2D), which allows efficiently determining the geometrical relations between different
entities during computation. If more attention is paid to the influence of irregular shape of aggregate,
non-spherical particles can be generated via specific algorithms (e.g., [52–55]), and used to investigate
different problems related to the shape of aggregate (such as the passing ability of concrete through
narrow spaces [31,56]). In the present paper, a compromise has been made between the efficiency and
accuracy. The irregular aggregates are represented via manually created clump templates (Figure 2).
A clump is a group of rigidly inter-connected overlapping balls. It is believed that using finely modeled
clumps better captures the realistic aggregate shapes and should lead to more accurate simulation
results; nevertheless, such high resolution of particles (one clump contains typically hundreds of
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overlapping balls with the size in the order of 10−3 m) can cause significant increase of computational
load. The adopted resolution that a clump consists of only several balls with the size in the order of
10−2 m already allows reflecting the effect of shape irregularity. Of course, it would be meaningful
in the future to conduct experiments and to investigate the influence of particle resolution on the
simulation accuracy. While modeling the fresh concrete, every template is used according to a given
frequency (for example, as a reference configuration, all four templates are called equally). The size of
generated aggregates falls within the given range of aggregate size (e.g., with diameter dagg = 5–20 mm)
either according to a statistical distribution or following a given granulometric curve.

r ref
r ref

r ref
r ref

r re
f

r re
f

Figure 2. Clump templates used to model concrete aggregates.

The boundaries (such as container, pipeline and blender), which are already or potentially in
contact with the fresh concrete, are usually modeled as rigid walls, either stationary or kinetic according
to the given boundary conditions.

3.2. Material Model

Fresh concrete is often treated as single phase non-Newtonian fluid from the macroscopic point of
view. In the framework of rheology theory, concrete material parameters such as the yield stress and
plastic viscosity can be determined based on specific laboratory tests. These parameters are used as
input for a typical CFD simulation of concrete flow [8,11,22,57].

In DEM, the bulk material is described at the meso-scale as a collection of particles. During DEM
simulations, a particle itself is merely a rigid body; it is the contact model and model parameters that
govern the motion of every individual particle. Before conducting the DEM simulation of concrete flow,
the definition of contact model and model parameters is a necessary step. In the literature, different
models exist. Some researchers use experimental methods to investigate the aggregate–aggregate
and aggregate–boundary contact behaviors, from which new contact laws are proposed [16,30,58,59]).
Theoretical derivation also leads to formulas describing the inter-particle interactions due to van
der Waals forces or liquid bridging [44,60,61]. The Bingham function is still used frequently while
describing the contact behavior [62,63].

To perform DEM simulations, early researchers implemented in-house computer codes; further
development leads to open-source software packages such as YADE-OPEN DEM and LIGGGHTS
(LAMMPS Improved for General Granular and Granular Heat Transfer Simulations), and commercial
programs including UDEC (Universal Distinct Element Code), EDEM software and PFC (Particle
Flow Code). In the present research, simulations were conducted using PFC 3D 5.0 (Particle Flow
Code 3D Version 5.0) [64]. We used the linear parallel bond model, which belongs to the collection
of built-in contact models in PFC 5.0 [64,65]. In fact, PFC 5.0 offers nine built-in contact models
that are characterized by different model components to be used in different cases. To the authors’
understanding, the other models are less suitable for fresh concrete. For example, the linear model
mainly describes the contact behavior under compression; therefore, it can be used for dry materials.
The linear contact bond model has a pair of tensile and shear springs, which, when active, preclude the
slip and friction at contact. Other models contain more complex components such as nonlinear spring,
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nonlinear viscoelastic element, a planar interface, rolling resistance, Kelvin and Maxwell models in
series, etc. The fundamental formulations of the linear parallel bond model are briefly provided in the
following (details can be found in the software documentation [64]).

gs σc
–

kn kn
–

ks
–

ks

c– φ–

μ

{  ,   }

βn

βs

(a) (b)

Figure 3. (a) Illustration of the contact between particles or between particle and wall; and (b) the
contact model (the purple colored parallel bond components correspond to the mortar effect).

As illustrated in Figure 3, the contact between two pieces (one of the two pieces must be a particle,
the other entity can be either a particle or a wall) consists of a linear contact, a dashpot and a parallel
bond component. For fresh concrete, the linear contact mainly controls the overlapping between two
pieces (i.e., the behavior under compression), the parallel bond component is associated with the
mortar adhesion on the interface (i.e., the behavior under tension), and the dashpot provides numerical
stability. When the bond is active, the force and moment at the contact are as follows:

Fc = Fl + Fd + F̄, Mc = M̄ (5)

with
Fl = −Fl

nn + Fl
s, Fd = −Fd

n n + Fd
s , F̄ = −F̄nn + F̄s, M̄ = M̄tn + M̄b (6)

where Fl is the linear force vector dependent on the spring stiffness kn and ks (in the normal direction
n and shear direction s of contact, respectively), the surface gap gs, the friction coefficient µ and slip
state in shear direction:

Fl
n =

{
kngs, if gs < 0
0, otherwise

; Fl
s =

{
Ftr

s , if ‖Ftr
s ‖ < −µFl

n
−µFl

n(Ftr
s /‖Ftr

s ‖), otherwise
(7)

with Ftr
s = (Fl

s)old − ks∆δs the trial shear force dependent on the shear force at the beginning of step
and the adjusted incremental relative shear displacement ∆δs.

Fd is the viscous dashpot force related to the relative velocity at the contact and the damping ratio
βn and βs:

Fd
n =

{
F∗, full normal
min(F∗,−Fl

n), no-tension
; Fd

s =

{
2βs
√

mcksδ̇s, no slip or full shear
0, slip and slip-cut

(8)

where F∗ = 2βn
√

mckn δ̇n us the whole dashpot load, mc is the mass of contact-pair, δ̇n is the relative
normal velocity and δ̇s is the relative shear velocity vector.

For the parallel bond, the force and moment are calculated as follows

F̄n = (F̄n)old + k̄n Ā∆δn, F̄s = (F̄s)old − k̄s Ā∆δs (9)

M̄t = (M̄t)old − k̄s J̄∆θt, M̄b = (M̄b)old − k̄n Ī∆θb (10)
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with Ā the cross sectional area of contact, and k̄n and k̄s the normal and shear stiffnesses (in the
form of stress/displacement). M̄t is the twisting moment; M̄b is the bending moment; J̄ and Ī are
the twisting and bending moments of inertia, respectively; and ∆θt and ∆θb are the corresponding
incremental rotations.

The maximum normal and shear stresses at the contact are calculated as

σ̄ =
F̄n

Ā
+ β̄
‖M̄b‖R̄

Ī
, τ̄ =

‖F̄s‖
Ā

+ β̄
|M̄t|R̄

J̄
(11)

with β̄ ∈ [0, 1] the moment contribution factor and R̄ the radius of contact. If the tensile strength or the
shear strength is exceeded:

σ̄ > σ̄c or τ̄ > τ̄c = c̄− σ tan(ϕ̄) (12)

the parallel bond breaks.

3.3. Material Parameter

As mentioned previously, a DEM model describes the material at the meso-scale; therefore,
the defined contact laws and parameters are not equivalent to the conventional macroscopic material
property, which can be directly measured with standard experiments. For the determination of
mesoscopic model parameter values, a number of methods can be considered. For example, the contact
spring stiffness can be derived from the Young’s modulus of material [64]; the frictional coefficient
can be measured by laboratory devices [66]; and in [63], empirical formulas are adopted to calculate
the contact parameters such as spring constants and dashpot coefficients. In addition, prior to the
simulation of concrete flow, a calibration process should always be considered; this process involves
running simulation, comparing the results with a standard experiment such as the slump test and
inverse analysis, adjusting the parameters and repeating the simulation, until the new parameter
values lead to reasonable simulation results (see, e.g., [30,67,68]).

In the present work, a “standard” self-consolidating concrete was assumed, without referring to a
particular concrete mix. For the DEM modeling of this virtual SCC, the particles included equal volume
of four types of clump (Figure 2), and the grain sizes were in the range of dagg ∈ [5, 20] mm. The size
distribution followed a Gaussian distribution with the mean value 12.5 mm and standard deviation
7.5 mm (note that this approximation should be revised for a specific concrete mix, if the granulometric
data are available). The mortar phase was taken into account by means of appropriately defining the
particle-particle and particle-boundary contact models. The main parameter values assigned are listed
in Table 1. Here, the spring stiffness was indirectly defined by assigning the “effective modulus” E∗

(and Ē∗), so as to unify the contact property regardless of the particle size. In the table, κ∗ = kn/ks

and κ̄∗ = k̄n/k̄s control the ratios of normal stiffness to shear stiffness. The coefficient µ considers the
friction as well as lubrication due to mortar. The bond strength (σ̄c and c̄) corresponds to the yield
stress level of mortar.

The parameter values in Table 1 were determined with reference to [56,68,69], and were calibrated
according to the slump test benchmark reported in [70]. This was accomplished by “trial and error”:
we started with gathering the parameter values from literature; parameters with the same values
from different references were generally accepted, and those with different values were tested and
adjusted (usually by a scaling factor of 2, 5, or 10), until the slump test benchmark results were well
fitted. Figure 4 shows the results of present simulation compared with those obtained from different
numerical methods. A further verification example of V-Funnel test [71] was conducted, since the
discharge time is an important indicator of the fresh concrete flowability. Experiments on different
SCC showed a deviation of discharge time from a few seconds to over ten seconds, despite their highly
close slump flow values (see, e.g., the reports by Khayat [72]). Using the parameters listed in Table 1,
the discharge time obtained from present DEM simulation was 4.8 s, which reasonably fell within the
range from experiments (Figure 5).
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Table 1. Main parameter values considered for the in the present DEM simulation.

Parameter Symbol Value Unit

aggregate density ρ 2.5× 103 [kg/m3]
aggregate size dagg 5× 10−3 ∼ 20× 10−3 [m]

linear contact effective modulus E∗ 1.0× 105 [N/m2]
linear contact normal-to-shear stiffness ratio κ∗ 2.0 [-]

linear contact friction coefficient µ 0.05 [-]
normal critical damping ratio βn 0.5 [-]
shear critical damping ratio βs 0.0 [-]

parallel bond effective modulus Ē∗ 2.0× 104 [N/m2]
parallel bond normal-to-shear stiffness ratio κ̄∗ 2.0 [-]

parallel bond tensile strength σ̄c 10.0 [N/m2]
parallel bond cohesion c̄ 5.0 [N/m2]

parallel bond friction angle ϕ̄ 30 [◦]
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Figure 4. Calibration of DEM model with slump test: comparison between present DEM simulation
results (every blue dot indicates the position of a specific aggregate) and the benchmark results in [70].
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4. Numerical Simulation of Pumping Behavior

In modern construction projects, fresh concrete is usually provided by mixing plants and pumped
through pipelines that can reach a total length of several hundred meters. However, the goal of present
work was not the DEM simulation of whole pumping system; instead, we limited our scope to the
local simulation of concrete flow through representative pipe units, with the focus on the different
performance in various pumping cases characterized by different parameter setting in terms of model
geometry, material property and pumping condition. As demonstrated below, the simulation of
pumping units can already be used to quantitatively evaluate the pumping performance of whole
system. Furthermore, the local simulation results reveal how a specific parameter influences the
pumping resistance, and thus provide optimization directions for the pumping program. Nevertheless,
the realistic situation in a construction site can be very complicated; there are many influencing
factors such as the change of concrete workability, environmental conditions, the assembly of pipeline,
the actual pressure and velocity at the outlet of pump. It would be a meaningful and challenging topic
to identify all the relevant factors, introduce them appropriately into the numerical model and assess
their impact on the pumping performance.

4.1. Model Geometry

As illustrated in Figure 6, four different cases of pipeline segment were considered, i.e., vertical
straight pipe (referred to as “Case A” in the following discussion), horizontal straight pipe (Case B),
upward elbow (Case C) and downward elbow (Case D). In general, these units constitute almost
the whole pumping pipeline. The pipe had the inner diameter of d; the elbow radius was R.
The geometrical model of pipe was built in CAD software and exported as STL-file, which was
later imported by the DEM software to form the boundary (walls).

X

Y

Z

(a) (b) (c) (d)

Rgravity

d

Figure 6. Four representative cases of pipe segment: (a) vertical straight pipe; (b) horizontal straight
pipe; (c) upward elbow; and (d) downward elbow.

4.2. Material

In the DEM simulations, the reference concrete model was first adopted, as described in Section 3.3.
Subsequently, the influence of several parameters such as the aggregate size and shape was investigated
by setting different values of particle diameter and clumps with different aspect ratio. In addition,
the time dependency of flowability due to, e.g., the hydration and flocculation, were also studied via
DEM [68]. Here, before pushing the concrete, we modeled the partially hydrated concrete by randomly
selecting the contacts between particles and establishing bonds which were much stiffer than normal.

4.3. Simulation Process

A unit length (1 m) of fresh concrete was modeled. The flow of fresh concrete was driven by a
displacement-controlled wall that was perpendicular to and moved along the pipe axis (Figure 7).
A “plug” consisting of a cluster of strongly bonded small balls was generated in the front of concrete.
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A small pressure P′ = 1 kPa was applied to the plug (more specifically, in the form of averaged force
acting on every ball and with the direction parallel to the axis of pipeline). This allowed compacting
the particles and keeping the shape of concrete unit. Note that P′ does not correspond to the external
pressure; we assumed that the external pressure on this concrete section was balanced out and its effect
was neglected; therefore, we focused on the local pumping resistance P induced by the gravity, friction
and deformation effects.

P, v 

P’ 

wall 

R 

concrete

plug 

d

Figure 7. Illustration of pumping conditions.

The pushing of wall consisted of two stages: a first “acceleration stage” in which the velocity
of wall was linearly increased until reaching the nominal pumping rate v; and the second was the
“stable pumping stage” when the wall moved along the pipeline with constant v. Since the DEM
essentially deald with dynamics, the stability of numerical scheme was ensured by limiting the time
step size ∆t below a critical value estimated based on the mass and stiffness of particles. Note that PFC
offers different options to determine the time resolution. For rigorous tests based on small and simple
problems, one may prefer to fix ∆t carefully; otherwise, PFC can automatically determine and adapt ∆t
during simulation. In our simulations, we used the automatic time stepping and it was noticed that
∆t was usually in the order of 10−6 s. The numerical study conducted involved repeatedly executing
PFC simulations. Python, a general purpose programming language, is already associated with PFC to
allow the manipulation of numerical models via Python scripts. In the present work, short Python
codes were written to execute the highly parameterized examples without repeating them by hand.

5. Results and Discussions

5.1. Influence of Pipe Geometry

5.1.1. Pipe Section

We started with the situations of concrete pumped through different pipe units. As a reference
setup, the following condition was considered: pipe diameter d = 150 mm, elbow radius R = 0.5 m
and pumping velocity v = 0.3 m/s. In the two figures below, the simulation results of four different
pipe units are demonstrated. Figure 8 shows the particles during the stable pumping phase. The color
indicates the velocity magnitude, from which different flow behavior can be noticed. In straight pipe
sections, the velocity of concrete was nearly uniform (Figure 8a,b); in elbows, the velocity in the outer
region was higher than in the inner region (Figure 8c,d).
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(b) (c) (d)

0.40.2 0.3

(a)

velocity magnitude

Figure 8. Simulation results of different pipe segments: plot of the velocity magnitude of particles
during the stable pumping stage. (a) vertical straight pipe; (b) horizontal straight pipe; (c) upward
elbow; and (d) downward elbow.

The thrusting pressure (P) vs. displacement (u) relationship from each case is plotted in Figure 9.
The pressure P was calculated as the reaction force on the wall divided by the cross sectional area
of pipe, and the displacement u was the wall displacement along the axis of pipeline. The vertical
gray line at displacement u = 0.3 m separated the two stages (i.e., the acceleration stage and stable
pumping stage mentioned above). In Case A (vertical pipe), the pressure increased rapidly in the
acceleration stage and reached the peak at u = 0.08 m, P = 38.93 kPa. Afterwards, the curve behaved
as a damped oscillation and approached approximately 35 kPa at the end of stable pumping stage.
Case B (horizontal pipe) gave a similar curve, yet with much smaller value. The first peak was located
at u = 0.10 m, P = 15.69 kPa and the end value was approximately 12 kPa. Clearly, the difference
between these two cases was mainly associated with the gravitational effect. The pumping behavior in
Case C (upward elbow) or Case D (downward elbow) was obviously a mixture of Case A and Case B.
In Case C, the concrete was first pushed upward through the elbow and then horizontally moved in
the pipe; therefore, the pressure first grew quickly in a similar way to Case A and gradually reduced to
a level that was slightly higher than Case B. On the contrary, in Case D, the pressure increased slowly
first, and stayed at a similar level to that of Case A in the end.

It was observed that the magnitude of pressure loss obtained from DEM simulation corresponded
reasonably well to reality. Taking the approximate stable values of 35 kPa for the vertical unit and
12 kPa for the horizontal unit, respectively, the total pressure loss Ptot of the whole pumping system
could be approximately estimated:

Ptot ≈ 35× Lver + 12× Lhor (13)

with Lver the pumping height and Lhor the length of horizontal pipeline. For example, for the Burj
Khalifa at Dubai, Lver = 576 m and Lhor = 83 m, which leads to Ptot ≈ 21.15 MPa; that is 23% higher
than the reported value 17.1 MPa [15]. For the Shanghai Tower, Lver = 582 m and Lhor = 150 m,
which gives Ptot ≈ 22.17 MPa; that is 5% smaller than the recorded 23.4 MPa [73]. These results,
although obtained from simple calculation, quantitatively support the plausibility of present DEM
simulation and demonstrate the potential of using DEM analysis as the foundation of full analysis of
pumping problems in the future.

From the diagram, it is also interesting to see that, contrary to the common idea that the pressure
loss induced by elbows should be significantly larger than straight pipe, the pumping resistance did
not differ much. This observation agrees with the finding in [13]; however, it should be emphasized
that it only applies to the situation of relatively smooth pumping. Unfavorable cases occur usually at
the elbow.
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Figure 9. Simulation results of different pipe segments: curves of the thrusting pressure vs.
displacement relation.

In the following parametric study, Case D (Figure 8d) was selected as the reference situation,
where pipe diameter d = 150 mm, elbow radius R = 0.5 m, pumping velocity v = 0.3 m/s, and the
“standard” concrete described in Section 3.3 was modeled. Six groups of numerical examples were
conducted. Every group contained several cases that focused on one of the following six parameters:
pipe diameter, pipe curvature, aggregate size, aggregate shape, pumping velocity and time dependency,
by means of changing only the value of selected parameter.

5.1.2. Pipe Diameter

It is common sense that a larger size of pipe cross section not only allows raising the pumping
efficiency but also reduces the risk of clogging. Considering the reality and for the purpose of
comparison, the value of inner diameter was assumed to be d ∈ {100, 125, 150, 175, 200} mm.
As the simulation results show, the smaller the pipe diameter was, the higher resistance the pumping
confronted (Figure 10). While there was only small difference among the pressure levels for the cases
of diameter d = 150 mm, 175 mm and 200 mm, a diameter that was smaller than 150 mm clearly led to
a nonlinear increase of pressure. The comparison of mean values already showed this tendency; more
remarkably, the maximum pressure in the case of d = 100 mm was found to be 72.99 kPa, which was
nearly double (189%) that of d = 150 mm (38.58 kPa). The simulations coincided with the choice of
d = 150 mm in many construction projects.

For the result of d = 100 mm in Figure 10, the appearance of oscillation of pressure level did
not indicate any structural vibration; in fact, it was a result of repeated shoving and relaxing of
particles, since smaller pipes restricted the space for the lateral motion of aggregates and increased the
probability of interlocking among them. Figure 11 illustrates the particle velocity at different states
(i, ii, iii and iv), as marked in Figure 10. As can be seen, at the beginning of stable pumping stage (i),
while the end of concrete section was pushed with a constant velocity (v = 0.3 m/s), the forepart
clearly moved more slowly (v < 0.2 m/s) and became a hindrance to this concrete section; this led to
continuous ascending of the thrusting pressure. With a short period of pushing, the forepart gained
sufficient velocity to release the hindrance (ii), and the reaction force on the wall started to drop
rapidly (iii). After repeated campaign between the motion and resistance, at the end of simulation,
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the concrete reached a relatively uniform velocity distribution and the oscillation of curve became
much smaller (iv).
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Figure 10. Simulation results with respect to the pipe diameter: (left) curves of the thrusting pressure
vs. displacement relationship; and (right) mean and max values during the stable pumping stage.
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Figure 11. Simulation results with respect to the pipe diameter: plot of the velocity magnitude of
particles at different states during the stable pumping stage for the case of d = 100 mm.

5.1.3. Elbow Curvature

It is usually believed that large curvature of pipeline raises the risk of clogging during concrete
pumping. In practice, elbows with R = 0.5–1.0 m are frequently used. The present parametric study
investigated four cases of elbow radius R ∈ {0.25, 0.5, 0.75, 1.0}m. As shown in Figure 12, larger R
(smaller curvature) reduced the pumping difficulty marginally. (Note that the simulation stopped when
the wall rotated by 90◦ and all particles left the elbow; consequently, the total thrusting displacement
was different.) The pressure-displacement curves showed that, in general, the maximum values of
pressure were nearly the same; nevertheless, smaller curvature allowed relatively mild ascending of
pressure, leading to smaller mean value of pressure. The simulation suggested that the choice of elbow
curvature did not affect the pumping performance critically; however, where appropriate, elbows with
smaller curvature are still recommended.
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Figure 12. Simulation results with respect to the elbow curvature: (left) curves of the thrusting pressure
vs. displacement relationship; and (right) mean and max values during the stable pumping stage.

5.2. Influence of Material

5.2.1. Aggregate Size

Engineering experience tells that, qualitatively, large aggregates reduce the flowability of fresh
concrete and increase the pumping risks. To obtain optimal pumpability, the maximum aggregate
size considered for the self-consolidating concrete is often limited to 20 mm. The present study
agreed well with the practical experience and further provided a quantitative basis for understanding
the influence of aggregate size on the pumping behavior. As shown in Figure 13, four cases of
DEM simulation characterized by the particle size dagg ranging 5–10 mm, 5–20 mm, 10–40 mm and
10–60 mm were conduced. The results reveal that the pressure levels for the cases of dagg = 5–10 mm
and dagg = 5–20 mm were almost the same; with the growth of aggregate size, the pumping pressure
(both mean and max values) showed a nonlinear tendency of increase; in particular, if the aggregate
sizes were 10–60 mm, the raise of pressure level became remarkable.
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Figure 13. Simulation results with respect to the aggregate size: (left) curves of the thrusting pressure
vs. displacement relationship; and (right) mean and max values during the stable pumping stage.

5.2.2. Aggregate Shape

For the smooth pumping of SCC, the concrete mix design requires that the aggregates be
“well-shaped”, which means the closer to spherical shape the better. Here, we quantitatively studied
the impact of aggregate shape factor on the pumping resistance. As sketched in Figure 14, four different
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values (1.5, 2.5, 3.5 and 4.5) of aggregate shape factor were considered by creating clump templates.
In each DEM simulation, only one template was used to generate all the particles. Figure 15 contains
the simulation results regarding the shape factor of aggregates. It was quite clear that poorly shaped
aggregates with large value of shape factor caused high pumping resistance. In addition, it was noticed
that the stress level showed a linear dependency on the value of shape factor.

(c)

(a) (d)

(b)

Figure 14. Clump templates used to create concrete aggregates with shape factors equal to: (a) 1.5;
(b) 2.5; (c) 3.5; and (d) 4.5.
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Figure 15. Simulation results with respect to the aggregate shape: (left) curves of the thrusting pressure
vs. displacement relationship; and (right) mean and max values during the stable pumping stage.

5.3. Influence of Pumping Condition

5.3.1. Pumping Velocity

The thrusting velocity v in the stable pumping stage is usually in the order of 10−1 m/s.
For example, during the construction of the world’s tallest building, Burj Khalifa, it is reported
in [15] that the flow rate was 21.3 m3/h (which is converted to the average flow velocity in pipe as
v0 = 0.33 m/s). To study the influence of velocity, different values of v ∈ {0.1, 0.3, 0.5, 0.7, 0.9} m/s
were tested here. Figure 16 shows the results of pumping reaction, from which one can see that in
general the pumping pressure increased more or less in a linear manner with respect to the thrusting
velocity. This finding agrees with a number of experimental and analytical results that the pumping
pressure linearly depends on the flow rate (e.g., [13–15]).
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Figure 16. Simulation results with respect to the pumping velocity: (left) curves of the thrusting
pressure vs. displacement relationship; and (right) mean and max values during the stable
pumping stage.

5.3.2. Time Dependency

In practice, it is required to pump the concrete within a short time (e.g., 1 h) after the concrete is
freshly produced at the mixing plant; otherwise, the workability of concrete deteriorates with time
due to several reasons such as hydration. Here, we conducted the DEM simulation to test different
hydration states, without referring to any exact value in reality. We randomly selected a proportion
of particle contacts and assigned higher values to the bond stiffness Ē∗. For the present testing
purpose, the proportion of “hydrated” contacts was assumed in the range of {0%, 5%, 10%, 15%, 20%};
the stiffness was given the value Ē∗ ∈ {2.0× 104, 1.0× 106, 1.0× 107, 1.0× 108, 1.0× 109} Pa. In these
examples, the strength of hydrated bond was set as σ̄c = 1.0× 106 Pa, c̄ = 5.0× 105 Pa.

Figure 17 shows the results by fixing the hydration proportion as 20% and changing the bond
stiffness (Figure 17, left), and by fixing the bond stiffness as Ē∗ = 1.0× 109 Pa, but with different
hydration proportions (Figure 17, right). These two diagrams clearly indicate the increase of pumping
resistance with respect to either the bonding stiffness or the hydration ratio.
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Figure 17. Simulation results with respect to the hydration degree: (left) curves of the thrusting pressure
vs. displacement relationship for different values of hydrated bond stiffness; and (right) curves of the
thrusting pressure vs. displacement relationship for different proportions of hydrated contact.
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It was interesting to look into the extreme situation of Ē∗ = 1.0× 109 and hydration proportion
equaling to 20% (Figure 18). Clearly, if 20% of all the contacts were highly hydrated, this concrete
section became almost entirely hardened. (One may notice that the head of concrete arc extruded
the pipe; this was due to the relatively small particle-wall contact stiffness, which was kept with
intention of illustration.) The right part of figure shows the detail of contacts. The red lines indicate
the 2109 hydrated contacts that remained unchanged, while the green lines represent the residual
3997 unhydrated contacts out of the initial 8094 contacts before pumping.

Figure 18. Simulation results with respect to hydration: The excessive case of 20% contacts hydrated
with Ē∗ = 1.0× 109.

6. Concluding Remarks

The present paper reports the DEM modeling and simulation of the pumping behavior of
self-consolidating concrete at a local level, considering different situations of concrete pushed through
a pipeline unit. The flow of concrete is reflected by the motion of particles that represent coarse
aggregates, and the mortar phase is physically taken into account as the contact behavior. A series of
parametric studies was carried out, with respect to the influence of pipe geometry, material property
and pumping condition. The simulation results suggest that the gravitational effect takes a big part
of the pumping resistance; an elbow does not cause significant increase of pressure level; smaller
pipe diameter or larger aggregate size leads to dramatic pressure growth in a nonlinear manner with
increasing slope; the aggregate shape factor or the pumping rate has a linear influence on the pumping
resistance; and the hydration of fresh concrete should be controlled. In general, the DEM simulation
of concrete flow not only helps to understand the details of pumping behavior, but also inspires new
concrete pumping techniques that can be considered to eliminate pumping risks and to confront more
challenging circumstances such as record-breaking pumping height in the future.

Limitations have also been noticed during the present numerical study, from which subsequent
research is being considered. The mesoscopic model of fresh concrete should be improved, including
more accurate geometrical representation of aggregates [31], more sophisticated contact laws and
substantial investigation of the inter-phase mechanisms and model parameters [61], such that the
major mechanisms involved at the mesoscale can be adequately captured. At the local level, the DEM
simulation should be further refined, considering, e.g., the influence of fluid phase, possibly by using
coupled DEM/CFD analyses. It would also be meaningful to compare the DEM-based modeling with
the detailed assessment of local phenomena such as secondary flow in the vicinity of wall and complex
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trajectories of particles, using high-fidelity CFD analysis [74,75]. Finally, the approach from numerical
simulation to the accurate and fast prediction of system pumpability should be developed to serve
realistic construction projects directly.
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with discrete phase modeling. Constr. Build. Mater. 2018, 186, 20–30. [CrossRef]
38. Chu, K.; Wang, B.; Xu, D.; Chen, Y.; Yu, A. CFD–DEM simulation of the gas–solid flow in a cyclone separator.

Chem. Eng. Sci. 2011, 66, 834–847. [CrossRef]
39. Xu, D.; Kaliviotis, E.; Munjiza, A.; Avital, E.; Ji, C.; Williams, J. Large scale simulation of red blood cell

aggregation in shear flows. J. Biomech. 2013, 46, 1810–1817. [CrossRef]
40. Xu, D.; Ji, C.; Avital, E.; Kaliviotis, E.; Munjiza, A.; Williams, J. An Investigation on the Aggregation

and Rheodynamics of Human Red Blood Cells Using High Performance Computations. Scientifica 2017,
2017, 6524156. [CrossRef] [PubMed]

41. Munjiza, A.; Owen, D.; Bicanic, N. A combined finite-discrete element method in transient dynamics of
fracturing solids. Eng. Comput. 1995, 12, 145–174. [CrossRef]

42. Mehdipour, I.; Khayat, K.H. Understanding the role of particle packing characteristics in rheo-physical
properties of cementitious suspensions: A literature review. Constr. Build. Mater. 2018, 161, 340–353.
[CrossRef]

43. Secrieru, E.; Khodor, J.; Schröfl, C.; Mechtcherine, V. Formation of lubricating layer and flow type during
pumping of cement-based materials. Constr. Build. Mater. 2018, 178, 507–517. [CrossRef]

44. Lian, G.; Thornton, C.; Adams, M. Discrete particle simulation of agglomerate impact coalescence.
Chem. Eng. Sci. 1998, 53, 3381–3391. [CrossRef]

45. Iwashita, K.; Oda, M. Micro-deformation mechanism of shear banding process based on modified distinct
element method. Powder Technol. 2000, 109, 192–205. [CrossRef]

http://dx.doi.org/10.1016/j.cemconcomp.2015.11.002
http://dx.doi.org/10.1007/s40069-016-0150-y
http://dx.doi.org/10.1016/j.cemconres.2007.06.007
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1617/s11527-013-0084-7
http://dx.doi.org/10.1016/j.conbuildmat.2018.02.078
http://dx.doi.org/10.1002/nag.419
http://dx.doi.org/10.1016/j.cemconres.2009.08.026
http://dx.doi.org/10.1016/j.triboint.2011.06.005
http://dx.doi.org/10.1007/s40571-014-0001-z
http://dx.doi.org/10.1016/j.conbuildmat.2018.07.106
http://dx.doi.org/10.1016/j.ces.2010.11.026
http://dx.doi.org/10.1016/j.jbiomech.2013.05.010
http://dx.doi.org/10.1155/2017/6524156
http://www.ncbi.nlm.nih.gov/pubmed/28473942
http://dx.doi.org/10.1108/02644409510799532
http://dx.doi.org/10.1016/j.conbuildmat.2017.11.147
http://dx.doi.org/10.1016/j.conbuildmat.2018.05.118
http://dx.doi.org/10.1016/S0009-2509(98)00152-3
http://dx.doi.org/10.1016/S0032-5910(99)00236-3


Materials 2019, 12, 1415 20 of 21

46. Langston, P.A.; Al Awamleh, M.A.; Fraige, F.Y.; Asmar, B.N. Distinct element modelling of non-spherical
frictionless particle flow. Chem. Eng. Sci. 2004, 59, 425–435. [CrossRef]

47. Kim, H.; Wagoner, M.P.; Buttlar, W.G. Simulation of fracture behavior in asphalt concrete using a
heterogeneous cohesive zone discrete element model. J. Mater. Civ. Eng. 2008, 20, 552–563. [CrossRef]

48. Shi, C.; Li, D.; Chen, K.; Zhou, J. Failure mechanism and stability analysis of the Zhenggang landslide in
Yunnan province of China using 3D particle flow code simulation. J. Mt. Sci. 2016, 13, 891–905. [CrossRef]

49. Shi, C.; Yang, W.; Chu, W.; Shen, J.; Kong, Y. Study of anti-sliding stability of a dam foundation based on the
fracture flow method with 3D discrete element code. Energies 2017, 10, 1544. [CrossRef]

50. Xiang, Y.; Liu, H.; Zhang, W.; Chu, J.; Zhou, D.; Xiao, Y. Application of transparent soil model test and DEM
simulation in study of tunnel failure mechanism. Tunn. Undergr. Space Technol. 2018, 74, 178–184. [CrossRef]

51. Wu, W.; Tu, Z.; Zhu, Z.; Zhang, Z.; Lin, Y. Effect of gradation segregation on mechanical properties of an
asphalt mixture. Appl. Sci. 2019, 9, 308. [CrossRef]

52. Ferellec, J.F.; McDowell, G.R. A method to model realistic particle shape and inertia in DEM. Granul. Matter
2010, 12, 459–467. [CrossRef]

53. Taghavi, R. Automatic clump generation based on mid-surface. In Proceedings of the 2nd International
FLAC/DEM Symposium, Melbourne, Australia, 14–16 February 2011; pp. 791–797.

54. Shi, C.; Li, D.; Xu, W.; Wang, R. Discrete element cluster modeling of complex mesoscopic particles for use
with the particle flow code method. Granul. Matter 2015, 17, 377–387. [CrossRef]

55. Shi, C.; Shen, J.; Xu, W.; Wang, R.; Wang, W. Micromorphological characterization and random reconstruction
of 3D particles based on spherical harmonic analysis. J. Cent. South Univ. 2017, 24, 1197–1206. [CrossRef]

56. Cui, W.; Ji, T.; Li, M.; Wu, X. Simulating the workability of fresh self-compacting concrete with random
polyhedron aggregate based on DEM. Mater. Struct. 2017, 50, 92. [CrossRef]

57. Le, H.D.; Kadri, E.H.; Aggoun, S.; Vierendeels, J.; Troch, P.; De Schutter, G. Effect of lubrication layer on
velocity profile of concrete in a pumping pipe. Mater. Struct. 2015, 48, 3991–4003. [CrossRef]

58. Shyshko, S.; Mechtcherine, V. Developing a discrete element model for simulating fresh concrete: experimental
investigation and modelling of interactions between discrete aggregate particles with fine mortar between them.
Constr. Build. Mater. 2013, 47, 601–615. [CrossRef]

59. Pieralisi, R.; Cavalaro, S.H.P.; Aguado, A. Discrete element modelling of the fresh state behavior of pervious
concrete. Cem. Concr. Res. 2016, 90, 6–18. [CrossRef]

60. Thornton, C.; Yin, K. Impact of elastic spheres with and without adhesion. Powder Technol. 1991, 65, 153–166.
[CrossRef]

61. Willett, C.; Adams, M.; Johnson, S.; Seville, J. Capillary bridges between two spherical bodies. Langmuir
2000, 16, 9396–9405. [CrossRef]

62. Puri, U.C.; Uomoto, T. Numerical modeling—A new tool for understanding shotcrete. Mater. Struct. 1999,
32, 266–272. [CrossRef]

63. Puri, U.C.; Uomoto, T. Characterization of distinct element modeling parameters for fresh concrete and its
application in shotcrete simulations. J. Mater. Civ. Eng. 2002, 14, 137–144. [CrossRef]

64. Itasca Consulting Group Inc. PFC 3D, version 5.0; ICG: Minneapolis, MN, USA, 2015.
65. Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004,

41, 1329–1364. [CrossRef]
66. Horn, E. The Calibration of Material Properties for Use in Discrete Element Models. Master’s Thesis,

University of Stellenbosch, Stellenbosch, South Africa, 2012.
67. Krenzer, K.; Schwabe, J.H. Calibration of parameters for particle simulation of building materials, using

stochastic optimization procedures. In Proceedings of the 3rd International RILEM Symposium on Rheology
of Cement Suspensions Such as Fresh Concrete, Reykjavik, Iceland, 19–21 August 2009; pp. 135–142.

68. Li, Z.; Cao, G.; Tan, Y. Prediction of time-dependent flow behaviors of fresh concrete. Constr. Build. Mater.
2016, 125, 510–519. [CrossRef]

69. Mechtcherine, V.; Shyshko, S. Simulating the behaviour of fresh concrete with the distinct element method -
deriving model parameters related to the yield stress. Cem. Concr. Compos. 2015, 55, 81–90. [CrossRef]

70. Roussel, N.; Gram, A.; Cremonesi, M.; Ferrara, L.; Krenzer, K.; Mechtcherine, V.; Shyshko, S.; Skocec, J.;
Spangenberg, J.; Svec, O.; et al. Numerical simulations of concrete flow: A benchmark comparison.
Cem. Concr. Res. 2016, 79, 265–271. [CrossRef]

http://dx.doi.org/10.1016/j.ces.2003.10.008
http://dx.doi.org/10.1061/(ASCE)0899-1561(2008)20:8(552)
http://dx.doi.org/10.1007/s11629-014-3399-0
http://dx.doi.org/10.3390/en10101544
http://dx.doi.org/10.1016/j.tust.2018.01.020
http://dx.doi.org/10.3390/app9020308
http://dx.doi.org/10.1007/s10035-010-0205-8
http://dx.doi.org/10.1007/s10035-015-0557-1
http://dx.doi.org/10.1007/s11771-017-3523-8
http://dx.doi.org/10.1617/s11527-016-0963-9
http://dx.doi.org/10.1617/s11527-014-0458-5
http://dx.doi.org/10.1016/j.conbuildmat.2013.05.071
http://dx.doi.org/10.1016/j.cemconres.2016.09.010
http://dx.doi.org/10.1016/0032-5910(91)80178-L
http://dx.doi.org/10.1021/la000657y
http://dx.doi.org/10.1007/BF02479596
http://dx.doi.org/10.1061/(ASCE)0899-1561(2002)14:2(137)
http://dx.doi.org/10.1016/j.ijrmms.2004.09.011
http://dx.doi.org/10.1016/j.conbuildmat.2016.08.049
http://dx.doi.org/10.1016/j.cemconcomp.2014.08.004
http://dx.doi.org/10.1016/j.cemconres.2015.09.022


Materials 2019, 12, 1415 21 of 21

71. EN 12350-9. Testing Fresh Concrete—Part 9: Self-Compacting Concrete-V-Funnel Test; European Committee for
Standardization: Brussels, Belgium, 2010.

72. Khayat, K.H. Workability, testing, and performance of self-consolidating concrete. ACI Mater. J. 1999,
96, 346–353.

73. Zhou, Y.; Xu, Y.; Wu, D. Calculation of concrete pumping resistance and its error analysis. Build. Constr.
2017, 11, 1695–1698. (In Chinese)

74. Noorani, A.; Vinuesa, R.; Brandt, L.; Schlatter, P. Aspect ratio effect on particle transport in turbulent duct
flows. Phys. Fluids 2016, 28, 115103. [CrossRef]

75. Chin, C.; Vinuesa, R.; Örlü, R.; Cardesa, J.; Noorani, A.; Schlatter, P.; Chong, M. Flow topology of rare back
flow events and critical points in turbulent channels and toroidal pipes. J. Phys. Conf. Ser. 2018, 1001, 012002.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.4966026
http://dx.doi.org/10.1088/1742-6596/1001/1/012002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Fundamentals of Discrete Element Method
	Modeling of Fresh Concrete with DEM
	Geometrical Representation
	Material Model
	Material Parameter

	Numerical Simulation of Pumping Behavior
	Model Geometry
	Material
	Simulation Process

	Results and Discussions
	Influence of Pipe Geometry
	Pipe Section
	Pipe Diameter
	Elbow Curvature

	Influence of Material
	Aggregate Size
	Aggregate Shape

	Influence of Pumping Condition
	Pumping Velocity
	Time Dependency


	Concluding Remarks
	References

