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Abstract: All orthodontic appliances are potentially cariogenic. The plaque around the orthodontic
appliance can make demineralization on tooth surface causing white spot lesion (WSL). The
most effective method to prevent WSL is Fluoride appliance and gargling, but this requires
patient cooperation, which consumes additional treatment time and cost. As suggested in this
study, biomaterials like bioactive glass and fluorinated graphite (FGt) having antibacterial and
anti-demineralization ability effective and easy to use in the clinic. To clinically use orthodontic
bonding resins containing Graphite Fluoride BAG (FGtBAG), its properties, biological stability,
antimicrobial activity, and remineralization effect must be verified. BAG was mixed with 2.5% FGt
containing 51 to 61% fluorine. This mixture was mixed with the CharmFill Flow (CF) in the ratios
of 1, 3, and 5 wt%. Microhardness and shear bond strength tests were performed to evaluate its
mechanical properties. MTT (3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetra) assay was performed
for evaluating its safety. Streptococcus mutans, which is major cariogen by producing lactic acid, was
evaluated for antibacterial ability of reducing WSL. In addition, x-ray images were obtained by CBCT
(Cone beam computed tomography) after a pH cycle. The remineralization effect was verified in vivo
and by Image J. FGtBAG did not differ significantly from CF in mechanical tests. The MTT assay
found no significant differences between the groups. The antibacterial activity of FGtBAG at 24 h and
48 h was significantly higher than that of CF. The fluoride release rate tended to increase with the
FGtBAG content. The pH cycle results showed that FGtBAG had higher concentration-dependent
remineralization effect than CF. The results of this study suggests that orthodontic resins containing
FGtBAG can prevent WSL owing to their antibacterial activity and remineralization effect.

Keywords: graphite fluoride bioactive glass; remineralization; bioactive glass; white spot lesion

1. Introduction

White spot lesions (WSLs) often damage the aesthetics outcome on orthodontic patients. The
demineralization by WSL induce the chalky and white surface on the enamel surface [1]. The opaque
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surface of the WSL is clearly visible to the naked eye. In particular, WSLs often occur on the upper
anterior teeth, where they affect the aesthetics and may progress to caries [2]. The mouth cavity contains
microorganisms such as fungi, archaea, and viruses and bacteria [3]. While some microorganisms
have a positive effect on the host, there are bacteria threaten health care such as caries, gingivitis and
periodontitis [4]. Bacteria are a major cause of the negative effects associated with teeth. Bacteria
that cause cavities on the tooth surface are as follows. The bacteria such as non-mutans streptococci,
Streptococcus sanguinis, Actinomyces is on the sound surface. The Streptococcus mutans begin to appear
on the mature plaque [5]. The main cause of the demineralization at the WSL is bacteria such as
S. mutans and lactobacilli induced low pH.

Bacteria such as S.mutans produce the lactic acid which is dissolute the tooth mineral
(hydroxyapatite, Ca10(PO4)6(OH)2). Orthodontic appliances generate rough surfaces, where plaques
accumulate. Poor oral hygiene and irregular dental surfaces during orthodontic treatment encourage
the bacteria growth causing the enamel surface demineralization [6].

Patient training and periodic fluoride applications have been used to prevent WSLs. In general,
the orthodontic patients were trained for tooth brushing. However, young patients do not follow this
instruction. Thus, the method to prevent WSL without co-operation is absolutely necessary. Recently,
studies were conducted on adding biomaterials in the bonding agent to prevent WSLs without the
need for patient cooperation or additional chair time [7–9]. The biomaterials on bonding agents must
be no harm to the human body and must not inhibit the physical properties of the bonding agent after
addition. Furthermore, they should perform functions such as inhibiting the growth of bacteria that
decrease the pH and result in demineralization, or ion releasing to raise the pH.

One biomaterial that has been researched intensively in recent years is bioactive glass (BAG). BAG
has the Si-O-Si basic structure and is composed of Na2O, P2O2, and CaO. When BAG is added to a
resin paste, it plays the role of a filler in addition to having a buffer effect owing to its antibacterial
and ion releasing properties. BAG creates a super saturated ion state by releasing Na+, Ca2

+, and
PO4

3- ions in a liquid environment. The released ions change the precipitated amorphous calcium
phosphate layer into apatite, increase the pH, which has been already decreased by oral bacteria,
and show an antibacterial effect [10]. As the graphene-based materials have the osteogenic inducing
ability of stem cells and biocompatibility, it is drawing attention as biomaterials. Graphite fluoride,
also called polycarbon monofluoride, is a graphite-based compound having a fluorine-containing
platelet structure. Graphite has recently been found to have antibacterial effects, particularly against
dental pathogens. The antibacterial activities of graphene-based materials are widely known [11].
According to Sun et al., when adequate quantity of fluorinated graphene was added to glass ionomers,
the physical properties improved and fluorine ions were released [12]. Fluorine re-mineralizes the
teeth and exterminates bacteria, as it changes the essential enzyme activity by the penetration of HF
(Hydrogen fluoride) into cells [13]. This study is expected to reduce WSL by fluoride releasing through
routine bonding processing without extra cost and time with proper clinical properties. This study
examines the clinical applicability of a biomaterial produced by mixing FGt and BAG as an orthodontic
bonding resin with antibacterial activity and remineralization effect.

2. Materials and Methods

2.1. Synthesis of Graphite Fluoride BAG (FGtBAG)

BAG synthesis process is sol-gel method as follows [14]. First, 23 mmol of tetraethyl orthosilicate
(Sigma-Aldrich, St. Louis, MO, USA) was mixed with 24 mL of ethanol. The pH of the solution
was adjusted to 1–2 using 1N HNO3 (Samchun, Korea). Then, 14 mmol of Ca(OH)2 (Sigma-Aldrich,
MO, USA) was added to synthesize BAG. NaOH (11.5 mmol) was added to the solution. A solution
produced by melting 1.25 mmol of (NH4)2HPO4 in 400 mL distilled water (DW) was added. The
solution pH was adjusted to 11 with ammonia solution. Then, DW was blended to obtain total volume
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of 600 mL. The solution was stirred for 48 h and then dried for 24 h. Finally, the sample was treated in
a furnace at 600 ◦C for 6 h.

For FGtBAG, 2.5 wt.% of graphite fluoride (ACS, Pasadena, CA, USA) was added to the synthesized
BAG and physically mixed twice for 10 s each time using a mixer (TORNADO SHM-ALM00, Shinhung,
Korea). The F/C ratio of graphite fluoride was 0.8–1.1, and the F content was 56–61%. It was a
homogeneous mixture.

2.2. Characterization of FGtBAG

FGtBAG was observed using field-emission scanning electron microscopy (FESEM, MIRA3,
TESCAN, Brno, Czechia).

The X-ray diffraction (XRD, Ultima 4, Rigaku, TX, USA) patterns of BAG and fGtBAG were
analyzed with Cu Kα radiation (λ = 1.5409292Å) at 40 kV and 40 mA (The step size: 0.020◦, the
scanning rate: 1.50◦ s−1 in the 2θ range of 10 to 50◦).

The typical functional groups of BAG and fGtBAG were analyzed in the range of 400–4000 cm−1

using the KRr method with Fourier transform infrared spectroscopy (FT-IR, Spectrum GX, PerkinElmer,
Wellesley, MA, USA).

2.3. Preparation of the FGtBAG-Containing Orthodontic Bonding Rsion Disk

Resin disks (Φ: 5 mm, thickness 2 mm) were fabricated to estimate FGtBAG-containing orthodontic
bonding resin. FGtBAG was added to 2 mL of the orthodontic bonding resin (CF, CharmFill Flow,
Dentkist, Korea) in 2 mL black e-tubes to achieve the FGtBAG content of 1, 3, and 5 wt.%. Then, they
were mixed twice for 10 s each time using a mixer (TORNADO SHM-ALM00, Shinhung, Seoul, Korea).
The evenly mixed samples were injected into brass molds, which were covered with a slide glass (t:
0.2 mm) and photopolymerized for 20 s VALO (Ultradent Products, South Jordan, UT, USA) (Table 1).

Table 1. Fluorine content in CF and FGtBAG.

Sample CF FGtBAG1 FGtBAG3 FGtBAG5

Fluorine contents in resin 0 1.4–1.5 ppm 4.2–4.5 ppm 7.0–7.5 ppm

2.4. Microhardness

The prepared disk (orthodontic bonding resin) was tested with a microhardness testing machine
(MVK-H1, Akashi, Japan) by applying a load of 1.96 N on top of the disk. Three specimens were used
for each group and each sample was measured three times.

2.5. Shear Bond Strength (SBS)

Shear bond strength was measured with the Instron machine (Instron Corporation, Canton, MA,
USA) to evaluate the bracket adhesion of the synthetic bonding resin. The premolars were used for
each group (n = 5). This research was approved by the Institutional Review Board of Pusan National
University Dental Hospital (PNUDH-2018046). Premolars with no WSL and no other enamel defects
were used in this test. The tooth surface was washed with no-fluorine pumice washed with DW for 10 s,
and dried. They were etched for 15 s using a 35% phosphoric acid, sucked, washed with water, and then
dried. Orthodontic primer (Transbond™ XT adhesive primer, 3M, Nonrovia, CA, USA) was applied
to the premolar surface and air was blown over it for 2 s gently. The brackets (Damon orthodontic
metal standard edgewise brackets, Ormco, CA, USA) were bonded on tooth surface. The remaining
paste was eliminated and then the mesial and distal sites were photopolymerized for 5 s. This entire
process was conducted as per the recommendations of the CharmFill Flow manufacturer. The bracket
bonded premolar tooth was kept in DW for 24 h and then analyzed using Instron (Crosshead speed:
1 mm/min).
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2.6. Antibacterial Test

The S. mutans, the major etiological agent of WSL on the bacterial field, was used for the
antibacterial test. In order to investigate the antibacterial effect in the bonding agent, the resin disk
as mentioned in 2.3 was tested as follows. The disks were placed in 96 well plates and bonded to
the bottom plate by photopolymerization with the same resin as used for the control group. 96 well
plates were used in this experiment after low-temperature plasma sterilization (LOWTEM Crystal
50, Gunpo-si, Korea). S. mutans was put in a brain heart infusion medium at the concentration of
1.0 × 105 CFU/mL, and was cultured in an incubator at 37 ◦C. The absorbance was measured at 620 nm
after culturing for 24 h and 48 h.

2.7. MTT Assay

MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide)-assay was performed to
evaluate the cytotoxicity of the orthodontic bonding agents containing fGtBAG. The orthodontic
brace was placed on the tooth surface excessive bonding agent often flows on the gingiva. So human
gingival fibroblasts-1 (HGF-1; ATCC, Rockville, MD, USA), the most abundant cell in periodontal
connective tissue, used for cell viability test. The resin sample disks were inserted into 96 well plates
and sterilized with low-temperature plasma (LOWTEM Crystal 50, Gunpo-si, Korea). HGF-1were
cultured in Dulbecco’s modified Eagle’s medium (Hylone, Logan, UT, USA) containing 10% fetal
bovine serum (Hyclone, Logan, UT, USA) and 100 IU/mL penicillin/streptomycin (Hyclone, Logan,
UT, USA). The HGF-1 cells were injected into 96 well plates containing the samples and cultured in a
5% CO2 incubator at 37 ◦C for 24 h. Then, MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (Sigma-Aldrich, St. Louis, MO, USA) was added at a concentration of 5 mg/mL and reacted
for 4 h in a dark room. The supernatant was removed and the samples were melted with MTT crystal
dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO, USA, 150 µl/well) formed in the cells. The
absorbance was measured at 620 nm wavelength (SunriseTM, TECAN, Männedorf, Switzerland).

2.8. In Vitro Fluorine Dissolution Test

The fluorine ion releasing test was performed by measuring the ion dissolution from the resin
disk contained in the simulated body fluid (SBF, Biosesang, Seongnam-si, Korea). Ion chromatography
(ICS-5000, ThermoFisher-Dionex, Sunnyvale, MA, USA) was performed to evaluate the F ion release
capacity of the sterilized resin disk. The sterilized resin disk and 5 mL of SBF were stored in a 5-mL
tube for 0.5, 5, 10, and 20 days [15]. The concentrations of ions released in the resin disk were measured.

2.9. Remineralization Test

The pH cycling protocol was proposed to evaluate the remineralization capacity of the orthodontic
bonding agents containing FGtBAG [16]. Teeth extracted for orthodontics were used in this experiment.
Five premolars with no WSL or other enamel defects were used for each group. This study was approved
by the Institutional Review Board of Pusan National University Dental Hospital (PNUDH-2018046).

The pH cycle for remineralization evaluation was as follows. Tooth samples for test was buried
in acrylic resin mold. The tooth surfaces of the buried tooth samples that were to be bonded were
washed with no-fluorine pumice washed with water for 10 s, and then dried. A nail varnish was
clearly marked to the top of the 5 mm × 5 mm rectangular vertex to prevent etching except for the
5 mm × 5 mm tooth surface. The tooth surface was etched for 30 s with 35% phosphoric acid washed
with water for 10 s and dried. CF and CF with FGtBAG samples were applied to the tooth surface and
photopolymerized for 5 s. After storing the teeth in DW for 24 h, they were settled alternately in a
demineralization solution (Biosesang, Seongnam-si, Korea) and a remineralization solution (Biosesang,
Seongnam-si, Korea) each 6 and 18 h. This repeated cycle continued for 14 days. The solutions changed
with fresh solutions every week. In between the transfer from the demineralizing solution to the
remineralizing solution, the samples were washed with DW for 1 min and dried before changing the
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solution every day. The samples were measured using µ-CT (90 KV and 109 µA, InspeXio, Shimadzu,
Kyoto, Japan). The measured µ-CT data were analyzed using ImageJ (National Institutes of Health,
Bethesda, Md) [17] (Figure 1). The lengths in Image were corrected with a scale bar on the µ-CT. Using
the brightness on histogram, sound enamels were defined by brightness of up to 87%. The distance
from the point where the difference was larger than 87% of the sample was measured and defined as
the remineralization length.
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Figure 1. Remineralization length measurment. (a) CBCT slice of the region of interest on the enamel
surface; the end of the bonding resin was starting point; yellow line: region of interest to the reference
point on the enamel surface; (b) histogram. Blue arrow: up to 87% level of gray value from the reference
point; red arrow: the distance to the 87% gray value from the reference point.

2.10. Statistical Analysis

One-way analysis of variance (ANOVA) used to analyze the differences among group means in
the sample. A class of post hoc tests was Duncan’s Test; examined properties include microhardness,
shear bond strength, antibacterial test, cell viability test, and pH cycle test. ARI was verified with the
Kruskal-Wallis test. Every statistical analysis was performed with R language program (version 3.6.0;
R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. Characterization

Generally, polygonal particles seen in the bioactive glass were observed in the SEM of the
synthesized BAG and FGtBAG. The same plate structure as shown in the SEM of the FGt could be seen
in the image of the FGtBAG. In this study, aggregation of particles could be seen in the images of BAG
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and FGtBAG [18] (Figure 2). In the FTIR, Si-O-Si bond vibration could be observed at 540–470 cm−1 [18].
No crystalline peak was observed in the XRD pattern [7].
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3.2. Microhardness

The CF group (30.1 ± 1.8 Hv) showed no significant differences between FGtBAG1 (26.6 ± 1.1 Hv),
FGtBAG3 (30.0 ± 1.4 Hv), and FGtBAG5 (32.2 ± 0.6 Hv) (Figure 3).
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Figure 3. Microhardness comparison of CF and FGtBAG samples. The different letters indicate
significant difference between the groups (p < 0.05) by Duncan’s multiple comparison test. Error bars
are shown as ± standard errors (n = 5).

3.3. Shear Bond Strength (SBS)

The CF (13.0 ± 2.5 MPa) showed no significant differences between FGtBAG1 (12.0 ± 2.1 MPa),
FGtBAG3 (7.2 ± 1.5MPa), and FGtBAG5 (6.6 ± 1.6 MPa) (p > 0.05) (Figure 4).
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3.4. Adhesive Remnant Index (ARI) Score

There was no significant difference in the ARI scores among CF (3.6 ± 0.9), FGtBAG1 (4.0 ± 0.0),
FGtBAG3 (3.6 ± 0.9), and FGtBAG5 (3.6 ± 0.5) (Table 2). This result was shown that control CF and
FGtBAG containing resin group was not different on tooth surface adhesion.
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Table 2. Adhesive Remnant Index (ARI) scores *, **.

Sample CF
FGtBAG Significant

1% 3% 5%

Mean (SD) 3.6 (0.9) 4.0 (0.0) 3.6 (0.9) 3.6 (0.5)
Not significantMedian, Q1–Q3 4 (3-4) 4 (4-4) 4 (3-4) 4 (3-4)

Min.–max. 2-4 4-4 2-4 3-4

* ARI scores were analyzed by the Kruskal–Wallis test at α = 0.05 (n = 5). ** Score 5: No adhesive remained on
the tooth, Score 4: Less than 10% of the adhesive remained on the tooth; Score 3: Between 10–90% of the adhesive
remained on the tooth; Score 2: More than 90% of the adhesive remained on the tooth; Score 1: The entire adhesive
remained on the tooth.

3.5. MTT Assay

The MTT assay results after 24 h (Figure 5a) showed no statistically significant differences between
CF (42.3 ± 2.0%), FGtBAG1 (43.3 ± 3.1%), FGtBAG3 (35.5 ± 2.3%), and FGtBAG5 (38.3 ± 5.4%). Similarly,
the MTT assay results after 48 h (Figure 5b) showed no statistically significant differences between
CF (39.4 ± 5.9%), FGtBAG1 (54.1 ± 3.5%), FGtBAG3 (27.8 ± 6.9%), and FGtBAG5 (38.7 ± 9.9%). These
results show that there is no difference in the cell viability test between the commercially available
product and the orthodontic bonding agent used in this experiment.
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Figure 5. Results of MTT assay on cured CF and FGtBAG—containing orthodontic bonding resin after
(a) 24 and (b) 48 h. The different letter indicates statistically significant difference between the groups
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3.6. Antibacterial Test

Statistically, FGtBAG1 (18.0 ± 0.4%), FGtBAG3 (18.0 ± 0.1%), and FGtBAG5 (18.0 ± 0.1%) groups
showed significantly higher antibacterial capacity after 24 h with 100% DW when compared with the CF
group (80.6± 1.0%; p < 0.001), as shown in Figure 6. The FGtBAG1 (18.3± 0.6%), FGtBAG3 (18.2± 1.0%),
and FGtBAG5 (18.3 ± 0.6%) groups also showed statistically significantly higher antibacterial capacity
after 48 h when compared with the CF group (78.1 ± 10.0%; p < 0.001).
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Figure 6. Difference between antibacterial properties of cured CF and FGtBAG at 24 and 48 h. The
different letter indicates statistically significant difference between the groups (p < 0.05) by Duncan’s
multiple comparison test. Error bars are shown as ± standard errors.

3.7. In Vitro F Dissolution Test

FGtBAG1 showed fluorine ion release of 6.9–10.1 µg/cm2 from 0.5 day to 20 days. FGtBAG3 and
FGtBAG5 showed fluorine ion release of 9.2–16.7 µg/cm2 and 9.1–17.3 µg/cm2, respectively. As the FGt
content increased, the fluorine ion release rate also increased (Figure 7).
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3.8. Remineralization

The remineralization abilities of FGtBAG1 (41.9 ± 8.6 µg), FGtBAG3 (211.2 ± 32.3 µg), and
FGtBAG5 (605.2 ± 126.8 µg) were significantly higher than that of CF (3.8± 0.0 µg), as shown in Figure 8.
The remineralizarion ability increased remarkably with FGtBAG content. The remineralization points
for each resin sample can be seen in Figure 9.
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4. Discussion

WSL is a side effect that negatively affects the aesthetics of patients undergoing orthodontic
treatment. Demineralization occurs on the enamel surface of teeth due to excessive etching during the
process of attaching a fixture, proliferation of bacteria, and a decrease in pH because of the formation
of plaques around the orthodontic devices. The opaque lesions caused by surface demineralization
should be prevented because they not only degrade the aesthetics, but they can also progress to
caries. To prevent WSLs, patients are given instructions on tooth brushing (TBI) after attachment of
orthodontics, but this requires patient cooperation. Moreover, it is difficult to prevent WSLs in young
patients because their level of cooperation is low. The antibacterial and remineralization effects of
gargling with fluorine have been demonstrated, but this method has disadvantages because it requires
patient cooperation along with additional treatment time and cost [6,13].

In contrast, the addition of biomaterials to orthodontic bonding materials, which is a new area of
research, yields physically stable and biologically safe technical solutions and results. Such materials
have shown the ability to decrease WSLs owing to their antibacterial activity and remineralization
effect [7,8]. In this study, the experimental samples that had FGtBAG added to the orthodontic bonding
material instead of CF showed increased concentration-dependent microhardness, but this difference
was not significant.

When compared with CF, the SBS of FGtBAG was slightly decreased, but the difference was
not significant. Although statistically insignificant, a lower SBS could be due to darker and
low polymerization [8]. Therefore, polymerization for a longer time will be necessary in actual
clinical settings.

In the biological evaluation, the MTT assay results of the experimental materials did not show
statistically significant differences from those of CF at both 24 h and 48 h. Graphite is a safe biomaterial
that has been researched for a long time with regard to osteoinductive factors in the tissue engineering
field [19,20]. F has toxicity, but the F in FGt used in this study is believed to have low toxicity as its
amount of release in 20 days was only 6.9–17.3 µg/cm2.

When the antibacterial activity was examined, the experimental materials showed much higher
antibacterial activity than CF at both 24 h and 48 h. BAG has antibacterial activity because of the
exchange function of the released ions (e.g., Na+, K+, Ca2+) with H+ and the increase in osmotic
pressure. Furthermore, the released F− penetrates through the cell walls as HF. The penetrated HF
is changed to H+ and F− and lowers the PH in the cells. The low pH changes the essential enzyme
activity in the cells, which kill the bacteria [6,13]. Antibacterial activity of graphene-based materials
are well known [11].

When the remineralization effect of the experimental materials was examined through the pH
cycle, a concentration-dependent remineralization effect was shown. This is believed to be because of
the buffering effect caused by the ion release in BAG [21] and the HAP (hydroxyapatite) formation. As
the concentration of FGtBAG increases in orthodontic bonding resin, ion (Ca2+, and PO4

3−) released
from BAG increased. The increased ion formed high concentration ion lay around the bracket. The
increased ion prevented the demineralization of hydroxyapatite in an acidic environment during the
pH cycling [10]. Al-Eesa et al. reported that when FBAG was used, HAP was formed after 24 h and the
HAP formation was promoted by the F ions [22]. In summary, FBAG releases more ions in an acidic
environment and forms HAP. Thus, it has the advantage of releasing more ions when a clinical acidic
environment is formed.

5. Conclusions

FGtBAG in orthodontic bonding resins has physical stability and biological safety necessary for
clinical use. FGtBAG shows higher concentration-dependent antibacterial activity than CF. FGtBAG
has greater remineralization effect than CF. The orthodontic bonding resins containing FGtBAG showed
the potential for preventing WSLs. This study result showed that the orthodontic bonding resin



Materials 2019, 12, 1308 12 of 13

containing FGtBAG have a potential of clinical usage to prevent WSL. This study result showed that
the orthodontic bonding resin containing FGtBAG have a potential of clinical usage to prevent WSL.
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