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Abstract: We report the enhanced electromagnetic interference (EMI) shielding properties of hybrid
carbon nanotube (CNT) composites consisting of more than two kinds of fillers through the use of
segregate conducting networks. An excluded volume was created by micro-sized silica particles
that concentrate the CNT network, resulting in improved electrical conductivity and microwave
properties. To achieve the optimal dispersion of CNTs and silica particles, high shear force was applied
to the pre-cured composite mixture via three-roll milling. Depending on the micro-silica content
ratio, we observed improved electrical conductivity and EMI shielding properties. For a quantitative
comparison to observe the excluded-volume effects, a CNT composite without micro-silica was
measured in parallel with the other sample.
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1. Introduction

Carbon-based polymer composites have been researched for use in various applications, including
structural reinforcement, heating elements, electronic packaging, electromagnetic interference (EMI)
shielding, storage capacitors, and so on [1–7]. Among them, EMI shielding is one of the applications
especially important to the military, vehicle, and electronics sectors. Unwanted electromagnetic waves
from electronic devices can be absorbed by the human body and interfere with detailed electronic
instruments. For example, mobile phone usage is one of the suspected causes of premature cataracts [8].
Current developments in wireless charging and electric motor vehicles are accelerating to produce an
increasing amount of electromagnetic pollution. To solve this problem, a polymer-composite containing
carbon fillers such as carbon fiber [9], carbon black [10–12], and carbon nanotubes (CNTs) [7,13–15] have
been investigated owing to their flexibility, light weight, chemical corrosion resistance, and relatively
good shielding efficiency (SE). A polymer is used as the matrix material in the composite systems,
as it has flexibility and electrically insulating properties. With the incorporation of conducting fillers,
the low conductivity of the polymer is dramatically increased as conducting networks form. Traditional
micro-size conducting fillers have a limit to the filler loading of the polymer due to embrittlement
and degradation of the mechanical properties as the amounts of filler used is increased. In addition,
intrinsically conducting polymers still require improvement of their mechanical properties [16].
Therefore, a nanosized, high aspect ratio filler is an ideal material to achieve low electrical percolation
along with mechanical reinforcement. CNTs are one of the promising fillers for EMI shielding
applications, owing to their unique mechanical strength, high aspect ratio (as high as 106), and large
surface area (>1300 m2/g) [17]. However, there are still many problems facing the commercialization of
CNT composites as EMI shielding materials such as bundling and the aggregation of CNTs due to the
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strong van der Waals attraction between them, resulting in poor dispersion in the polymer. Previously,
we have developed an effective CNT dispersion method using three-roll milling, which is effective,
especially in high-loading CNTs. Consequently, a maximized EMI SE was attained for a given CNT
volume fraction with a very low electrical percolation threshold [13].

Recently, hybrid CNT composites comprising more than two types of fillers have been developed
to improve the mechanical properties and electrical conductivity [18–20]. When a micro-size second
filler is added to a CNT-polymer composite system, it can create an excluded volume, resulting
in concentrated CNT networks in the polymer matrix. Consequently, in the case of hybrid CNT
composites having segregated CNT networks, increased conductivity is achieved compared with
two-component CNT-polymer composites [21,22]. Advantages of the segregated CNT composite
are material cost reduction for expensive CNTs and mechanical strengthening by adding silica and
BaSO4 [23].

In this study, we report enhanced electrical properties and EMI shielding properties through the
use of segregate conducting networks. To create an excluded volume and segregated CNT networks,
micro-sized silica (SiO2) was used. The concept is illustrated in Figure 1. While Figure 1a shows
a general, random fiber composite scheme, Figure 1b shows excluded volumes that are created by
adding micro-silica particles. Even if the same number of CNTs was used in both cases, the number of
contact junctions (red points in Figure 1) between CNTs is different. Consequently, higher electrical
conductivity and EMI SE were achieved in the segregated CNT composite.
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Figure 1. Scheme of (a) nanotube composite and (b) segregated nanotube composite with secondary
micro-silica filler.

2. Materials and Methods

For the fabrication of a hybrid CNT composite, multi-walled CNTs approximately 10–15 µm in
length and 15 nm in outer diameter (CM250, Hanwa Nanotech Inc., Seoul, Korea) were used for the
CNT component, and silica powder of approximately 3–7 µm in particle size (Silbond, Quarzwerke,
Bahnhofstraße, Germany) was used as a filler. Polydimethylsiloxane (PDMS Sylgard 184, Dow Corning,
Midland, MI, USA) was used as the polymer matrix. To optimize the dispersion conditions of CNTs
and silica in a high-viscosity polymer matrix, a paste mixer (Daehwa, PDM-1k, Seoul, Korea) and a
three-roll mill (Intech Inc., Gyeonggi-do, Korea) were used. The PDMS part A (elastomer base) and
part B (curing agent) were mixed in a 10:1 ratio, following which the CNTs/silica were pre-mixed using
the paste mixer. These pre-mixed pastes were then milled by three-roll milling for several minutes.
By reducing the gap between the rollers of the mill, a higher shear strain was obtained, resulting in
efficient de-bundling of the CNTs. After the mixing process, a heat press (Qmesys Inc., Gyeonggi-do,
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Korea) was used to cure the composite film at 130 ◦C (30 min) with constant force (1 ton). The final
composite films used for electrical measurements and EMI SE measurements were 2 mm thick.

To determine the CNT and silica dispersion conditions, scanning electron microscopy (SEM: Phillips
XL30, North Billerica, MA, USA) was used. To prepare samples that would allow clear visualization of the
bulk morphology, CNT composite films were fractured in liquid nitrogen. The fracture surfaces were coated
with ~10 nm Au to wick off electrons to enable clear imaging. For electrical conductivity measurements,
CNT–composite films were treated with an oxygen plasma (Femto Science Inc., Gyeonggi-do, Korea)
to ensure a low contact resistance, followed by sputtering 50 nm of Au/Ti onto the sample to form
the electrodes.

In the case of the resistance, R < 1 GΩ, the 4-point resistance method was used to obtain an
electrical conductivity (Keithley 2400 source-meter and Keithley 487 picoammeter, Cleveland, OH,
USA). For measurement, CNT films were prepared as 10 mm × 2 mm-thick coupons (length: a 50 mm
gap for the outer current region, and a 25 mm gap for the inner voltage region). For the EMI SE
measurement, uncured CNT paste was inserted into the wave-guide holder as shown in Figure 2a, and
then pressed with heat press machine to cure the composite film at 130 ◦C (30 min) with constant force
(1 ton). To avoid air gaps in the sample, press, and release sequences were repeated 3 times at the first.
The X-band microwave frequency (8.2–12.4 GHz), employed in military and civil communications, was
used for the SE experiments. From a two-port vector network measurement, scattering parameters
(S11 = b1/a1, S21 = b2/a1, where a and b are normalized incident and reflected wave) were obtained as
shown in Figure 2b. The EMI shielding effectiveness (SE) was calculated as follows:

Shielding Effectiveness (SE) = −10 log(|−S21|2) = 10 log (pi/pt) (1)

where pi and pt are the magnitudes of the incident and transmitted power densities [7]. The EMI
SE calibration was conducted using the Thru Reflect Line (TRL) method [24]. In TRL method, thru
measurement was conducted by connecting the two waveguide sections (15 cm). For the reflect
calibration, an aluminum was placed between two waveguide sections, and line calibration was
conducted by insertion of WR-90 waveguide.
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aggregation of CNTs are unnecessary due to the high viscosity of the paste.  

Figure 2. (a) Image of the wave-guide holder. (b) Scheme of the EMI SE measurement mechanism.

3. Results and Discussion

In general, in our specimens, high aspect ratio CNTs exist in 5–30 µm bundle-type formations
due to van der Waals interactions. To maximize the electrical conductivity of the CNT composite
at a given CNT loading, each CNT must be de-aggregated and dispersed in the polymer matrix.
In addition, a considerable amount of micro-silica should be added to form a segregated CNT network
in the polymer matrix. Uniform dispersion is possible through the use of the three-roll milling
method, as shown Figure 3, which is optimal for a high-loading mixture-dispersion. High shear forces
are created by three rollers moving in opposite directions and with differing speeds, and this can
disentangle CNTs. A higher shear force can be obtained by reducing the gap distance between two
adjacent rollers. Advantages of this method are uniform shear in the assemblage being mixed in this
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solvent-free process. In addition, surfactants and chemical functionalization preventing re-aggregation
of CNTs are unnecessary due to the high viscosity of the paste.Materials 2019, 12, x FOR PEER REVIEW 4 of 8 
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From the power-law trend (σDC ~ σ0(p − pc)β) of the fiber-type composite [25], a CNT composite with 
low CNT loading is more sensitive than a composite with high CNT loading (where σDC is the 
conductivity of composite, σ0 is a constant parameter, p is the volume fraction of filler, pc is the 
percolation threshold, and β is a critical exponent). 

Figure 3. Scheme for the dispersion of highly loaded composites of CNT (carbon nanotube), silica, and
PDMS (Polydimethylsiloxane) by three-roll milling. A high shear strain by the three rotating rollers
disentangles the CNT and micro-silica.

For a quantitative comparison, two different types of composites (CNT/micro-silica/PDMS and
CNT/PDMS) were fabricated with 5 wt% CNT loading. In both cases, a uniform dispersion of CNT and
silica was achieved, as shown Figure 4. Also, to investigate the effect of the secondary silica filler, CNT
loading was fixed at 6 wt%. The electrical conductivity was measured with varying micro-silica loading,
as shown in Figure 5. Increasing micro-silica content increased the electrical conductivity, which is
attributed to the creation of exclude volume in the polymer matrix, similar to that in Figure 1b. Greater
micro-sized exclude volumes lead to more concentrated CNT networks, indicating the formation of
more contact points between CNTs.
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Figure 4. SEM images of (a) CNT/micro-silica/PDMS composite and (b) CNT/PDMS composite (both
6 wt% CNT). The inset shows a high resolution image of CNT/micro-silica/PDMS composite.

To investigate the trend of the conductivity increment, the CNT wt% was increased with a
fixed micro-silica content, as shown in Figure 6. One purpose of this study was to make an efficient
EMI shielding material. Therefore, all CNT composites were made above the CNT volume-fraction
percolation threshold. The secondary filler’s (excluded volume) effect on the electrical conductivity
increased when CNT loading was decreased, while its effect at high CNT loading was relatively small.
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From the power-law trend (σDC ~ σ0(p − pc)β) of the fiber-type composite [25], a CNT composite
with low CNT loading is more sensitive than a composite with high CNT loading (where σDC is
the conductivity of composite, σ0 is a constant parameter, p is the volume fraction of filler, pc is the
percolation threshold, and β is a critical exponent).Materials 2019, 12, x FOR PEER REVIEW 5 of 8 
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Even if high conductivity is not necessary for EMI SE in the high-frequency range, a conductivity
related to the conducting network is still the dominant parameter in EMI shielding [26–28]. In addition,
for effective EMI shielding, conductivity of the composite should be higher than 10 S/m [13].

The EMI SE of CNT/silica/PDMS and CNT/PDMS composites in the X-band range were measured,
with results shown in Figure 7. The EMI SE of the CNT/PDMS composite was about 30 dB, while a
higher SE (40 dB) was attained for the CNT/silica/PDMS composite (CNT content in this case was fixed
at 4 wt%). In contrast, in the case of 6 wt% CNT loading, the EMI SE of the CNT/PDMS composite was
about 38 dB, while a higher SE (46 dB) was attained for the CNT/silica/PDMS composite, as shown
Figure 7b. In both cases, segregated CNT networks in a polymer matrix enhanced the EMI SE, which is
a similar trend as that seen with the conductivity behavior. The increment of SE is relatively greater in
the “4 wt% CNT” composite (10 dB) than in the “6 wt% CNT” composite (8 dB). Saturation behavior
has a similar power law characteristic. For a further understanding of EMI shielding, the measured
total SE(T) of the composite is divided into the reflection component (R) and the absorption component
(A) as follows [7,24]:

SE(T) = SE(R) + SE(A) (2)
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where SE(R) = −10 log(1 − R) and SE(A) = −10 log[T/(1 − R)]. R, A and T were obtained from the S
parameter as follows:

T = |S21|2, R = |S11|2, and A = 1 − |S11|2 − |S21|2. (3)
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It was seen that absorption-dominated shielding was observed in Figure 7c. In the figure,
the SE(A) of CNT/silica/PDMS (6 wt% CNT) composite is higher than SE(R) indicating the microwave
absorption is more important parameter in EMI shielding at X-band. This trend regarding the relatively
high conductivity composite case is similar to that observed in our previous work [7]. In a further
investigation, multi-layer composites having different compositions and contents (by coupling several
layers) are planning to enhance the EMI SE and microwave absorption [29,30].

4. Conclusions

In summary, we have enhanced the EMI shielding properties of a CNT composite through the use
of segregated CNT networks with the assistance of micro-silica particles. Micro-size silica particles
create an excluded volume in the polymer matrix, resulting in concentrated CNT network paths.
Consequently, the electrical conductivity increased, which is attributed to more CNT–CNT contact
points. These advantages can be applied to improve EMI shielding properties. Successful EMI SE
values were obtained in this work. Our proposed scheme of using a segregated CNT network with our
results could be used as a strong design guideline for EMI shielding materials.
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