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Abstract: The article analyses the calculation of the deflection of reinforced concrete beams
strengthened with fiber reinforced polymer. This paper specifically focuses on estimating deflection
when the yielding of reinforcement is reached. The article proposes a simple method for calculating
deflection that was compared with the experimentally predicted deflection. The carried out comparison
has showed that the proposed method is suitable not only for the strengthened beams but also for the
reinforced concrete beams with a varying reinforcement ratio. The suggested calculation method
is based on the effective moment of inertia, such as the one introduced in the ACI Committee 318
Building Code Requirement for Structural Concrete (ACI318). The development of deflection was
divided into three stages, and equations for the effective moment of inertia were proposed considering
separate stages. In addition, the put forward equations were modified attaching additional relative
coefficients evaluating a change in the depth of the neutral axis.
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1. Introduction

One of the greatest advantages that can provide strengthening with carbon fiber reinforced
polymer (CFRP) is an increase in the flexibility of the beam. Failure in the reinforced concrete beam is
related to steel yielding, concrete crashing, or shear failure. Short-term and long-term experiments
have showed that strengthening RC beams with CFRP can delay steel yielding [1–6]. Evenly, if steel
yielding is reached or steel is rusted, the strengthened beams can serve until the rupture, delamination
of the CFRP layer, steel fatigue fracture, or concrete crashing are achieved [7–11]. Due to high strength
and high elasticity, the tensioned layer of CFRP can intercept tensile forces (stresses) when the yielding
of reinforcement is reached. That is why the deflection of the beam can develop, thus reaching the
yielding of reinforcement at a later stage. However, there is a danger for premature debonding of
CFRP layer. In order to prevent this, proper additional anchoring can delay this phenomenon [12].
As well near surface mounted CFRP due to a larger perimeter-to-sectional-area-ratio can ensure better
bond performance [13].

Various researches demonstrate that deflection development and reached yielding depend on the
reinforcement (steel) ratio [14,15]. This may be related to the exploitation of the compressed concrete.
If the reinforcement ratio is low, the exploitation of the compressed concrete is also greatly reduced until
the yielding of reinforcement is reached. Therefore, the deflection (when the yielding of reinforcement
is reached) of the strengthened beams with a low reinforcement ratio is the biggest. This is due to the
unexploited deformability of the compressed concrete.

The existing methods for calculating deflection can perform estimation until the yielding of
reinforcement is reached. The most common and simplest methods are based on design guidelines
ACI318 [16] and the Eurocode 2 [17]. In addition, the multi-layer method can be used for calculating the
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deflection of the strengthened beams; however, this method is not that convenient for engineers, and
therefore will not be discussed in this article. The calculation method based on ACI318 [16] evaluates
the effective moment of inertia, and the method based on Eurocode 2 [17], usually evaluates the
average curvature of the bending element. Both methods evaluate the moment of the inertia of the full
cross-section and the moment of the inertia of the cross-section where the crack is opened. However,
these methods evaluate stress strain state in the cross-section before yield stresses in reinforcement are
reached. There are several methods [18–21] that can evaluate stress-strain state in the cross-section
after yield stresses are reached but these methods are difficult to be applied by the designer. Several
contributions based on the moment-curvature modeling are available [22,23]. The accuracy of the
proposed model [22,23] is impressive, however certain parameters like moment of inertia, depth of the
neutral axis remains unknown.

The load carrying capacity of the strengthened beams can significantly increase such that the
increased service load can locate in the range of the load-deflection curve where steel yielding is
reached. The main objective of this article is to calculate the deflection of the strengthened beam when
steel yielding is reached and when only the layer of CFRP intercepts tensile forces.

2. Analyzed Beams

RC strengthened beams with various reinforcement ratios were chosen to perform the calculation
of deflection. The data about beams were collected from various research. The references and titles of
the analyzed beams with a short description are presented in Table 1. The chosen beams are suitable
for deflection analysis, because deflection develops when the yielding of reinforcement is reached.
As mentioned above, a lower reinforcement ratio allows a higher increment in deflection when the
yielding of reinforcement is reached.

The mechanical parameters of the material such as the modulus of elasticity and tensile strength
are required in order to calculate the deflection of the beam. This and other mechanical parameters are
presented in Table 2.
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Table 1. Characteristics of investigated experimental beams.

Author Beam Name l, m Load Positions, m b, m h, m As1 As2 d1, m d2, m Af

Barros et al.,
2005 [24]

V1

1.5 0.5 + 0.5 + 0.5 0.1

0.178 2Ø6

2Ø8
0.024

0.025

–

V1R1 0.17 2Ø6 1 × 1.45 × 9.59

V2 0.173 3Ø6 –

V2R2 0.177 3Ø6 2 × 1.45 × 9.59

V3 0.175 2Ø6 –

V3R2 0.175 2Ø6 + Ø8 2 × 1.45 × 9.59

V4 0.175 3Ø8
0.025

–

V4R3 0.18 3Ø8 3 × 1.45 × 9.59

Bilotta et al.,
2015 [25]

Ref_c_no_1

2.1

0.925 + 0.25 + 0.925

0.12 0.16 2Ø10 2Ø10 0.05 0.035

–

Ref_d_no_1 Distributed load –

EBR_c_1.4 × 40_1
0.925 + 0.25 + 0.925

56 mm2

EBR_c_1.4 × 40_2 56 mm2

EBR_d_1.4 × 40_1
Distributed load

56 mm2

EBR_d_1.4 × 40_2 56 mm2

NSM_c_2_1.4 × 10_1 0.925 + 0.25 + 0.925 28 mm2

NSM_d_2_1.4 × 10_1 Distributed load 28 mm2

NSM_c_3_1.4 × 10_1 0.925 + 0.25 + 0.925 42 mm2

NSM_d_3_1.4 × 10_1 Distributed load 42 mm2

David et al.,
2003 [26]

P1

2.8 0.9 + 1.0 + 0.9 0.15 0.3 2Ø14 2Ø8 0.027 0.024

–

P2 1.2 (cm2)

P5 2.4 (cm2)

EL-Gamal et al.,
2016 [27]

REF

2.36 0.93 + 0.5 + 0.93 0.2 0.3 2Ø12 2Ø8 0.04 0.032

–

CN1 71.26 (mm2)

CN2 2 × 71.26 (mm2)

GN1 71.3 (mm2)



Materials 2019, 12, 1367 4 of 43

Table 1. Cont.

Author Beam Name l, m Load Positions, m b, m h, m As1 As2 d1, m d2, m Af

GN2 2 × 71.3 (mm2)

CHYB 71.26 + 25.8
(mm2)

GHYB 71.3 + 25.8
(mm2)

REF-II
4Ø12

–

CN1-II 71.26 (mm2)

CN2-II 2 × 71.26 (mm2)

Ferrier et al.,
2003 [28]

A1
2.0 0.7 + 0.6 + 0.7 0.15 0.25 2Ø14 2Ø8 0.025 0.025

–

A2 120 (mm2)

Gao et al., 2004
[29]

CON1

1.5 0.5 0.15 0.2 2Ø10 2Ø8 0.038 0.027

–

A0 0.22 × 75

A10 0.22 × 75

A20 0.22 × 75

B0 0.44 × 75

B10 0.44 × 75

B20 0.44 × 75

Gao et al., 2006
[30]

2O

1.5 0.5 0.15 0.2 2Ø10 2Ø8 0.038 0.027

–

2N6

6 × 0.11 × 1502T625-1

2T650-1

2T675-1

2N4
4 × 0.11 × 1502T450-1

2T4100-1

Heffernan 1997
[31]

Conventional
4.8 1.6 + 1.6 + 1.6 0.3 0.5739 2Ø25 +

Ø20
2Ø10 0.074 0.067

–

CFRP strengthened 65.5 (mm2)
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Table 1. Cont.

Author Beam Name l, m Load Positions, m b, m h, m As1 As2 d1, m d2, m Af

Heffernan and
Erki 2004 [32]

Conventional
2.85 1.1 + 0.65 + 1.1 0.15 0.3 2Ø20 +

Ø10
2Ø10 0.041 0.037

–

CFRP strengthened 89.4 (mm2)

Hosseini et al.,
2014 [33]

SREF

2.4 0.9 + 0.6 + 0.9 0.6 0.12 4Ø8 3Ø6 0.024 0.023

–

S2L-0
2 × 1.4 × 20S2L-20

S2L-40

Khalifa et al.,
2016 [34]

B-C

2.2 0.95 + 0.3 + 0.95 0.15 0.26 2Ø12 2Ø12 0.041 0.031

–

B-S-2 60 (mm2)

B-S-4 120 (mm2)

B-N-1-2 60 (mm2)

B-N-2-2 60 (mm2)

B-N-2-4 120 (mm2)

Kotynia et al.,
2008 [35]

B-08S
4.2 1.4 + 1.4 + 1.4 0.15 0.3 3Ø12 2Ø10 0.03 * 0.03 **

60 (mm2)

B-083m 58.5 (mm2)

Kotynia et al.,
2011 [36]

G1

6.0 1.2 + 1.2 + 1.2 + 1.2
+ 1.2

1.0 0.22 7Ø12 7Ø8 0.03143 * 0.024 **

–

G2 120 (mm2)

G3 120 (mm2)

G4 120 (mm2)

Kotynia et al.,
2014 [37]

B12-a

6.0 1.2 + 1.2 + 1.2 + 1.2
+ 1.2

0.5 0.22 4Ø12 4Ø8 0.031 0.029

1.2 × 100

B12-asp 1.2 × 100

B16-asp 1.2 × 100

Omran et al.,
2012 [38]

B0

5.0 2 + 1 + 2 0.2 0.4 3Ø15 2Ø10 0.057 0.036

–

B1-NP

2 × 2 × 16
B1-P1

B1-P2

B1-P3
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Table 1. Cont.

Author Beam Name l, m Load Positions, m b, m h, m As1 As2 d1, m d2, m Af

Rezazadeh et al.,
2014 [39]

Control

2.2 0.9 + 0.4 + 0.9 0.15 0.3 2Ø10 2Ø10 0.035 0.025

–

Non prestressed

1.4 × 2020% prestressed

30% prestressed

40% prestressed

Sharaky et al.,
2014 [40]

CB

2.4 0.8 + 0.8 + 0.8 0.16 0.28 2Ø12 2Ø8 0.036 0.034

–

LB1C1 1Ø8

LB1G1 1Ø8

LB2C1 2Ø8

LB2G1 2Ø8

LA2C1 2Ø8

LA2G1 2Ø8

LB1G2 1Ø12

Soudki et al.,
2007 [41]

C-0

2.25 0.75 0.15 0.25 2Ø10 2Ø6 0.025 0.023

–

T-0 4 × 0.11

S-0 50 × 1.2

Teng et al., 2006
[42]

B0

3.0 1.2 + 0.6 + 1.2 0.15 0.3 2Ø12 2Ø8 0.036 0.034

–

B500

2 × 16
B1200

B1800

B2900
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Table 1. Cont.

Author Beam Name l, m Load Positions, m b, m h, m As1 As2 d1, m d2, m Af

Valivonis et al.,
2010 [14]

B6.1C

1.2 0.4 + 0.4 + 0.4 100

200
2Ø6

2Ø6

0.025 0.025

0.167 (cm2)
B6.2C

B6.5 –

B8.1C
2Ø8 0.167 (cm2)

B8.2C

B8.3 –

B12.1C 203

2Ø12 2Ø8

0.167 (cm2)
B12.2C 200

B12.5 104 198 –
B12.6 105 201

Wu et al., 2014
[43]

Control

1.8 0.6 + 0.6 + 0.6 0.15 0.3 3Ø14 2Ø6 0.037 0.033

–

B11 Ø7.9

B21
2Ø7.9

B22

BP11

Ø7.9BP12

BP13

BP14

Xiong et al., 2007
[44]

Pa

2.1 0.7 0.125

0.2

2 × 10
2×8

0.03
0.024

–

2C 0.22 × 100

Pb 2 × 12 0.031 –

* as = h-As1/ńs1·b; ** evaluated individually; l—span length; b—total width of the beam; h—height of the beam; As1—cross-section of the tensioned steel bars; As2—cross-section of the
compressed steel bars; d1—position of the tensioned steel bars; d2—position of the compressed steel bars; Af—cross-section of the tensioned fibers or FRP; ńs1—reinforcement ratio by As1.
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Table 2. Mechanical characteristics of investigated experimental beams materials.

Author Beam Name fc, MPa fct, MPa Ec, GPa fy1, MPa fy2, MPa Es1, GPa Es2, GPa ff,fe, MPa Ef,fe, GPa

Barros et al., 2005
[24]

V1
46.1 3.37 33.35 730

554.32 200 200

– –

V1R1 2740 158.8

V2
46.1 3.58 36.5 730

– –

V2R2 2740 158.8

V3
46.1 3.21 34.89

730 – –

V3R2 730; 554.32 2740 158.8

V4
46.1 3.43 35.86 554.32

– –

V4R3 2740 158.8

Bilotta et al., 2015
[25]

Ref_c_no_1

17.4 1.34 25.98 540 540 200 200

– –

Ref_d_no_1 – –

EBR_c_1.4 × 40_1

2052 171

EBR_c_1.4 × 40_2

EBR_d_1.4 × 40_1

EBR_d_1.4 × 40_2

NSM_c_2_1.4 × 10_1

NSM_d_2_1.4 × 10_1

NSM_c_3_1.4 × 10_1

NSM_d_3_1.4 × 10_1

David et al., 2003
[26]

P1 38.7 2.94 1 33.02 2

500 500 205 3 205 3

– –

P2 39.2 2.97 1 33.14 2
2400 150

P5 40.1 3.03 1 33.37 2

EL-Gamal et al.,
2016 [27]

REF

49.62 2.99 35.57 2 480 455 205 3 205 3

– –

CN1
1588 119.4

CN2

GN1
1185 52.34

GN2

CHYB 2096 * 147.47 *
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Table 2. Cont.

Author Beam Name fc, MPa fct, MPa Ec, GPa fy1, MPa fy2, MPa Es1, GPa Es2, GPa ff,fe, MPa Ef,fe, GPa

GHYB 1800 * 98.22 *

REF-II – –

CN1-II
1588 119.4

CN2-II

Ferrier et al., 2003
[28]

A1
39 2.96 1 31 550 550 3 210 210 3 – –

A2 650 80

Gao et al., 2004
[29]

CON1

35.7

2.75 1

25 531 400 200 200

– –

A0

4200 235

A10

A20

B0

B10

B20

Gao et al., 2006
[30]

2O

62.1 4.29 1 37.1 460 460 200 205

– –

2N6

4200 235

2T625-1

2T650-1

2T675-1

2N4

2T450-1

2T4100-1

Heffernan 1997
[31]

Conventional
32.9 2.56 1 31.45 2 - - 200 200 – –

CFRP strengthened 325

Heffernan and
Erki 2004 [32]

Conventional
37 2.83 1 32.57 2 511 & 411 411 210 210 – –

CFRP strengthened 233
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Table 2. Cont.

Author Beam Name fc, MPa fct, MPa Ec, GPa fy1, MPa fy2, MPa Es1, GPa Es2, GPa ff,fe, MPa Ef,fe, GPa

Hosseini et al.,
2014 [33]

SREF

46.7 3.43 1 29.7 486 464 200 200

– –

S2L-0
2483.9 153.2S2L-20

S2L-40

Khalifa et al., 2016
[34]

B-C

35 2.7 1 28 400 400 200 200 2800 165
B-S-2

B-S-4

B-N-1-2

B-N-2-2

B-N-2-4

Kotynia et al.,
2008 [35]

B-08S 32.3 2.52 1 31.27 2 490 524 195 209 2915 172

B-083m 34.4 2.66 1 31.87 2 436 524 220 209 3500 230

Kotynia et al.,
2011 [36]

G1 45 3.33 1 34.55 2

554 561 200 200

– –

G2 46.2 3.4 1 34.82 2
2800 165

G3 45.9 3.39 1 34.75 2

G4 45.6 3.37 1 34.68 2 2235 149

Kotynia et al.,
2014 [37]

B12-a 45.3 3.35 24.3 539.6 416.2 191.3 186.1
2800 173.3B12-asp 32.2 2.51 23.7 511.4 583.2 191.4 200.7

B16-asp 49 3.57 25.4 595 555.8 198 196.4

Omran et al., 2012
[38]

B0

40 3.02 1 27.84 478 500 200 200

– –

B1-NP

2610 130.5B1-P1

B1-P2

B1-P3
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Table 2. Cont.

Author Beam Name fc, MPa fct, MPa Ec, GPa fy1, MPa fy2, MPa Es1, GPa Es2, GPa ff,fe, MPa Ef,fe, GPa

Rezazadeh et al.,
2014 [39]

Control

32.2 2.51 1 27.4 585 585 208 208

– –

Non prestressed

1922 16420% prestressed

30% prestressed

40% prestressed

Sharaky et al.,
2014 [40]

CB

32.4 2.8 31.7 545 545 205 205

– –

LB1C1 2350 170

LB1G1 1350 64

LB2C1 2350 170

LB2G1 1350 64

LA2C1 2350 170

LA2G1 1350 64

LB1G2 1350 64

Soudki et al., 2007
[41]

C-0
35 2.7 32.04 460 460 205 205

– –

T-0 3480 230

S-0 2800 165

Teng et al., 2006
[42]

B0

44 3.27 1 34.31 2 – – 210 210

– –

B500

2068 131B1200

B1800

B2900

Valivonis et al.,
2010 [14]

B6.1C
34.4 2.93 32.45 358 358 205 205 4800 231

B6.2C

B6.5 – –

B8.1C
29.7 2.63 30.91 557 358 195 205 4800 231

B8.2C

B8.3 – –
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Table 2. Cont.

Author Beam Name fc, MPa fct, MPa Ec, GPa fy1, MPa fy2, MPa Es1, GPa Es2, GPa ff,fe, MPa Ef,fe, GPa

B12.1C
30.4 2.67 31.14

318 420 204.9 204.1
4800 231

B12.2C

B12.5
28.7 2.56 30.55

– –

B12.6 – –

Wu et al., 2014 [43]

Control

34.4 2.66 1 31.87 2 340 240 200 200

– –

B11

2629 170

B21

B22

BP11

BP12

BP13

BP14

Xiong et al., 2007
[44]

Pa

30.71 2.41 1

30.8 2

411
233

200
210

– –

2C 3652 252

Pb 606 210 – –
1 fctm = 0.3(fcm-8)2/3 equation from Eurocode 2 [17]; 2 Ecm = 22(fcm/10)0.3 equation from Eurocode 2 [17]; 3 evaluated individually; fc—concrete compressive strength; fct—concrete tensile
strength; Ec—modulus of elasticity of the concrete material; fy1—yielding strength of the tensioned steel bars; fy2—yielding strength of the compressed steel bars; Es1—modulus of
elasticity of the tensioned steel bars; Es2—modulus of elasticity of the compressed steel bars; ff,fe—tensile strength of tensioned fibers or FRP; Ef,fe—modulus of elasticity tensioned fibers or
FRP; *—calculated by the law of the mixture.
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3. Calculation of Deflection

The development of the deflection of the strengthened and unstrengthened beams is divided into
stages. At the first stage, deflection develops until vertical cracks open in the tensioned part of the
cross-section. At the second stage, deflection develops when the vertical crack is opened until the
yielding strength of the tensioned reinforcement is reached. At the third stage, deflection develops
when the yielding strength of reinforcement is reached and only a layer of CFRP intercepts tensile
force. Therefore, two deflection development stages exist for the unstrengthened beams and three
stages for the strengthened ones (Figure 1). Bending moments MI and MI.S are shown in (Figure 1),
which is the cracking moment of the unstrengthened and strengthened beam, respectively. Due to the
CFRP layer, the contribution cracking moment of the strengthened beam is slightly bigger than that of
the unstrengthened beam (MI.S > MI). Bending moments (MI.S and MI) correspond to the end of the
first stage. The maximal carrying bending moment of the unstrengthened beam (MR = MII) is smaller
than that of the bending moment of the strengthened beam (MII.S) when the yielding of reinforcement
is reached. These bending moments correspond to the end of the second stage. The maximum carrying
bending moment of the strengthened beam is designated as MR.S = MIII and corresponds to the end of
the third stage.
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Figure 1. The development of the deflection of the strengthened and unstrengthened beam.

The deflection of the beams at a certain stage is influenced by different flexural stiffness. Generally,
bending stiffness E·I (the product of the modulus of elasticity and the moment of inertia) is influenced
by the moment of inertia. The current methods for calculating deflection usually evaluate the modulus
of elasticity like for an elastic material. Then, the development of deflection undergoes all stages, cracks
in the tensioned part of the cross-section develop, therefore, the moment of the inertia is not constant.
Thus, at a certain stage, the depth of the neutral axis and the moment of inertia are different. A change
in the depth of the neutral axis of the strengthened and unstrengthened beams is presented in Figures 2
and 3. Thus, there are parts of the cross-section containing and having no cracks. Therefore, the
effective moment of inertia should be evaluated. The prediction of the depth of the neutral axis at each
stage confirms that the distribution of strains is linear. Stresses in the compressed part of the section
are in the elastic range. In addition, a hypothesis about the plane section is valid. The strain of internal
and external reinforcement is equal to the surrounded concrete strain (bond slip is not evaluated).
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Figure 2. A change in the depth of the neutral axis of the RC strengthened beam: (a) Cross-section
of the strengthened beam; (b) depth of the neutral axis before vertical cracks will open; (c) depth of
the neutral axis when vertical cracks are opened; (d) depth of the neutral axis when steel yielding
is reached.
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Figure 3. A change in the depth of the neutral axis of the RC beam: (a) Cross-section of the beam (b)
depth of the neutral axis before vertical cracks will open; (c) depth of the neutral axis when vertical
cracks are opened.

The deflection of the strengthened beam at stage 1 up to the cracking of the tensioned part of the
cross-section can be predicted by the equation:

ωI.S(MI) =
3 · l2 − 4 · a2

24
·

MI

Ecm · II.red
. (1)

where l—the span length of the beam, a–distance from the support to the external load position,
MI—acting moment, Ecm—the modulus of elasticity of concrete, II.red—the reduced moment of the
inertia of the total cross-section according to the neutral axis of the cross-section.

At stage 1, the evaluated acting moment is 0 < MI ≤MI.S, and the ultimate bending moment of
stage 1 is the cracking moment:

Mcrc = MI.S = fct ·
II.red
yc.I

. (2)

where fct—the tensile strength of concrete, yc.I—the centre of the gravity of the cross-section at stage 1.
The center of gravity can be predicted by the following equations:

Ared = b · h + α f ·A f + (αs1 − 1) ·As1 + (αs2 − 1) ·As2, (3)

Sred = b · h ·
(

h
2
+ t f

)
+ α f ·A f ·

t f

2
+ (αs1 − 1) ·As1 ·

(
d1 + t f

)
+ (αs2 − 1) ·As2 ·

(
h + t f − d2

)
, (4)

α f =
E f

Ec
, (5)
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αs1 =
Es1

Ec
, (6)

αs2 =
Es2

Ec
, (7)

yc.I =
Sred
Ared

. (8)

where Ared—the reduced cross-section of the strengthened beam, Af—the cross section of carbon fibers,
As1, As2—the cross-section of steel bars, Sred—the static moment of the reduced cross-section of the
strengthened beam, αf, αs1, αs2—coefficients of reduction, Ef—the modulus of elasticity of fibers, Es1,
Es2—the modulus of elasticity of the steel bars.

The reduced moment of the inertia of the cross-section can be predicted by the following equation:

II.red =
b · h3

12
+ b · h ·

(
h
2
+ t f − yc.I

)2

+ α f ·A f ·

(
yc.I −

t f

2

)2

+(αs1 − 1) ·As1 ·
(
yc.I − t f − d1

)2
+ (αs2 − 1) ·As2 ·

(
h + t f − yc.I − d2

)2
.

(9)

The deflection of the strengthened beam at stage 2, when the tensioned part of the cross-section
is cracked and the yielding of the tensioned reinforcement is not reached, can be predicted by the
equation:

ωII(MII) =
3 · l2 − 4 · a2

24
·

MII

Ec · III(MII)
. (10)

The acting bending moment at stage 2 is MII and the moment MI.S < MII ≤MII.S. The moment
when the yielding of reinforcement is reached is MII.S. The effective moment of inertia is evaluated
using the Branson [45] equation for parameter III:

III(MII) = II.red ·

(MI.u

MII

)3
+ III.red − III.red ·

(MI.u

MII

)3
. (11)

If change of the neutral axis is evaluated, then Equation (11) is modified like:

III(MII) = II.red ·

(MI.u

MII

)3
+ III.red · γ1.c · γ1.t − III.red ·

(MI.u

MII

)3
· γ1.c · γ1.t. (12)

where III.red—the reduced moment of the inertia of the cross section where the vertical crack is opened.
This moment of inertia can be predicted by the equation:

III.red =
b · x3

II
12

+ b · xII ·

(xII

2

)2
+ α f ·A f ·

(
h + t f − xII −

t f

2

)2

+αs1 ·As1 · (h− xII − d1)
2 + (αs2 − 1) ·As2 · (xII − d2)

2.
(13)

Coefficients γ1.c and γ1.t evaluate a change in the neutral axis and can be predicted by equations:

γ1.c =
xII

xI
, (14)

γ1.t =
h + t f − xII

h + t f − xI
. (15)

The depth of the neutral axis at stage 1 is predicted by the equation:

xI = h + t f − yc.I. (16)
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The prediction of the depth of the neutral axis in the section having an opened crack is based on
the previously mentioned assumptions. The hypothesis of plain sections is valid. The distribution
of strains through the height of the section is linear (Figure 4b). Then, by the similarity of triangles,
strains at each layer, in proportion with the strain of the compressed concrete layer, can be expressed,
and the depth of the neutral axis should be expressed from the square equation. The depth of the
neutral axis at stage 2 can be predicted by the equation:

xII =
−B +

√
B2 + 4 ·A ·C
2 ·A

. (17)

where coefficients A, B, and C:
A = b · 0.5, (18)

B = α f ·A f + αs1 ·As1 + (αs2 − 1) ·As2, (19)

C = α f ·A f ·

(
h +

t f

2

)
+ αs1 ·As1 · d + (αs2 − 1) ·As2 · d2. (20)
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Figure 4. Stress-strain state in the strengthened RC beam until the yielding of reinforcement is reached:
(a) Depth of the neutral axis; (b) distribution of strains; (c) distribution of stresses; (d) internal forces.

The deflection of the strengthened beam at stage 3, when the yielding strength of tensioned
reinforcement is reached, can be predicted by the equation:

ωIII(MIII) =
3 · l2 − 4 · a2

24
·

MIII

Ec · IIII(MIII)
. (21)

The acting bending moment at stage 3 is MIII and the moment MII.u < MIII ≤MIII.u. The ultimate
bending moment at stage 3 is MIII.u. The new effective moment of inertia is evaluated in the equation
for parameter IIII:

IIII(MIII) = II.red ·

(MI.u

MIII

)3
+ III.red ·

(MII.u

MIII

)3
− III.red ·

(MI.u

MIII

)3

+IIII.red ·

(MIII

MIII

)3
− IIII.red ·

(MII.u

MIII

)3
.

(22)

If change of the neutral axis is evaluated, then Equation (22) is modified like:

IIII(MIII) = II.red ·

(MI.u

MIII

)3
+ III.red ·

(MII.u

MIII

)3
· γ1.c · γ1.t − III.red ·

(MI.u

MIII

)3
· γ1.c · γ1.t

+IIII.red ·

(MIII

MIII

)3
· γ2.c · γ2.t − IIII.red ·

(MII.u

MIII

)3
· γ2.c · γ2.t.

(23)

where IIII.red—the reduced moment of the inertia of the cross section where the vertical crack is opened.
This moment of inertia can be predicted by the equation:
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IIII.red =
b · x3

III
12

+ b · xIII ·

(xIII

2

)2
+ α f ·A f ·

(
h + t f − xIII −

t f

2

)2

+(αs2 − 1) ·As2 · (xIII − d2)
2.

(24)

Coefficients γ2.c and γ2.t:

γ2.c =
xIII

xII
; (25)

γ2.t =
h + t f − xIII

h + t f − xII
(26)

The depth of the neutral axis at stage 3 is also predicted from the similarity of triangles (Figure 5b).
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Figure 5. Stress-strain state in the strengthened RC beam when the yielding of reinforcement is reached:
(a) Depth of the neutral axis; (b) distribution of strains; (c) distribution of stresses; (d) internal forces.

The depth of the neutral axis at stage 3 is predicted by the equation:

xIII =
−B +

√
B2 + 4 ·A ·C
2 ·A

. (27)

Were coefficients A, B, and C:
A = b · 0.5; (28)

B = α f ·A f + (αs2 − 1) ·As2; (29)

C = α f ·A f ·

(
h +

t f

2

)
+ (αs2 − 1) ·As2 · d2. (30)

The deflection of the unstrengthened beams can be predicted by the same Equations (1) and
(10). However, the parameters of the FRP layer in other equations should be ignored. If the beams
are strengthened with the prestressed FRP, in this case it is necessary to calculate the additional
curvature and the deflection from prestress force. The total deflection is obtained by summing up all
the deflections.

4. Results

A comparison of deflections (Figures 6–9) shows that the equation method is suitable for RC beams
with various reinforcement ratios. Calculated deflections of all mentioned beams are presented in the
Appendix A. In these figures, designation “Calc. I” is related to Equations (11) and (22). Designation
“Calc. II” related with Equations (12) and (23). It is clear that the theoretical equation method gives
brake points such as the cracking moment and steel yielding moment on the load deflection curve.
The difference between the calculated and experimental deflection increases when the load level
increases. This may happen because the theoretical method evaluates the elastic work of concrete and
the constant depth of the neutral axis. Thus, the deflection curve curvature depends just from ratio of the
bending moments. In order to increase the accuracy of the theoretical method, nonlinear stress-strain
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distribution across the height of the cross-section should be evaluated. The proposed method evaluates
linear stress-strain distribution. The evaluation of nonlinear stress-strain distribution can be complex
for designers, and thus triangular distribution is easier to assess. Furthermore, a comparison of the
position of the center of the parabolic and triangular form gives little difference. The difference in
results is also influenced by the accuracy of the experiment. In certain experiments, deflection at the
cracking moment to big. The main drawback of the suggested method is the prediction of the bending
moment when steel yielding is reached. It is difficult to predict the moment when the FRP layer is
incorporated, because strains are not known in the compressed concrete and tensioned CFRP layer.
In such a case, the problem must be solved by the iteration approach until the balance of internal forces
is reached. This is also a complex task for designers. For this research values of cracking, yielding and
ultimate moment were predicted from the deflection evolution plots.

Experiments in which the deflection was measured from the frame mounted on a beam gives
a more precise result. Calculated deflection (Calc. I) using the effective moment of inertia equation
without any coefficients is suitable for this measurement system. Equation of the effective moment of
inertia must be without coefficients—it is related with the neutral axis. Please note that the second
stage does not have a horizontal straight line. The other experimental “deflection“ results, which are
more close to the “Calc. II” can be associated with the measured displacement.
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Strengthened; (e) beam CFRP strengthened; (f) beam S2L-0; (g) beam B-N-1-2; (h) beam B-08S.
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Figure 8. Bending moment–deflection curves, (a) beam G2; (b) beam B12-a; (c) beam B1-NP; (d) 

beam Non prestressed, (e) beam LB1C1; (f) beam T-0; (g) B500; (h) B6.1C. 

Figure 8. Bending moment–deflection curves, (a) beam G2; (b) beam B12-a; (c) beam B1-NP; (d) beam
Non prestressed, (e) beam LB1C1; (f) beam T-0; (g) B500; (h) B6.1C.
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5. Conclusions

According to the proposed method for calculating the deflection of the strengthened RC beam,
it is possible to predict deflection when steel yielding is reached. When the deflection is calculated
using the usual expression of an effective moment of inertia (Equations (11) and (22)), in some
cases smaller deflections are obtained. This discrepancy may be due to an incorrectly determined
experimental deflection, since in some experiments it is not clear whether the deflection is determined
by compensating the lift of the neutral axis at the supports. In most cases, the most accurate calculation
using the normal expression of an effective inertia moment (Equations (11) and (22)). Estimating the
change in the neutral axis (Equations (12) and (23)) results in bigger deflections but are more precise
when the deflections are lower with normal expression (Equations (11) and (22)). Another important
criterion related to the accuracy of deflections is the coefficient of estimating the nature of the external
load, since after the strengthening the evolution of cracks changes, the curvature development change
too. In order to verify the accuracy of the experimental and computational results, further finite
element analysis is required.
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Notation

A, B, C the designation of the equation for the depth of the neutral axis;
Ac the cross section of the compressed concrete layer;
Af the cross-section area of carbon fiber;
Ared the transformed cross section of the beam;
As1 and As2 the cross-section area of the tensioned and compressed reinforcement;
Ecm the modulus of elasticity of concrete;
Ef the modulus of elasticity of carbon fiber;
Es1, Es2 the modulus of elasticity of steel bars;
III, IIII the effective moment of inertia at stages 2 and 3;
II.red, III.red, IIII.red the moment of the inertia of the transformed cross-section at stages 1, 2, and 3;
MI and MI.S the cracking moment of the unstrengthened beam and strengthened beam respectively;

MII.S
the bending moment of the strengthened beam when the yielding of reinforcement
is reached;

MR, MII the maximum carrying bending moment of the unstrengthened beam;
MR.S, MIII the maximum carrying bending moment of the strengthened beam;
Sred the static moment of the transformed cross-section;
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a distance from the support to loading;
b the width of the beam;
d1 and d2 distance from the beam edge to the center of the tensioned and compressed reinforcement;
fc the compressive strength of concrete cylinders;
fct the tensile strength of concrete;
h the height of the beam;
k1 the coefficient evaluating the shape of stress distribution;
l the span length of the beam;
tf the thickness of the carbon fiber layer;
xI, xII and xIII the depth of the neutral axis at stages 1, 2 and 3;
yc.I, yc.II, yc.III, the centre of the gravity of the beam cross-section at stages 1, 2 and 3;
αf, αs1, αs2 relative coefficients;
γ1.c, γ1.t relative coefficients evaluating a change in the depth of the neutral axis at stage 2;
γ2.c, γ2.t relative coefficients evaluating a change in the depth of the neutral axis at stage 3;
εc the strain of the compressed concrete;
εc1 strain when the maximum strength of concrete material is reached;
εf the strain of the carbon fiber layer;
εs the strain of the tensioned reinforcement;
εs2 the strain of the compressed reinforcement;
σc stresses in the layer of the compressed concrete;
σf stresses in the layer of carbon fiber;
σs stresses in the tensioned reinforcement;
σs2 stresses in the compressed reinforcement;
ωI, ωII the deflection of the control beam up to the end of stages I and II.
ωI.S, ωII.S, ωIII.S the deflection of the strengthened beam up to the end of stages I, II, and III.
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Figure A1. Barros et al., 2005 [24] research beams displacement compared with calculated deflection, 

(a) beam V1; (b) beam V1R1; (c) beam V2; (d) beam V2R2; (e) beam V3; (f) beam V3R2; (g) beam V4; 

(h) beam V4R3; (i) scatter of the results at 60% and 80% of the ultimate load. 
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Figure A1. Barros et al., 2005 [24] research beams displacement compared with calculated deflection,
(a) beam V1; (b) beam V1R1; (c) beam V2; (d) beam V2R2; (e) beam V3; (f) beam V3R2; (g) beam V4; (h)
beam V4R3; (i) scatter of the results at 60% and 80% of the ultimate load.
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Figure A2. Bilotta et al., 2015 [25] research beams deflection compared with calculated, (a) beam 

Ref_c_no_1; (b) beam Ref_d_no_1; (c) beam EBR_c_1.4 × 40_1; (d) beam EBR_c_1.4 × 40_2; (e) beam 
Figure A2. Bilotta et al., 2015 [25] research beams deflection compared with calculated, (a) beam
Ref_c_no_1; (b) beam Ref_d_no_1; (c) beam EBR_c_1.4 × 40_1; (d) beam EBR_c_1.4 × 40_2; (e) beam
EBR_d_1.4 × 40_1; (f) beam EBR_d_1.4 × 40_2; (g) beam NSM_c_2 × 1.4 × 10_1; (h) beam NSM_d_2 ×
1.4 × 10_1; (i) beam NSM_c_3 × 1.4 × 10_1; (j) beam NSM_d_3 × 1.4 × 10_1; (k) scatter of the results at
60% and 80% of the ultimate load.
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(b) beam P2; (c) beam P5; (d) scatter of the results at 60% and 80% of the ultimate load. 
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Figure A3. David et al., 2003 [26] research beams deflection compared with calculated, (a) beam P1; (b)
beam P2; (c) beam P5; (d) scatter of the results at 60% and 80% of the ultimate load.
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Figure A4. Cont.
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Figure A4. El-Gamal et al., 2016 [27] research beams deflection compared with calculated, (a) beam 

REF; (b) beam CN1; (c) beam CN2; (d) beam GN1; (e) beam GN2; (f) beam CHYB; (g) beam GHYB; 

(h) beam REF-II; (i) beam CN1-II; (j) beam CN2-II; (k) scatter of the results at 60% and 80% of the 

ultimate load. 

Figure A4. El-Gamal et al., 2016 [27] research beams deflection compared with calculated, (a) beam
REF; (b) beam CN1; (c) beam CN2; (d) beam GN1; (e) beam GN2; (f) beam CHYB; (g) beam GHYB;
(h) beam REF-II; (i) beam CN1-II; (j) beam CN2-II; (k) scatter of the results at 60% and 80% of the
ultimate load.
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Figure A5. Ferrier et al., 2003 [28] research beams deflection compared with calculated, (a) beam A2; 

(b) beam A0; (c) scatter of the results at 60% and 80% of the ultimate load. 
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Figure A5. Ferrier et al., 2003 [28] research beams deflection compared with calculated, (a) beam A2;
(b) beam A0; (c) scatter of the results at 60% and 80% of the ultimate load.
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Figure A6. Cont.
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Figure A6. Gao et al., 2004 [29] research beams deflection compared with calculated, (a) beam 

CON1; (b) beam A0; (c) beam A10; (d) beam A20; (e) beam B0; (f) beam B10; (g) beam B20; (h) 

scatter of the results at 60% and 80% of the ultimate load. 
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Figure A6. Gao et al., 2004 [29] research beams deflection compared with calculated, (a) beam CON1;
(b) beam A0; (c) beam A10; (d) beam A20; (e) beam B0; (f) beam B10; (g) beam B20; (h) scatter of the
results at 60% and 80% of the ultimate load.
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scatter of the results at 60% and 80% of the ultimate load. 

0

2

4

6

8

10

12

14

16

0 2 4 6 8

B
en

d
in

g 
m

o
m

en
t,

 k
N

·m

Deflection, mm

Gao et. al. 2006_2O (presented as
"Displacement")
Calc. I; 2O

Calc. II; 2O

 

0

5

10

15

20

25

30

35

40

0 2,5 5 7,5 10 12,5 15 17,5

B
en

d
in

g 
m

o
m

en
t,

 k
N

·m

Deflection, mm

Gao et. al. 2006_2N4 (presented as
"Displacement")
Calc. I; 2N4

Calc. II; 2N4

 
(a) (b) 

0

5

10

15

20

25

30

35

40

0 2,5 5 7,5 10 12,5

B
en

d
in

g 
m

o
m

en
t,

 k
N

·m

Deflection, mm

Gao et. al. 2006_2N6 (presented as
"Displacement")
Calc. I; 2N6

Calc. II; 2N6

 

0

5

10

15

20

25

30

35

40

0 2,5 5 7,5 10 12,5 15 17,5

B
en

d
in

g 
m

o
m

en
t,

 k
N

·m

Deflection, mm

Gao et. al. 2006_2T450-1 (presented as
"Displacement")
Calc. I; 2T450-1

Calc. II; 2T450-1

 
(c) (d) 

Figure A7. Cont.



Materials 2019, 12, 1367 29 of 43
Materials 2019, 12, x FOR PEER REVIEW 27 of 41 

 

0

5

10

15

20

25

30

35

40

0 2,5 5 7,5 10 12,5

B
en

d
in

g 
m

o
m

en
t,

 k
N

·m

Deflection, mm

Gao et. al. 2006_2T625-1 (presented as
"Displacement")
Calc. I; 2T625-1

Calc. II; 2T625-1

 

0

5

10

15

20

25

30

35

40

0 2,5 5 7,5 10 12,5 15

B
en

d
in

g 
m

o
m

en
t,

 k
N

·m

Deflection, mm

Gao et. al. 2006_2T650-1 (presented as
"Displacement")
Calc. I; 2T650-1

Calc. II; 2T650-1

 

(e) (f) 

0

5

10

15

20

25

30

35

40

0 2,5 5 7,5 10 12,5

B
en

d
in

g 
m

o
m

en
t,

 k
N

·m

Deflection, mm

Gao et. al. 2006_2T675-1 (presented as
"Displacement")
Calc. I; 2T675-1

Calc. II; 2T675-1

 

0

5

10

15

20

25

30

35

0 2,5 5 7,5 10 12,5 15

B
en

d
in

g 
m

o
m

en
t,

 k
N

·m

Deflection, mm

Gao et. al. 2006_2T4100-1 (presented as
"Displacement")
Calc. I; 2T4100-1

Calc. II; 2T4100-1

 
(g) (h) 

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Ex
p

er
im

en
ta

l, 
m

m

Calculated, mm

calc. I/exp. 60%

calc. I/exp. 80%

calc. II/exp. 60%

calc. II/exp. 80%

ref.

 
(i) 

Figure A7. Gao et al., 2006 [30] research beams displacement compared with calculated deflection, 

(a) beam 2O; (b) beam 2N4; (c) beam 2N6; (d) beam 2T450-1; (e) beam 2T625-1; (f) beam 2T650-1; (g) 

beam 2T675-1; (h) beam 2T4100-1; (i) scatter of the results at 60 % and 80% of the ultimate load. 
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Figure A7. Gao et al., 2006 [30] research beams displacement compared with calculated deflection, (a)
beam 2O; (b) beam 2N4; (c) beam 2N6; (d) beam 2T450-1; (e) beam 2T625-1; (f) beam 2T650-1; (g) beam
2T675-1; (h) beam 2T4100-1; (i) scatter of the results at 60 % and 80% of the ultimate load.
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Figure A7. Gao et al., 2006 [30] research beams displacement compared with calculated deflection, 
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beam 2T675-1; (h) beam 2T4100-1; (i) scatter of the results at 60 % and 80% of the ultimate load. 
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Figure A9. Heffernan and Erki 2004 [32] research beams displacement compared with calculated 
deflection, (a) beam CFRP Strengthened; (b) beam Conventional; (c) scatter of the results at 60% and 
80% of the ultimate load. 
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Figure A8. Heffernan 1997 [31] research beams displacement compared with calculated deflection,
(a) beam Conventional; (b) beam CFRP Strengthened; (c) scatter of the results at 60% and 80% of the
ultimate load.
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Figure A9. Heffernan and Erki 2004 [32] research beams displacement compared with calculated
deflection, (a) beam CFRP Strengthened; (b) beam Conventional; (c) scatter of the results at 60% and
80% of the ultimate load.
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Figure A10. Hosseini et al., 2014 [33] research beams deflection compared with calculated, (a) beam 

SREF; (b) beam S2L-0; (c) beam S2L-20; (d) beam S2L-40; (e) scatter of the results at 60% and 80% of 

the ultimate load. 
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Figure A10. Hosseini et al., 2014 [33] research beams deflection compared with calculated, (a) beam
SREF; (b) beam S2L-0; (c) beam S2L-20; (d) beam S2L-40; (e) scatter of the results at 60% and 80% of the
ultimate load.
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Figure A11. Khalifa et al., 2016 [34] research beams deflection compared with calculated, (a) beam 

B-C; (b) beam B-S-2; (c) beam B-S-4; (d) beam B-N-1-2; (e) beam B-N-2-2; (f) beam B-N-2-4; (g) scatter 

of the results at 60% and 80% of the ultimate load. 
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(c) 

Figure A12. Kotynia et al., 2008 [35] research beams deflection compared with calculated, (a) beam 

B-08S; (b) beam B-083m; (c) scatter of the results at 60% and 80% of the ultimate load. 

Figure A11. Khalifa et al., 2016 [34] research beams deflection compared with calculated, (a) beam B-C;
(b) beam B-S-2; (c) beam B-S-4; (d) beam B-N-1-2; (e) beam B-N-2-2; (f) beam B-N-2-4; (g) scatter of the
results at 60% and 80% of the ultimate load.
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of the results at 60% and 80% of the ultimate load. 
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Figure A12. Kotynia et al., 2008 [35] research beams deflection compared with calculated, (a) beam 

B-08S; (b) beam B-083m; (c) scatter of the results at 60% and 80% of the ultimate load. 

Figure A12. Kotynia et al., 2008 [35] research beams deflection compared with calculated, (a) beam
B-08S; (b) beam B-083m; (c) scatter of the results at 60% and 80% of the ultimate load.
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Figure A13. Kotynia et al., 2011 [36] research beams deflection compared with calculated, (a) beam 

G1; (b) beam G2; (c) beam G3; (d) beam G4; (e) scatter of the results at 60% and 80% of the ultimate 

load. 
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Figure A13. Kotynia et al., 2011 [36] research beams deflection compared with calculated, (a) beam G1;
(b) beam G2; (c) beam G3; (d) beam G4; (e) scatter of the results at 60% and 80% of the ultimate load.
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Figure A13. Kotynia et al., 2011 [36] research beams deflection compared with calculated, (a) beam 

G1; (b) beam G2; (c) beam G3; (d) beam G4; (e) scatter of the results at 60% and 80% of the ultimate 

load. 
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Figure A14. Cont.
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Figure A14. Kotynia et al., 2014 [37] research beams deflection compared with calculated, (a) beam 

B12; (b) beam b12-a; (c) beam B12-asp; (d) beam B12-asp-e; (e) beam B16; (f) beam B16-asp; (g) beam 

B16-asp-e; (h) scatter of the results at 60% and 80% of the ultimate load. 
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Figure A14. Kotynia et al., 2014 [37] research beams deflection compared with calculated, (a) beam
B12; (b) beam b12-a; (c) beam B12-asp; (d) beam B12-asp-e; (e) beam B16; (f) beam B16-asp; (g) beam
B16-asp-e; (h) scatter of the results at 60% and 80% of the ultimate load.
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Figure A14. Kotynia et al., 2014 [37] research beams deflection compared with calculated, (a) beam 

B12; (b) beam b12-a; (c) beam B12-asp; (d) beam B12-asp-e; (e) beam B16; (f) beam B16-asp; (g) beam 

B16-asp-e; (h) scatter of the results at 60% and 80% of the ultimate load. 
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Figure A15. Cont.
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Figure A15. Omran et al., 2012 [38] research beams deflection compared with calculated, (a) beam 

B0; (b) beam B1-NP; (c) beam B1-P1; (d) beam B1-P2; (e) beam B1-P3; (f) scatter of the results at 60% 

and 80% of the ultimate load. 
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Figure A15. Omran et al., 2012 [38] research beams deflection compared with calculated, (a) beam B0;
(b) beam B1-NP; (c) beam B1-P1; (d) beam B1-P2; (e) beam B1-P3; (f) scatter of the results at 60% and
80% of the ultimate load.Materials 2019, 12, x FOR PEER REVIEW 34 of 42 
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Figure A16. Rezazadeh et al., 2014 [39] research beams deflection compared with calculated, (a) beam
Control; (b) beam Non prestressed; (c) beam 20% prestressed; (d) beam 30% prestressed; (e) beam 40%
prestressed; (f) scatter of the results at 60% and 80% of the ultimate load.
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Figure A18. Soudki et al., 2007 [41] research beams deflection compared with calculated, (a) beam 
T-0; (b) beam S-0; (c) beam C-0; (d) scatter of the results at 60% and 80% of the ultimate load. 
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Figure A17. Sharaky et al., 2014 [40] research beams deflection compared with calculated, (a) beam CB;
(b) beam LB1C1; (c) beam LB1G1; (d) beam LB2C1; (e) beam LB2G1; (f) beam LA2C1; (g) beam LA2G1;
(h) beam LB1G2; (i) scatter of the results at 60% and 80% of the ultimate load.
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Figure A18. Soudki et al., 2007 [41] research beams deflection compared with calculated, (a) beam T-0;
(b) beam S-0; (c) beam C-0; (d) scatter of the results at 60% and 80% of the ultimate load.
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Figure A19. Teng et al., 2006 [42] research beams deflection compared with calculated, (a) beam B0; (b)
beam B500; (c) beam B1200; (d) beam B1800; (e) beam B2900; (f) scatter of the results at 60% and 80% of
the ultimate load.
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Figure A20. Cont.
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Figure A20. Valivonis et al., 2010 [14] research beams deflection compared with calculated, (a) beam 

B6.5; (b) beam B6.1C; (c) beam B6.2C; (d) beam B8.3; (e) beam B8.1C; (f) beam B8.2C; (g) beam B12.5; 

(h) beam B12.6; (i) beam B12.1C; (j) beam B12.2C; (k) scatter of the results at 60% and 80% of the 

ultimate load. 

Figure A20. Valivonis et al., 2010 [14] research beams deflection compared with calculated, (a) beam
B6.5; (b) beam B6.1C; (c) beam B6.2C; (d) beam B8.3; (e) beam B8.1C; (f) beam B8.2C; (g) beam B12.5;
(h) beam B12.6; (i) beam B12.1C; (j) beam B12.2C; (k) scatter of the results at 60% and 80% of the
ultimate load.
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(i) 

Figure A21. Wu et al., 2014 [43] research beams deflection compared with calculated, (a) beam Control;
(b) beam B11; (c) beam B21; (d) beam B22; (e) beam BP11; (f) bam BP12; (g) beam BP13; (h) beam BP14;
(i) scatter of the results at 60% and 80% of the ultimate load.
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Figure A22. Xiong et al., 2007 [44] research beams deflection compared with calculated, (a) beam Pa; 

(b) beam Pb; (c) beam 2C; (d) scatter of the results at 60% and 80% of the ultimate load. 

References 

1. Skuturna, T.; Valivonis, J.; Vainiūnas, P.; Marčiukaitis, G.; Daugevičius, M. Analysis of deflections of 

bridge girders strengthened by carbon fibre reinforcement. Balt. J. Road Bridge Eng. 2008, 3, 145–151. 

2. Daugevičius, M.; Valivonis, J.; Marčiukaitis, G. Deflection analysis of reinforced concrete beams 

strengthened with carbon fibre reinforced polymer under long-term load action. J. Zhejiang Univ.-Sci. A 

(Appl. Phys. Eng.) 2012, 13, 571–583. 

3. Skuturna, T.; Valivonis, J. The statistical evaluation of design methods of the load-carrying capacity of 

flexural reinforced concrete elements strengthened with FRP. Arch. Civ. Mech. Eng. 2015, 15, 214–222. 

4. Skuturna, T.; Valivonis, J. Experimental study on the effect of anchorage systems on RC beams 

strengthened using FRP. Compos. Part B 2016, 91, 283–290. 

5. Skuturna, T.; Valivonis, J. Evaluation of calculation methods used for estimating the ultimate moment 

resistance of bridge decks reinforced with FRP bars. Balt. J. Road Bridge Eng. 2016, 11, 22–34. 

6. Eslami, A.; Ronagh, HR.; Mostofinejad, D. Analytical Assessment of CFRP Retrofitted 

Reinforced-Concrete Buildings Subjected to Near-Fault Ground Motions. J. Perform. Constr. Facil. 2016, 

doi:10.1061/(ASCE)CF.1943-5509.0000882. 

7. Al-Rousan, R.; Issa, M. Fatigue performance of reinforced concrete beams strengthened with CFRP sheets. 

Constr. Build. Mater. 2011, 25, 3520–3529. 

8. Attari, N.; Amziane, S.; Chemrouk, M. Flexural strengthening of concrete beams using CFRP, GFRP and 

hybrid FRP sheets. Constr. Build. Mater. 2012, 37, 746–757. 

9. Li, X.; Gu, X.; Song, X.; Ouyang, Y.; Feng, Z. Contribution of U-shaped strips to the flexural capacity of 

low-strength reinforced concrete beams strengthened with carbon fibre composite sheets. Compos. Part B 

2013, 45, 117–126. 

10. Charalambidi, BG.; Rousakis, TC.; Karabinis AI. Analysis of the fatigue behavior of reinforced concrete 

beams strengthened in flexure with fiber reinforced polymer laminates. Compos. Part B 2016, 96, 69–78. 

Figure A22. Xiong et al., 2007 [44] research beams deflection compared with calculated, (a) beam Pa;
(b) beam Pb; (c) beam 2C; (d) scatter of the results at 60% and 80% of the ultimate load.

References
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