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Abstract: This paper proposes a new method for producing nano-SrFe12O19 powder by the citrate
precursor route using solid waste as a source of iron. This solid iron-containing waste, which exists in
the form of an oily sludge, is produced by a cold rolling mill. This sludge was first subjected to a
process, including sulfuric acid leaching, oxidation, precipitation, and nitric acid leaching, to obtain
an iron nitrate (Fe(NO3)3) solution. Next, the Fe(NO3)3 solution was mixed with a strontium nitrate
(Sr(NO3)2) solution obtained by subjecting strontium carbonate to nitric acid leaching. Subsequently,
citric acid, as chelating agent, and ammonia water, as precipitating agent, were added to the mixed
solution to form a gel. The gel was dried and spontaneously combusted, then annealed at different
temperatures for 2 h in flowing air. The effects of the Fe3+/Sr2+ molar ratio and annealing temperature
on the formation, morphology, and magnetic properties of SrFe12O19 were investigated. The results
showed that single-phase SrFe12O19 powder was obtained by decreasing the Fe3+/Sr2+ molar ratio
from the stoichiometric value of 12 to 11.6 and increasing the annealing temperature to 1000 ◦C for
2 h. Adjustment of the Fe/Sr molar ratio to 12 and the annealing temperature to 900 ◦C enabled the
magnetic properties to be optimized, including saturation magnetization (Ms) 80.2 emu/g, remanence
magnetization (Mr) 39.8 emu/g, and coercive force (Hc) 6318 Oe.
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1. Introduction

The most important ferrite materials with permanent magnetic properties, M-type ferrites are
widely used as magnetic recording media, microwave absorbers, magneto-optics, and other functional
materials in practical applications, and they also hold promise for future use in catalysis, biology,
and other fields [1–4]. Among the M-type ferrite materials, SrFe12O19 does not contain the toxic
heavy metal Pb, which contributes considerably to the content of PbFe12O19. Moreover, the magnetic
properties of SrFe12O19 are slightly superior to those of BaFe12O19 [5]. Therefore, SrFe12O19 has
received sustained and extensive attention [6–8]. Traditionally, SrFe12O19 is prepared via a solid-state
reaction process [9], which mainly involves ball milling of iron and strontium oxides, and subsequent
roasting at high temperature (~1200 ◦C). Although this process is inexpensive and convenient, it is
difficult to accurately control the chemical homogeneity, particle size distribution, and crystal defects,
thereby resulting in unsatisfactory magnetic properties [10].

Attempts to overcome these problems have led to the development of non-traditional methods,
such as co-precipitation [11], sol–gel [12], hydrothermal [13], molten salt-assisted [14,15], and citrate

Materials 2019, 12, 1250; doi:10.3390/ma12081250 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-9003-3970
https://orcid.org/0000-0003-4768-5310
https://orcid.org/0000-0002-0065-7673
http://www.mdpi.com/1996-1944/12/8/1250?type=check_update&version=1
http://dx.doi.org/10.3390/ma12081250
http://www.mdpi.com/journal/materials


Materials 2019, 12, 1250 2 of 13

precursor [16–18]. Among these methods, the sol–gel and citrate precursor methods enable raw
materials to be mixed on the ionic level and subsequent crystallization at low temperature, resulting in
the production of uniform nano-SrFe12O19 [12,19]. Compared with the sol–gel method using metal
alkoxide as raw material, the citrate precursor method has a relatively low production cost and
simple process. Therefore, the citrate precursor method is considered to be promising for large-scale
production of high-performance nano-SrFe12O19. In recent years, the preparation of nano-SrFe12O19

by the citrate precursor method has become a popular research topic. Although these studies focused
on different aspects, such as process improvement [20–23] and doping modification [16,18,24], almost
all of these studies utilized chemically pure nitrates as starting materials.

The rapid development of modern industry has caused the disposal of industrial solid waste
to become a matter of serious global concern. In view of the wide application range and huge
annual demand for SrFe12O19, the production of SrFe12O19 from industrial solid waste is not only
able to realize the large-scale utilization of solid waste, but also to significantly reduce the production
cost of SrFe12O19. Therefore, related studies have aroused widespread interest. Hessien et al. [25]
synthesized SrFe12O19 powder with maximum saturation magnetization (Ms) 74.15 emu/g, remanence
magnetization (Mr) 38.95 emu/g, and coercive force (Hc) 3455 Oe, using Egyptian celestine ore as a
source of strontium, via a co-precipitation method. Xie et al. [26] reported a method for preparing
SrFe12O19 powder with Ms 52.7 emu/g, Ms 29.6 emg/g, and Hc 3346 Oe from industrial strontium
slag by chemical co-precipitation. Oily cold rolling mill (CRM) sludge is a metallurgical by-product
produced during the process of cold rolling strip steel. In our previous research [27], SrFe12O19 powder
with Ms 62.6 emu/g, Mr 32.6 emu/g, and Hc 3199 Oe was prepared by a solid phase reaction using oily
CRM sludge as the source of iron. To our knowledge, preparation of nano-SrFe12O19 powder from
waste by the citrate precursor method has not yet been reported.

Thus, the aim of the present paper is to report the preparation of nano-SrFe12O19 powder using oily
CRM sludge as a source of iron via citrate precursor method. In addition, we also investigated the effect
of annealing temperature and Fe3+/Sr2+ molar ratio in the gel on the crystal structure, morphologies,
and magnetic properties of nano-SrFe12O19 powder. The results of our study show that the proposed
method presents a viable alternative for recycling industrial solid waste, and the results are helpful to
understand how to control the composition and magnetic properties of nano-SrFe12O19.

2. Materials and Methods

2.1. Materials

Chemically grade sulfuric acid (H2SO4, 95–98%), nitric acid (HNO3, 65–68%), strontium carbonate
(SrCO3,≥97%), sodium hydroxide (NaOH,≥96%), hydrogen peroxide solution (H2O2,≥97%), citric acid
(C6H8O7·H2O, ≥99%), and ammonia water (NH4OH, 25–28%), were used in this study. The oily CRM
sludge used in this study was obtained from a plant that manufactures cold rolled strip in China.
The main components of oily CRM sludge are provided in Table 1 together with their content.

Table 1. Main composition of oily cold rolling mill (CRM) sludge.

Component Content (wt %)

Fe 70.6
Ni 0.049
Mn 0.18
Cr 0.065
Si 0.058
V 0.024

Oil and moisture 18.2
Other 10.82
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2.2. Treatment of Oily CRM Sludge

To avoid the production of toxic nitrogen oxides by direct HNO3 leaching, the oily CRM sludge
was first leached by using 6 mol/L H2SO4 at 85 ◦C for 4 h under continuous agitation. The ratio of oily
CRM sludge to acid was 1:5. After leaching, filtration and centrifugation were employed to separate
the acid-insoluble matter and organic compounds from the leaching solution. Then, 30 wt % H2O2 was
added drop wise to the leaching solution until Fe2+ was completely oxidized to Fe3+. While stirring,
5 mol/L NaOH solution, which was used as precipitant, was added to the oxidized solution until the
pH reached approximately 5. As a result, ferric hydroxide (Fe(OH)3) precipitated. The precipitate was
removed by filtration and washed several times. Finally, solutions of ferric nitrate (Fe(NO3)3) and
strontium nitrate were obtained after leaching the obtained Fe(OH)3 precipitates and SrCO3 by using
8 mol/L HNO3, respectively. The above processes can be expressed as follows:

Fe (s) + H2SO4 (aq)→ FeSO4 (aq) + H2 (g) (1)

Fe2O3 (s) + 3H2SO4 (ag)→ Fe2(SO4)3 (ag) + 3H2O (L) (2)

FeO (s) + H2SO4 (ag)→ FeSO4 (ag) + H2O (L) (3)

2FeSO4 (aq) + H2SO4 (aq) + H2O2 (L)→ Fe2(SO4)3 (aq) + 2H2O (L) (4)

Fe2(SO4)3 (aq) + 6NaOH (aq)→ 2Fe(OH)3 (s) + 3Na2SO4 (aq) (5)

2.3. Preparation of Strontium Ferrites

Mixed solutions were prepared by varying the molar ratio of Fe3+/Sr2+ from 11.6 to 12 by
proportionally mixing solutions of Fe(NO3)3 and Sr(NO3)2. Then, citric acid was added to the mixed
solution until the molar ratio of citric acid to the sum of Fe3+ and Sr2+ reached 1.5. Subsequently,
ammonia solution (25%) was added to the mixed solution to form a solution of pH 7. A viscous gel
was obtained after magnetically stirring the solution for 4 h at 60 ◦C. The gel was dried at 100 ◦C
overnight, and then burned spontaneously in air. Finally, SrFe12O19 powder was obtained after the
combustion product was annealed at 400–1100 ◦C for 2 h in flowing air. The process flow chart of
SrFe12O19 powder from oily CRM sludge is shown in Figure 1.
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2.4. Characterization

Inductively coupled plasma (ICP, OPTIMA 7000DV, PerkinElmer) was used to analyze the
chemical composition of samples. The pH values of solutions were measured by a pH/mV meter
(pHS-25, Huguang, China). The morphology of the products was observed by field-emission scanning
electron microscopy (FE-SEM, Zeiss Ultra 55). Fourier transform infrared (FTIR) spectroscopy (Nicolet
Nexus-470, Perkin-Elmer) was used to detect the types of functional groups present in the products.
Thermogravimetric and differential scanning calorimetry (TG-DSC, STA409C, Netzsch) measurements
of the samples were recorded at a heating rate of 10 ◦C/min in air. The magnetic properties of the
obtained SrFe12O19 powder were assessed using a vibrating sample magnetometer (VSM, LDJ 9600)
at room temperature. The hysteresis loops were used to determine the values of Ms, Mr, and Hc.
The crystalline phases present in samples were identified by X-ray diffraction (XRD, APD-10, Philips).
The mean crystallite size was determined using the Scherrer formula [28]:

d = Kλ/β·cosθ (6)

where d is the mean crystallite size, K is a constant, β is the half width of the relevant diffraction
reflection, λ is the X-ray wavelength, and θ is the diffraction angle. Moreover, the relative content of
phases were calculated by the reference intensity ratio (RIR) method [29].

3. Results and Discussion

3.1. Effect of Annealing Temperature

The effect of the annealing temperature on the formation of SrFe12O19 was investigated by fixing
the Fe3+/Sr2+ molar ratio of the gel at the stoichiometric ratio of 12. After combustion of the dried gel,
the resulting material was first analyzed by FTIR and TG-DSC, respectively. The FTIR peak (Figure 2a)
at 3300 cm−1 is assigned to the vibration absorption of the O–H bond in citrate, which indicates the
presence of citrate in the combustion products. The peaks at 1358 cm−1 and 1416 cm−1 are associated
with the characteristic vibrational absorption band of NO3

−. The broadened absorption peak near
667 cm−1 is the characteristic peak of γ-Fe2O3, which is associated with the Fe–O vibration. According
to the TG-DSC analysis (Figure 2b), three distinct changes occur in the sample weight, that is, a small
decrease below 280 ◦C, a significant decrease in the range of 280–470 ◦C, and stabilization above 470 ◦C.
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Figure 2. Analyses of the combustion products: (a) FTIR spectrum and (b) thermogravimetric and
differential scanning calorimetry (TG-DSC) thermogram.

In view of the loose and porous structure of combustion products, the weight loss of the sample
below 280 ◦C was mainly attributed to the evaporation of adsorbed moisture. Combined with the results
of FTIR analysis, the significant weight loss at 280–470 ◦C was mainly caused by the decomposition
of residual citrate, nitrate, etc. As the temperature rose above 362.6 ◦C, the thermal behavior of the
sample changed from endothermic to exothermic. This indicates that the exothermic effect resulting
from the decomposition of NH4NO3 (shown as equation (7)) begins to play a dominant role.

2NH4NO3→ 2N2 (g)+ O2 (g) + 4H2O (exothermic reaction) (7)

To further investigate the phase changes the samples undergo during heat treatment, a series of
experiments was performed by varying annealing temperature from 400 to 1100 ◦C. XRD patterns of
untreated and heat-treated samples are shown in Figure 3a.
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The main crystal phase of the untreated sample was observed to be γ-Fe2O3, whereas the main
crystalline phases of the sample annealed at 400 ◦C are SrFe12O19 and α-Fe2O3. This indicates that the
following reaction occurs during the annealing process.

γ-Fe2O3→ α-Fe2O3 (8)

The intensity and resolution of the diffraction peaks of the SrFe12O19 phase in the samples
increased as the calcination temperature increased, especially above 700 ◦C. The increased annealing
temperature significantly reduced the number and intensity of the α-Fe2O3 diffraction peaks in the
sample. However, even at 1100 ◦C, a small amount of the α-Fe2O3 phase still existed in the sample.
The samples that were obtained at various temperatures from 700 ◦C upward were further studied
by recording their FTIR spectra (Figure 3b). The bands at 598.36 cm−1, 598.46 cm−1, 599.48 cm−1,
599.47 cm−1 and 600.11 cm−1 correspond to the Sr–O stretching vibration band [30]. The bands at
561.65 cm−1, 550.90 cm−1, 561.18 cm−1, 551.11 cm−1 and 561.89 cm−1 were attributed to the Fe–O
stretching vibration by Fe–O4 [31]. The bands at 501.83 cm−1, 502.17 cm−1 and 503.26 cm−1 can be
assigned to the Fe–O stretching vibrations of α-Fe2O3 [32]. This indicates the existence of SrFe12O19 and
α-Fe2O3 in the samples, and is consistent with the results of the XRD analysis. Moreover, the samples
obtained at 700 ◦C and 800 ◦C exhibited absorption peaks in the range 1400–1459 cm−1, and these peaks
are associated with the characteristic vibrational absorption band of NO3

−. This indicates that a certain
amount of nitrate still existed in the samples below 900 ◦C, and that higher temperatures were helpful
to remove them. Accordingly, this explains the 0.68% weight loss detected in the TG-DSC experiment.

The SEM images of the samples obtained at different annealing temperatures (Figure 4) show
that the samples obtained at 700 ◦C and 800 ◦C had poor homogeneity with extensive agglomeration,
indicating that the formation of SrFe12O19 was incomplete. These results are in good agreement with
those of the XRD and FTIR analyses. Above 900 ◦C, samples were uniform with no obvious aggregation.
The particle size of the sample annealed at 900 ◦C were approximately 200 nm. With the increase of
annealing temperature from 900 to 1000 ◦C, the particle size of the sample increased slightly. However,
at 1100 ◦C, the powder particles clearly experienced abnormal growth. This may be due to the growth
of particle size.
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(c) 900 ◦C; (d) 1000 ◦C; (e) 1100 ◦C.

The magnetic properties and crystallite size of samples as a function of temperature are summarized
in Figure 5. The magnetic properties of samples increased significantly as the annealing temperature
increased from 700 to 900 ◦C, with the highest Ms of 80.2 emu/g measured at 900 ◦C. Combined
with the previous results, this may be ascribed to the reduction in the amount of residual nitrates,
resulting in an increase in the proportion of SrFe12O19 present. Above 900 ◦C, the magnetic properties
of the products deteriorated significantly as the annealing temperature increased. The changes in
the magnetic properties can be explained by the changes in the sizes of the crystals (Figure 5b) and
morphologies (Figure 4) of the samples. Excessive grain growth destroys the uniformity of samples,
thus causing the deterioration of magnetic properties.
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3.2. Effect of Fe/Sr Molar Ratio

Previous studies have shown that an appropriate Fe/Sr molar ratio is one of the decisive factors
for obtaining products with a single SrFe12O19 phase [33]. In the hydrothermal synthesis of SrFe12O19,
Malick et al. [34] found that products with a single SrFe12O19 phase can be obtained at a specified
Fe/Sr molar ratio. According to the studies of Hessien et al. on the preparation of SrFe12O19 via the
co-precipitation method [5], the pure SrFe12O19 phase can be obtained at a Fe/Sr molar ratio of 9.23
and an annealing temperature of 900 ◦C. Wang et al. [35] prepared SrFe12O19 powder by using the
sol–gel method, and found that the pure SrFe12O19 phase can be obtained at a Fe/Sr molar ratio of 11.5
and an annealing temperature of 800 ◦C.

Thus, to obtain products with a single SrFe12O19 phase, a series of experiments were performed
by varying the Fe/Sr molar ratio from 11.6 to 11.8. Figure 6 shows the XRD patterns of products with an
Fe/Sr molar ratio of 11.8 and annealed at different temperatures. The results of other analyses that were
performed at the same time, including the phase content, crystalline size, and magnetic properties,
are summarized in Table 2. These results indicate that the content of the α-Fe2O3 phase in the sample
decreases as the annealing temperature increases. However, even at 1100 ◦C, it is not possible to obtain
a product consisting of a single SrFe12O19 phase.
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different temperatures.

Table 2. Effect of annealing temperature on the phase content, crystalline size, and magnetic properties
of the obtained SrFe12O19 samples with an Fe/Sr molar ratio of 11.8.

Annealing
Temperature (◦C) Phase Content Crystalline

Size (nm)
Magnetic Properties

Ms (emu/g) Mr (emu/g) Hc (Oe)

700 73% SrFe12O19
27% α-Fe2O3

29.6 40.8 ± 0.1 21.3 ± 0.1 854 ± 70

800 80% SrFe12O19
20% α-Fe2O3

30.2 42.7 ± 0.1 21.8 ± 0.1 4770 ± 50

900 86% SrFe12O19
14% α-Fe2O3

34.6 46.9 ± 0.1 24.2 ± 0.1 5260 ± 50

1000 92% SrFe12O19
8% α-Fe2O3

44.6 59.8 ± 0.1 31.1 ± 0.1 5080 ± 40

Moreover, the magnetic properties of the products listed in Table 2 increased significantly with an
increase in the annealing temperature. This is mainly attributed to the increase of the SrFe12O19 phase
content of the product.

Figure 7 and Table 3 present the XRD patterns of products with an Fe/Sr molar ratio of 11.4
and annealed at different temperatures. The SrFe12O19 powder samples obtained below 1000 ◦C
contained some of the peaks associated with the α-Fe2O3 phase (7–15%). At 1000 ◦C, products with a
well-crystallized single SrFe12O19 phase were obtained. Moreover, the results in Table 3 show that the
magnetic properties of products increased by increasing the annealing temperature. This is attributed
to an increase in the SrFe12O19 phase content in the product.
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Figure 7. XRD patterns of SrFe12O19 with an Fe/Sr molar ratio of 11.6 by varying the
annealing temperature.

Table 3. Effect of annealing temperature on the phase content, crystalline size, and magnetic properties
of SrFe12O19 samples obtained with an Fe/Sr molar ratio of 11.6.

Annealing
Temperature (◦C) Phase Content Crystalline

Size (nm)
Magnetic Properties

Ms (emu/g) Mr (emu/g) Hc (Oe)

700 85% SrFe12O19
15% α-Fe2O3

45.5 45.5 ± 0.1 21.3 ± 0.1 1170.1 ± 60

800 90% SrFe12O19
10% α-Fe2O3

50.1 50.1 ± 0.1 26.6 ± 0.1 5737.9 ± 30

900 93% SrFe12O19
7% α-Fe2O3

58.1 58.1 ± 0.1 31.1 ± 0.1 6437.8 ± 20

1000 100% SrFe12O19 74.2 67.5 ± 0.1 36.1 ± 0.1 6176.0 ± 20

3.3. Comparison of Magnetic Properties

To summarize, two of the samples exhibited improved magnetic properties. The first is the
sample with an Fe/Sr molar ratio of 12 and annealed at 900 ◦C, which was named SrFe12O19@900.
The other is the sample with an Fe/Sr molar ratio of 11.6 and annealed at 1000 ◦C, which was named
SrFe11.6O19@1000. These two samples were compared with those prepared from chemicals/analytical
chemicals reported in the literature. The results of this comparison are presented in Table 4.
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Table 4. Performance comparison between the samples obtained in this study and those reported in
the literature.

Sample Synthetic Method Magnetic Properties

Ms (emu/g) Mr (emu/g) Hc (Oe)

SrFe12O19@900 CPM 80.2 39.8 6318
SrFe11.6O19@1000 CPM 67.5 36.1 6176

SrFe12O19 powder [20] MA-SGM 54.8 29.5 5261
Sr0.9La0.1Fe11.9Co0.1O19 powder [20] SGM 73 36 7700

Sr0.85Nd0.15Fe12O19 powder [21] CPM 63 35.15 6885
SrFe12O19 nanoribbons [22] SAE 67.9 37.3 7310

SrFe12O19 powder [23] SGM 59.3 34.9 6725

CPM = citrate precursor method; SGM = sol–gel method; MA-SGM = microwave-assisted sol–gel method;
SAE = solution assisted electrospinning.

Although the content of the SrFe12O19 phase in SrFe11.6O19@1000 (100%) was higher than that in
SrFe12O19@900 (97.9%), the grain size of SrFe11.6O19@1000 (74.1 nm) was significantly larger than that
of SrFe12O19@900 (49.7 nm). The excessive grain growth may be the main reason why the magnetic
properties of SrFe11.6O19@1000 were inferior to those of SrFe12O19@900. Moreover, Ms and Mr of
SrFe12O19@900 reached 80.2 emg/g and 6318 Oe, respectively. Moreover, the comparison clearly
shows that the magnetic properties of SrFe12O19@900 are competitive compared with those reported in
the literature.

4. Conclusions

Using oily CRM sludge as an iron resource, nano-SrFe12O19 was synthesized successfully by
using the citrate precursor method. The results showed that single-phase SrFe12O19 powder samples
were obtained by decreasing the Fe/Sr molar ratio from the stoichiometric value of 12 to 11.6 and by
increasing the annealing temperature to 1000 ◦C. An Fe/Sr molar ratio of 12 and annealing temperature
of 900 ◦C produced nano-SrFe12O19 powder with a particle size of approximately 200 nm, and good
magnetic properties (Ms 80.2 emu/g and Hc 6318 Oe), which are comparable to those of SrFe12O19

prepared from chemically pure materials.
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