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Abstract: Ti-Ni-Si-O nanostructures were synthesized on Ti10Ni5Si alloy through an electrochemical
anodization in electrolyte solutions containing ammonium fluoride (NH4F). The anodic oxide
structures were affected by the electrochemical anodization parameters, including the electrolyte
viscosity, water content, anodization potential and anodization time. Using an anodization potential
of 40 V for 90 min in an ethylene glycol/glycerol electrolyte with 3 vol.% deionized water, highly
ordered self-organized nanotube arrays were obtained in the α-Ti phase region of the alloy substrate,
with an average inner diameter of 70 nm and a wall thickness of about 12 nm. Self-organized
nanopore structures with an average pore diameter of 25 nm grew in the Ti5Si3 phase region. Only
etching pits were found in the Ti2Ni phase region. The Ti-Ni-Si-O nanostructures were characterized
using scanning electron microscopy and energy dispersive spectroscopy. In addition, a formation
mechanism of different nanostructures was presented.
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1. Introduction

Titanium and titanium alloys have been widely used due to their excellent properties, such as
their good chemical stability, biocompatibility, good corrosion resistance and high thermal stability [1].
Furthermore, titanium could be used to form a TiO2 layer, which has been widely used in solar cells [2,3],
semiconductors [4], photocatalysis [5,6] and gas sensors [7]. TiO2 nanotubes can be fabricated through
many routes, like anodization [8], sol-gel [9], template [10] and electrophoretic deposition (EPD) [11].
Among these routes, the anodization of titanium in F—-containing electrolytes is the most simple and
low-cost way to form highly ordered self-organized TiO2 nanotube arrays. This route makes it possible
to precisely control the surface morphologies and structures of TiO2 as desired [12].

During the electrochemical anodization of titanium, several fabrication parameters, including
the electrolyte composition, anodization potential, anodization time, temperature, viscosity, water
content and pH value of the electrolytes, greatly affect the surface features of the anodic oxide
nanostructure. It was reported that in a NH4F-based glycerol electrolyte containing a small amount
of H2O, self-organized TiO2 nanopore arrays on Ti foil were successfully obtained [13]. The surface
morphologies, dimensions and pore density were strongly influenced by the applied potential
and anodization temperature. Highly ordered TiO2 nanopore arrays were obtained at the applied
potentials between 30 V and 70 V, and at an anodization temperature below 20 ◦C. When the anodization
temperature was above 30 ◦C, however, the nanopore structure became irregular at 50 V, and remarkable
damage was even observed at 70 V. Cai et al. [14] reported that by adjusting the solution’s pH value to
4.5, well-arranged TiO2 nanotube arrays with a length of up to 4.4 µm were successfully obtained in
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the F− -containing acidic electrolyte. Meanwhile, in an alkaline solution, no nanotubes formed on the
Ti foil. In addition, the viscosity and water content of the electrolyte have an important effect on the
nanotubes’ morphology. For example, Zhang et al. [8] found that TiO2 nanotubes obtained in different
viscous organic electrolytes at 20 V could exhibit different surface morphologies. “Honeycomb” shape
TiO2 nanotubes with an inner pore diameter of 40 nm were obtained in ethylene glycol/water (99:1
vol.%), while the so called “bamboo-type” nanotubes having an average outer pore diameter of 120 nm
were obtained in glycerol/water (75:25 vol.%). In addition, the effect of the water content of the
electrolytes on the morphology of the nanostructures was also studied by Fraoucene et al. [15]. It was
found that honeycomb and porous nanostructures were obtained on the surface of the α and β phase
region in the Ti6Al4V alloy when the water content was lower than 15 wt.%, while self-organized
TiO2 nanotubes with an inner diameter ranging from 97 nm to 206 nm were obtained when the water
content was increased to 20 wt.%. In another study, TiO2 nanotubes were fabricated by anodization
using aqueous acidic electrolytes with carboxymethylcellulose (CMC). It was found that the addition of
CMC promoted the good self-organization of nanotubes, and that the inner diameters of the nanotubes
strongly depended on the anodization potentials. The inner diameter was up to about 100 nm at 20 V,
and the smallest diameter of about 9.5 nm was successfully obtained at a potential under 10 V [16].

Recently, many researchers have reported that nanostructured oxide films were successfully
fabricated on binary or complex titanium alloys, such as TiAl [17], TiTa [18], Ti6Al4V [19,20] and
Ti0.3Mo0.8Ni [21]. In this work, we investigate for the first time the synthesis of a self-ordered oxide
grown on a Ti10Ni5Si alloy. Because of the different oxidation behavior of Ti, Ni and Si, it is interesting
to study the behavior of the trinary TiNiSi alloy anodized in different NH4F-based electrolytes.
We systematically investigate the effects of various electrochemical anodization parameters, including
the electrolyte viscosity, water content, anodization potential and anodization time, on the growth and
surface morphologies of Ti-Ni-Si-O nanostructures. In addition, we propose the formation mechanism
of different nanostructures.

2. Materials and Methods

As-cast titanium alloy (Ti10Ni5Si) plates with a dimension of 20 mm × 10 mm × 1 mm were
abraded successively from 300 to 2000 grit grades with SiC papers, ultrasonically cleaned in acetone
and ethanol, rinsed with deionized water, and finally dried in air. The electrochemical anodization was
conducted in a conventional two-electrode system using a pulse power source (SOYIDM, Shanghai
Suoyi Electronic technology Co., Ltd., Shanghai, China). The as-cast titanium alloy was used as the
working electrode, and a platinum sheet was used as the cathode electrode. The schematic illustration
of the anodization equipment is shown in Figure 1. To study the effect of electrolytes on the anodic oxide
layer, anodizations at potentials of 30 V–50 V were carried out in the electrolytes containing ammonium
fluoride (NH4F): a pure organic electrolyte of ethylene glycol and/or a glycerol electrolyte, as well as
an organic electrolyte with a small amount of deionized water. Table 1 shows the compositions of
different electrolytes, denoted as EL-1, EL-2, EL-3, and EL-4, respectively. The anodization time ranged
from 60 min to 120 min. All of the anodization experiments were performed at 20 ◦C.

Table 1. Compositions of different electrolytes used in this work.

Composition EL-1 EL-2 EL-3 EL-4

NH4F 0.3 M 0.3 M 0.3 M 0.3 M
Ethylene glycol 100 vol.% - - 7 vol.%
Glycerol - 100 vol.% 95 vol.% 90 vol.%
Water - - 5 vol.% 3 vol.%

The surface and compositions of the Ti10Ni5Si alloy as well as of the anodized samples were
investigated using scanning electron microscope (SEM, FEI SIRION 200, Hillsboro, OR, USA) and
energy dispersive spectroscopy (EDS, INCA X-ACT, Oxford, UK). The phase structures of the alloy
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were examined by X-ray diffraction (XRD, Rigaku Ultima IV, Tokyo, Japan) measurements using a
diffractometer with Cu Kα radiation (λ = 1.54206Å) over a scan range (2θ) of 10–80◦.
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Figure 1. Schematic illustration of the anodization equipment.

3. Results and Discussion

Figure 2a presents the typical SEM images of the Ti10Ni5Si alloy. Clearly, three different phase
structures were found in the alloy: α-Ti in the gray region, the Ti2Ni phase of the bright strip-like and
block-like region, and the Ti5Si3 phase in the dark region. The corresponding chemical compositions
are summarized in Table 2. The phase structures of the alloy were also confirmed by an XRD analysis.
As shown in Figure 2b, the diffraction peaks at 41.5◦, 45.4◦ and 70.8◦ corresponded to the (511), (440)
and (822) crystal planes, respectively, which could be assigned to the Ti2Ni phase [22,23]. Meanwhile,
the peaks at 36.7◦, 40.8◦ and 42.5◦ corresponded to the (210), (211) and (112) crystal planes of the Ti5Si3
phase [24,25]. The different phases exhibited different anodization behaviors, which will be discussed
in the next section.
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Figure 2. (a) SEM image and (b) XRD pattern of the Ti10Ni5Si alloy.

Table 2. Chemical compositions of the alloy determined by EDS.

Phase Region Ti (wt.%/at.%) Ni (wt.%/at.%) Si (wt.%/at.%)

α-Ti 89.2/90.4 10.1/8.3 0.7/1.3
Ti2Ni 69.9/73.1 28.7/24.5 1.4/2.4
Ti5Si3 73.1/64.5 6.4/4.6 20.5/30.9

In order to study the effect of the electrolytes on the surface features, the anodization was
performed at 30 V for 90 min in different NH4F-containing electrolytes. Figure 3 shows the top-view
SEM images of the anodic oxide layer grown in the α-Ti region of the alloy. Obviously, the surface
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morphology obtained in the various electrolytes exhibited dramatic differences. As shown in Figure 3a,
when using the pure ethylene glycol electrolyte, only etching pits and cracks were observed on the
oxide layer, instead of a nanotube or nanopore structure. These cracks might be caused by the surface
stress, which originated during the oxidization process [26]. When using the pure glycerol electrolyte,
a random generation of disordered small pores was found on the oxide layer (Figure 3b). The water
content in the electrolyte was beneficial to the pores’ expansion. As shown in Figure 3c, in the glycerol
electrolyte that had a small amount of water, the disordered small pores expanded to self-ordered
nanotubes with considerably small inner diameters. Figure 3d shows the self-organized nanotubes
grown in the ethylene glycol/glycerol solutions with a small amount of water. Remarkably, the average
inner diameter of the nanotubes increased to 55 nm and the wall thickness to about 12 nm.

Generally, the formation mechanism of TiO2 nanotubes is considered to be a competition between
the growth of the anodic TiO2 layer and the chemical dissolution of TiO2 by an F− reaction [27,28].
Correspondingly, the overall reactions for this growth process can be described as [29]:

Ti + 2H2O→ TiO2 + 4H+ + 4e (1)

TiO2 + 4H+ + 6F−→ [TiF6]2− + 2H2O (2)

At first, the initial reaction rate of the electrochemical oxidation is much faster than that of the
chemical dissolution, leading to the formation of an oxide layer growth on the metal surface. However,
the oxide layer is constantly attacked by the F− ions in the electrolyte to form [TiF6]2− species. These
[TiF6]2− species strengthen the local electric field at the bottom, resulting in a field-enhanced chemical
dissolution of the oxide layer and thus promoting the formation of nanotubes. Additionally, the local
acidification also increases the chemical dissolution rate. Finally, a delicate balance between the
electrochemical oxidation rate of the oxide top and the chemical dissolution rate of the oxide bottom is
reached, and this is when a stabilized nanostructure is obtained.

Obviously, the presence of fluoride ions and the ion diffusion rate play an important role in
the surface morphology of the anodized oxide layer. The decisive factor for the electrolyte diffusion
control, i.e., the diffusion constant, depends on the dynamic viscosity of the electrolytes, which can be
described by the Stokes-Einstein equation [8]:

D = (KT)/(3πηd) (3)

where K, T, η and d respectively represent Boltzmann’s constant, the absolute temperature, the dynamic
viscosity and the diameter of a spherical body.

The dynamic viscosity of glycerol (1.5 Pas) is about 71 times that of ethylene glycol (0.021 Pas) [8].
A high viscosity decreases the migration rate of ions in the electrolyte, and consequently more ions
have enough time to take part in the interactions. Furthermore, the electrolyte dynamic viscosity is in
an inverse proportional relationship to the electrolyte conductivity, according to Walden’s rule [30]:
the higher the dynamic viscosity, the lower the electrolyte conductivity. Therefore, in the ethylene
glycol electrolyte, the chemical etching rate of the oxide layer was much higher than the growth rate
due to the low dynamic viscosity and high electrolyte conductivity, leading to the serious etching pits
on the surface. On the other hand, in the glycerol electrolyte, the process of chemical etching was too
slow to form ordered nanotubes. One can conclude that the EL-4 electrolyte was the most suitable
electrolyte for forming ordered self-organized nanotubes.
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A phase-dependent anodization has been observed in many titanium alloys, such as Ti6Al4V [19],
Ti6Al7Nb [31] and Ti5Ni [32]. For the ternary Ti10Ni5Si alloy, different phases perform different
behaviors during the anodization. Figure 4 shows the top-view SEM images of the Ti-Ni-Si-O
nanostructures grown in the α-Ti phase region, Ti2Ni phase region and Ti5Si3 phase region at different
potentials for 90 min. All the anodization experiments were carried out in the EL-4 electrolyte. Figure 4a
shows the low-magnification SEM image of nanostructures which grew in the α-Ti phase, Ti2Ni phase
and Ti5Si3 phase regions (shown in Figure 2a). The self-organized nanotubes grown in the α-Ti phase
region at 30 V were discussed in detail (see Figure 3d). From Figure 4b,c, one can see that the Ti2Ni phase
region and Ti5Si3 phase region could only lead to Ti-Ni-Si-O nanopores, with an average inner pore
diameter of 50 nm and 20 nm, respectively. A previous report [33] found that during the anodization
of Ni, Ni brought a higher polarization current (about five times higher than that of the Ti sample),
indicating a faster and more severe chemical dissolution than that of Ti. Similarly, Si could be dissolved
faster than Ti due to its high electronegativity (1.8). Therefore, nanopores rather than nanotubes formed
in the Ti2Ni phase and Ti5Si3 phase regions due to the rapid chemical dissolution rate.

With the increase of the anodization potential to 40 V, the F- ion mobility was further accelerated,
leading to a faster chemical dissolution rate of the TiO2 oxide layer, which in turn resulted in a larger
nanotube diameter. Markedly denser and more vertically oriented nanotube arrays were found in
the α-Ti phase region (Figure 4d). These nanotube arrays were highly aligned compared to those
formed at 30 V. The average inner diameter and wall thickness reached 70 nm and 12 nm, respectively.
As shown in Figure 4e, only etching pits remained in the Ti2Ni phase region. From Figure 4f, we see
that the average inner pore diameter of the nanopores grown in the Ti5Si3 phase region (about 25 nm)
was slightly larger than that of the nanopores obtained at 30 V (see Figure 4c). At 50 V, remarkable
damage was found in the nanotubes (Figure 4g). As expected, etching pits also remained in the Ti2Ni
phase region (Figure 4h). The nanopores collapsed in the Ti5Si3 phase region, with an increased wall
thickness. This may be explained by the theory that the higher anodization potential accelerated the
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oxidation and field-assisted dissolution rate, leading to a greater wall thickness. One can conclude
that the anodization potential affected not only the surface features of the anodic oxide layer, such
as the nanotube diameter, nanotube density and nanopore diameter, but also affected the nanotube
arrangement. The best nanotube arrangement was obtained at 40 V.
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were carried out in EL-4 electrolyte for 90 min.

Figure 5 shows the top-view SEM images of the nanostructures grown in the α-Ti phase, Ti2Ni
phase and Ti5Si3 phase regions. The anodization was conducted at 40 V for different times One can see
that etching pits and nanopores still formed in the Ti2Ni phase and Ti5Si3 phase regions, respectively
(Figure 5b,c,e,f), which means that, compared to the factor of anodization time, the applied potential was
the major factor affecting the surface morphologies. Compared to the nanotube obtained after 90 min of
anodization (Figure 4d), the nanotubes grown at 60 min had a smaller average inner diameter of 65 nm
and a larger wall thickness of about 18 nm (Figure 5a). When the anodization time increased to 120 min,
the diameter and the wall thickness of the nanotubes were found to cease increasing (Figure 5d), which
means that the oxide formation rate was already equal to the chemical dissolution rate. Nevertheless,
obvious damage was observed on the top of these nanotubes. This might be attributed to the fact
that, at the end of the anodization process, the initial oxide layer was completely dissolved, leading
to the top of the nanotubes being exposed in the F−-containing electrolyte. The chemical dissolution
consistently occurred with a slow speed at the top of the nanotubes. Undoubtedly, the top of the
nanotubes gradually eroded when the anodization time was too long.

As mentioned above, highly ordered nanotube arrays could be fabricated in the most suitable
anodization condition when the anodization was carried out at 40 V for 90 min in the EL-4 electrolyte.
EDS analyses revealed that the nanostructures were composed of Ti, Ni, Si, and O elements. The Ni
element was still rich in the Ti2Ni phase region, and Si was still rich in the Ti5Si3 phase region.
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