

Supplementary Materials: Push-pull chromophores based on the naphthalene scaffold: Potential candidates for optoelectronic applications

Corentin Pigot ^{1,*}, Guillaume Noirbent ^{1,*}, Thanh-Tuân Bui ², Sébastien Péralta ², Didier Gigmes ¹, Malek Nechab ¹ and Frédéric Dumur ^{1,*}

^{1.} H and ¹³C NMR Spectra of All Chromophores

Figure S1. Chemical structure of 2-butoxy-4-diethylaminobenzaldehyde.

Figure S2.¹H NMR spectrum of 2-butoxy-4-diethylaminobenzaldehyde in CDCl₃.

Figure S3. ¹³C NMR spectrum of 2-butoxy-4-diethylaminobenzaldehyde in CDCl₃.

Figure S4. Chemical structure of EA4.

Figure S5. ¹H NMR spectrum of EA4 in CDCl₃.

Figure S6. ¹³C NMR spectrum of EA4 in CDCl₃.

Figure S7. Chemical structure of PP1.

Figure S8. ¹H NMR spectrum of PP1 in CDCl₃.

Figure S9. ¹³C NMR spectrum of PP1 in CDCl₃.

Figure S10. Chemical structure of PP2.

Figure S11. ¹H NMR spectrum of PP2 in CDCl₃.

Figure S12. ¹³C NMR spectrum of PP2 in CDCl₃.

Figure S13. Chemical structure of PP3.

Figure S14. ¹H NMR spectrum of PP3 in CDCl₃.

Figure S15. ¹³C NMR spectrum of PP3 in CDCl₃.

Figure S16. Chemical structure of PP4.

Figure S17. ¹H NMR spectrum of PP4 in CDCl₃.

Figure S18. ¹³C NMR spectrum of PP4 in CDCl₃.

Figure S19. Chemical structure of PP5.

Figure S20. ¹H NMR spectrum of PP5 in CDCl₃.

Figure S21. ¹³C NMR spectrum of PP5 in CDCl₃.

Figure S22. Chemical structure of PP6.

Figure S23. ¹H NMR spectrum of PP6 in CDCl₃.

Figure S24. ¹³C NMR spectrum of PP6 in CDCl₃.

Figure S25. Chemical structure of PP7.

Figure S26. ¹H NMR spectrum of PP7 in CDCl₃.

Figure S27. ¹³C NMR spectrum of PP7 in CDCl₃.

Figure S28. Chemical structure of PP8.

Figure S29. ¹H NMR spectrum of PP8 in CDCl₃.

Figure S30. ¹³C NMR spectrum of PP8 in CDCl₃.

Figure S31. Chemical structure of PP9.

Figure S32. ¹H NMR spectrum of PP9 in CDCl₃.

Figure S33. ¹³C NMR spectrum of PP9 in CDCl₃.

Figure S34. Chemical structure of PP10.

Figure S35. ¹H NMR spectrum of PP10 in CDCl₃.

Figure S36. ¹³C NMR spectrum of PP10 in CDCl₃.

Figure S37. Chemical structure of PP11.

Figure S38. ¹H NMR spectrum of PP11 in CDCl₃.

Figure S39. ¹³C NMR spectrum of PP11 in CDCl₃.

Figure S40. Chemical structure of PP12.

Figure S41. ¹H NMR spectrum of PP12 in CDCl₃.

Figure S42. ¹³C NMR spectrum of PP12 in CDCl₃.

Figure S43. Chemical structure of PP13.

Figure S44. ¹H NMR spectrum of PP13 in CDCl₃.

Figure S45. ¹³C NMR spectrum of PP13 in CDCl₃.

Figure S46. Chemical structure of PP14.

Figure S47. ¹H NMR spectrum of PP14 in CDCl₃.

Figure S48. ¹³C NMR spectrum of PP14 in CDCl₃.

Figure S49. Chemical structure of PP15.

Figure S50. ¹H NMR spectrum of PP15 in CDCl₃.

Figure S51. ¹³C NMR spectrum of PP15 in CDCl₃.

Figure S52. Chemical structure of PP16.

Figure S53. ¹H NMR spectrum of PP16 in CDCl₃.

Figure S54. ¹³C NMR spectrum of PP16 in CDCl₃.

Figure S55. Chemical structure of PP17.

Figure S56. ¹H NMR spectrum of PP17 in CDCl₃.

Figure S57. ¹³C NMR spectrum of PP17 in CDCl₃.

Figure S58. Chemical structure of PP18.

Figure S59. ¹H NMR spectrum of PP18 in CDCl₃.

Figure S60. ¹³C NMR spectrum of PP18 in CDCl₃.

Figure S61. Chemical structure of PP19.

Figure S62. ¹H NMR spectrum of PP19 in CDCl₃.

Figure S63. ¹³C NMR spectrum of PP19 in CDCl₃.

Figure S64. Chemical structure of PP20.

Figure S65. ¹H NMR spectrum of PP20 in CDCl₃.

Figure S66. ¹³C NMR spectrum of PP20 in CDCl₃.

(a) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for

PP1

(b) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP2

(c) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP3

(d) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP4

(e) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP5

(f) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP6

(g) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP7

(h) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP8

(i) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP9

(j) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP10

(k) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP11

(I) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP12

(m) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP13

(n) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP14

(o) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP15

(p) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP16

(q) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP17

(r) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP18

(s) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP19

(t) Variation of the positions of the charge transfer band with Kamlet-Taft empirical parameters for PP20

Figure S67. Position of the absorption maxima of **PP1–PP20** in 23 solvents of different polarities vs. the Kamlet–Taft parameters π^* .

The position of the UV/Vis absorption maxima with regard to the dipolarity/polarizability π^* and the hydrogen bonding capacity (α and β) of the solvent can be interpreted using the Kamlet–Taft equation:

$$v_{max}(cm^{-1}) = v_{max,0}(cm^{-1}) + a\alpha + b\beta + s\pi^*$$

Table S1. Solvent-independent correlation coefficients *a*, *b* and *s* of the Kamlet-Taft parameters α , β and π^* respectively, correlation coefficient (*R*), significance (*F*), standard deviation (*SD*), and number of solvents (*n*) calculated for the solvatochromism.

Compounds	Vmax _r 0	а	b	s	n	F	R^2	SD
PP1	24489.934	357.133	-471.288	49.179	23	0.7598	0.25	540.712
PP2	22467.831	1108.869	93.375	-215.373	23	0.29054	0.18	183.052
PP3	22580.360	168.834	12.122	-699.601	23	1.58769×10^{-6}	0.80	132.105
PP4	20833.844	-425.609	-54.685	-1523.040	23	1.96732 × 10 ⁻¹³	0.97	113.2703
PP5	20126.810	-158.867	-67.441	-1251.556	23	1.11022 × 10 ⁻¹⁵	0.98	68.897
PP6	20052,604	520.692	351.585	-778.606	23	6.72195 × 10⁻⁵	0.69	168.608
PP7	20434.795	-5.596	-48.236	-641.140	23	0.00102	0.58	214.138
PP8	21730.386	421.561	130.054	-994.633	23	9.46523 × 10 ⁻¹⁰	0.91	110.523
PP9	18986.803	-20.373	66.150	-1805.218	23	6.07152 × 10 ⁻¹¹	0.92	180.033
PP10	18066.829	-164.093	51.189	-1824.052	23	3.33067 × 10 ⁻¹⁶	0.98	91.669
PP11	26264.952	735.171	94.088	-730.096	23	9.23191 × 10 ⁻⁶	0.77	133.062
PP12	24962.929	898.063	265.116	-1260.387	23	1.82274×10^{-7}	0.86	170.492
PP13	23681.457	270.105	180.216	-766.0370	23	1.13931 × 10 ⁻⁸	0.88	96.726
PP14	21884.804	176.225	-34.957	-1470.310	23	3.77476 × 10 ⁻¹⁵	0.97	84.769
PP15	21166.273	1.088	-29.560	-1267.154	23	3.10862 × 10 ⁻¹⁵	0.98	72.688
PP16	21014.824	674.333	452.415	-707.986	23	9.48667×10^{-4}	0.59	186.545
PP17	23681.457	270.105	180.216	-766.036	23	1.13931 × 10 ⁻⁸	0.87	96.726
PP18	22759.007	887.402	172.603	-969.369	23	1.22813 × 10 ⁻⁸	0.88	121.412
PP19	20735.517	519.307	127.391	-2710.429	23	1.66533 × 10 ⁻¹⁵	0.98	144.944
PP20	19094.207	887.853	170.044	-1958.662	23	2.49001 × 10 ⁻¹²	0.95	154.825

Results of the Linear Correlation Analyses

The position of the UV/Vis absorption maxima with regard to the dipolarity/polarizability π^* can be interpreted using a simplified version of the Kamlet–Taft equation:

$$v_{max}(cm^{-1}) = v_{max,0}(cm^{-1}) + s\pi^*$$

Table S2. Solvent-independent correlation coefficient *s* of the Kamlet-Taft parameters π^* and number of solvents (*n*) calculated for the solvatochromism.

Compounds	Vmax,0	S	n	R^2
PP1	3.04763	-0.0114	23	0.02
PP2	2.78773	-0.0139	23	0.04

PP3	2.80482	-0.08989	23	0.84
PP4	2.58232	-0.19474	23	0.96
PP5	2.49463	-0.15921	23	0.99
PP6	2.49744	-0.08315	23	0.64
PP7	2.54369	-0.09337	23	0.76
PP8	2.69657	-0.1149	23	0.90
PP9	2.35487	-0.2223	23	0.96
PP10	2.24101	-0.22553	23	0.98
PP11	3.25813	-0.07923	23	0.74
PP12	3.09921	-0.13629	23	0.84
PP13	2.93963	-0.0851	23	0.86
PP14	2.71296	-0.18273	23	0.98
PP15	2.6243	-0.15805	23	0.98
PP16	2.6127	-0.0632	23	0.45
PP17	2.65424	-0.07238	23	0.63
PP18	2.82495	-0.10615	23	0.86
PP19	2.57337	-0.32664	23	0.98
PP20	2.37038	-0.2291	23	0.95

PP1

PP11

PP2

Lumo

Homo

Lumo

Homo

Lumo

Lumo

Figure S68. Optimized geometries and HOMO LUMO electronic distribution of all compounds.

Figure S69. Cyclic voltamograms of push pull compounds (**PP1–PP20**). All cyclic voltamogrammes recorded in 0.1 M TBABF4/ACN, except **PP15** and **PP20** in 0.1 M TBAClO4/CH₂Cl₂.