
materials

Article

A Fast Sparse Recovery Algorithm for Compressed
Sensing Using Approximate l0 Norm and Modified
Newton Method

Dingfei Jin 1, Yue Yang 1,2,*, Tao Ge 3 and Daole Wu 2

1 School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China;
dr.kin@csu.edu.cn

2 The State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration,
CRRC Zhuzhou Locomotive Co., Ltd., Zhuzhou 412001, China; zdhwdl0722@163.com

3 China Mobile (Suzhou) Software Technology Co., Ltd., Suzhou 215004, China; getao@cmss.chinamobile.com
* Correspondence: yangyue@csu.edu.cn

Received: 11 March 2019; Accepted: 11 April 2019; Published: 15 April 2019
����������
�������

Abstract: In this paper, we propose a fast sparse recovery algorithm based on the approximate l0
norm (FAL0), which is helpful in improving the practicability of the compressed sensing theory. We
adopt a simple function that is continuous and differentiable to approximate the l0 norm. With the
aim of minimizing the l0 norm, we derive a sparse recovery algorithm using the modified Newton
method. In addition, we neglect the zero elements in the process of computing, which greatly reduces
the amount of computation. In a computer simulation experiment, we test the image denoising and
signal recovery performance of the different sparse recovery algorithms. The results show that the
convergence rate of this method is faster, and it achieves nearly the same accuracy as other algorithms,
improving the signal recovery efficiency under the same conditions.
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1. Introduction

Compressed sensing (CS) [1–4] is a theory proposed in recent years. Based on this theory, the
original signal can be recovered with sampling values much lower than the Nyquist sampling rate.
Assuming that a m × 1, signal x will be recovered from y = Ax, where x ∈ Rn, y ∈ Rm, and A ∈ Rm×n.
If m < n, recovery of x from y = Ax is ill-posed. However, if the x is K(K ≤ m) sparse, that is, only
K elements in x are not 0, then x can be calculated. A, y, and K are called measurement matrix,
measurement vector, and sparsity level, respectively.

The CS theory consists of two parts. The first is the sparse representation. Because a natural
signal is not sparse in the usual case, we need to first make it sparse by mathematical transformation.
The second is sparse recovery, which means to recover the sparse signal. Among the two parts, the
sparse recovery method directly determines the quality of signal recovery. In this paper, we focus on
proposing a sparse recovery algorithm for CS. In the following sections, signal x is set to be a sparse
signal vector.

Generally, all sparse recovery methods are devoted to solve Equation (1) [1,3,5], where ||x||0
denotes the number of nonzero elements in x. Equation (1) is aimed at seeking the minimal ||x||0
solution of the underdetermined linear system of equations y = Ax with known A and y.{

min ||x||0
s.t. y = Ax

(1)
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Clearly, the direct l0 norm minimization problem is NP-hard [6–8], so there are many proposed
algorithms to approximate its solution. In general, these methods can be classified into three categories:
(1) convex relaxation method (CR) [9,10], (2) greedy algorithm (GA) [11,12], and (3) approximate l0
norm algorithm (AL0) [13,14].

The CR methods, also called lp norm minimization, use the lp norm to approximate the l0 norm,
which can be shown as Equation (2): {

min ||x||pp
s.t. y = Ax

(2)

where ||x||p =
(∑N

i = 1|xi|
p
)1/p

, and xi is the element in x. In particular, when p = 1, this method is called
basis pursuit (BP) algorithm. The performance of this algorithm is stable. However, because it is solved
by linear programming without solving the linear equations directly, its computational cost is very
high [15].

The GA algorithms, such as matching pursuit [12] (MP) and orthogonal matching pursuit [11]
(OMP), do not always guarantee a global optimal solution [5].

The AL0 adopts a smoothed function with parameters to approximate the l0 norm of x. Thus, the
l0 norm minimization problem can be converted into the smoothed function minimization problem,
which is called the recovery algorithm using the approximate l0 norm. For instance, Mohimani [14]
adopted the following equation to approximate the l0 norm:

f (xi) = exp

− x2
i

2δ2

 (3)

where δ is a positive number approaching 0. Then, the minimization problem can be converted to the
following equation:  min

N∑
i=1

exp
(
−

x2
i

2δ2

)
s.t. y = Ax

(4)

Algorithms of this category directly solve the linear equations in the process of iteration and
do not need to use linear programming. Therefore, this algorithm has fast convergence speed and
guarantees global optimum. This algorithm solves the defects of CR and GA to a certain degree and
has gradually become a popular sparse recovery algorithm, but it cannot avoid the jaggies in the
iterative process. That is to say, the convergence direction does not always follow the descending
direction of the gradient.

Based in the idea of AL0, we adopt a simple fractional function to approximate the l0 norm, and,
to avoid jaggies in the iterative process, we propose a modified Newton method, which can make the
algorithm converge faster. In addition, we neglect the zero elements in the process of computing, which
further reduces the amount of computation. Finally, we compare the performance of the proposed
algorithm with several typical sparse recovery algorithms in the field of signal recovery and image
processing to prove the advantages of FAL0.

2. Fast Sparse Recovery Algorithm Using Approximate l0 Norm

In this section, we first adopt a simple function to approximate the l0 norm and then derive the
process of solving this problem in detail. In addition, we summarize the procedure of the algorithm
and analyze its computational complexity.

2.1. Implementation of the Algorithm

We adopt Equation (5) to substitute ||x||0

fδ(xi) =
δ

δ+ xi
(5)
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where δ is a positive parameter and, obviously,

lim
δ→0

fδ(xi) =

{
1, xi = 0
0, xi , 0

(6)

Then, we consider  max
N∑

i=1
fδ(xi)

s.t. y = Ax
(7)

When δ approaches 0, the optimal solutions of Equation (7) and Equation (1) are same. This
problem is an optimization problem with an equality constraint. The Lagrange multiplier method
can transform such problems into unconstrained optimization problems, thus avoiding solving linear
programming and greatly reducing the computation cost. The detailed process of this method is
as follows:

max L(x) =
∣∣∣∣∣∣Ax− y

∣∣∣∣∣∣2
2 + λ

N∑
i = 1

fδ(xi) (8)

where λ is the regularization parameter, which is used to adjust the weight of the two terms in
Equation (8) and can be chosen by the method of generalized cross-validation (GCV) [16]. Here, we
adopt the Newton method to solve Equation (8), and the convergence direction (Newton direction) d is
shown by Equation (9).

d = −[∇2L(x)]
−1
∇L(x) (9)

where [∇2L(x)]−1 is the inverse matrix of [∇2L(x)]. In Equation (9)

∇L(x) =
∂L
∂x

= 2AT(Ax− y) + λ

(
−
∂ f
∂x1

,−
∂ f
∂x2

, . . . ,−
∂ f
∂xN

)T

(10)

(
−
∂ f
∂x1

,−
∂ f
∂x2

, . . . ,−
∂ f
∂xN

)T

=

− δ

(δ+ x1)
2 ,−

δ

(δ+ x2)
2 , . . . ,−

δ

(δ+ xN)
2

T

(11)

∇
2L(x) =

∂( ∂L
∂x )
∂x = ∂2L

∂x2 = 2ATA + λdiag
(
∂2 f
∂x2

i

)
= 2ATA + λdiag

(
2δ

(δ+xi)
3

) (12)

where AT is the transpose of A.
Clearly, the Hessian matrix ∇2L(x) is not always positive definite, which often leads to “jaggies”

in the iterative process. This means that the Newton direction is not always gradient descending. A
common means to deal with such a problem is to find an approximate matrix that is positive definite
to replace the Hessian matrix. The basic idea of this method is to ensure that the objective function
converges to the optimal direction regardless of the speed of convergence. This method is called
modified Newton method, and the details of it are shown as follows.

We construct a new matrix
E = ∇2L(x) + λεI (13)

where ε is a set of appropriate elements, and I is an identity matrix, which can form the elements on
the principal diagonal of E.

εi =
2xi

(δ+ xi)
3 (14)
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where εi are the elements in ε. Then, we get a positive definite matrix

E = 2ATA + λdiag

 2

(δ+ xi)
2

 (15)

thus d is updated to
d = −E−1

∇L(x) (16)

and the recurrence formula of FAL0 is
xk+1 = hd + xk (17)

where h is the step length of the iteration, which can be chosen by the line search method [17].
Because x is a sparse vector and most of its elements are 0, we neglect the zero elements to simplify

the calculation. Here, we consider
S = { i : |xi >0|} (18)

xS = (xi), i ∈ S (19)

AS = (ai), i ∈ S (20)

where ai is the ith column of A. Thus, Equation (17) is updated to{
xs

k+1 = xs
k + hd

xs = 0
(21)

where s is the complement set of S. In the iterative process, δ decreases gradually, and its update
formula is δk+1 = 0.7δk.

2.2. Algorithm Description

The pseudo code of FAL0 is shown in Table 1, where x0 and δ0 are the initial value of x and δ,
respectively. AT(AAT)y is the least square solution of y = Ax. A, y, and K depend on the specific sparse
problems, and λ and h can be chosen by GCV and line search method, respectively. The usage of
δk+1 = 0.7δk makes δ smaller and smaller, which makes the search scope clearer.

Table 1. The pseudo code of FAL0.

Algorithm: FAL0

Input: A, y, λ, h, K, and the termination condition: δmin = 10−3δ0;
Output: The recovery signal x*;
Initialization: x0 = AT(AAT)y, δ0 = 1;
Step 1:

S = { i : |xi >0|}

xS = (xi), i ∈ S

AS = (ai), i ∈ S

Step 2: Update d according to Equation (16);
Step 3: Iterate, {

xs
k+1 = xs

k + hd
xs = 0

;

Step 4: Update δ, δk+1 = 0.7δk;
Step 5: If δ < δmin, output to x*, or else go to Step 1 and continue iterating.
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2.3. Computational Complexity Analysis of FAL0

The FAL0 algorithm is mainly based on the modified Newton method, which is quadratic
convergent [18]. The main computational complexity of FAL0 lies in the computation of the initial
solution and the iteration, which involves the product of the matrix and vector. The computational
burden of ATy does not exceed O(n2), and because we neglected 0 in x in the calculation process, the
computational burden will be further reduced.

3. Computer Simulation Experiments and Analysis

In this section, we give several computer simulation experiments on the recovery of both random
sparse signals and noisy image tasks to prove the performance of FAL0. The performances are compared
with BP [9], OMP [11], MP [12], AL0 [14], and AL0-L [13], and these comparison algorithms all refer to
the source code given by the author in the supplement. All of the experiments are implemented in
MATLAB 2012a on a personal computer with a 2.59 GHz Intel Pentium dual-core processor and 2 GB
memory running the Microsoft Windows XP operating system (Redmond, WA, USA).

3.1. Simulation Experiments on Random Sparse Signal Recovery

In these simulation experiments, the matrix A is a Gaussian random matrix of size m × n, where
m < n. The vector x is a sparse signal of n dimensions. The K nonzero elements are randomly distributed
in x, and their values obey the standardized normal distribution. The vector y is given by y = Ax.
When y and A are known, we use the above six algorithms to recover x, and the result is x*.

Parameters λ and h can be chosen by GCV [16] and line search [17] method, respectively. When
the equation set changes, λ and h will also change.

The sparse recovery algorithm is usually evaluated by precision and convergence speed, and we
adopt exact recovery rate and maximal time consumption to indicate these two metrics.

We assume that if x* satisfies ||x − x*||2 ≤ 10−4||x||2, x is exactly recovered. Thus, the exact recovery
rate can be defined as the ratio of the number of the exactly recovered trails to the total number of the
trails under the condition of the fixed parameters. All curves in the figures are obtained by averaging
the results of 500 independent trails. In addition, the maximal time consumption is defined as the
maximal runtime of the 500 trails under the condition of the fixed parameters.

In the first experiment, we set K = 300 and n = 1500, and m varies from 400 to 1000. Every time m
changes, we calculate the exact recovery rate of the six algorithms by averaging the results of the 500
trails. In addition, we show maximal time consumption of six algorithms. The results are shown in
Figure 1. The number of measurements means the number of rows of matrix A and also means the
number of elements in vector y.

In the second experiment, we set m = 700 and n = 1500, and K varies from 100 to 700. Every time
K changes, we calculate the exact recovery rate of the six algorithms by averaging the results of the 500
trails. In addition, we show maximal time consumption of six algorithms. The results are shown in
Figure 2.
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From Figure 1a, we can see that the exact recovery rate of FAL0 is better than that of BP, MP, and
OMP and similar to that of AL0 and AL0-L in the case of the same measurement value. From Figure 1b,
we find that the maximal time consumption of FAL0 is much less than that of the other five algorithms
under the same conditions.

From Figure 2a, we can see that the exact recovery rate of FAL0 is better than that of BP, MP, and
OMP and quite close to that of AL0 and AL0-L in the case of the same sparsity level. From Figure 2b,
we can see that maximal time consumption of FAL0 is much less than that of the other five algorithms
under the same sparsity level.

These experiments prove that FAL0 performs well in the aspect of algorithm’s precision and
convergence speed, which indicates that the proposed algorithm is suitable for the fast recovery of
sparse signals.

3.2. Simulation Experiments on Image Denoising

Image denoising is also a common application of sparse recovery algorithm [19]. The detailed
process of the CS-based image denoising method can be found in the literature [20], which includes
the image’s sparse representation, recovery of the sparse image, and inverse transformation of the
sparse image.
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In this section, we compare the performance of these six algorithms in the CS-based image
denoising method and adopt signal noise radio (SNR, Equation (22)), time consumption, and memory
usage to evaluate the performance of these six algorithms. In the experimental process, we keep the
other conditions fixed and only change the sparse recovery algorithm.

NR = 10·lg

∑
i

∣∣∣xi
∣∣∣2∑

i

∣∣∣x∗i − xi
∣∣∣2 (22)

In Equation (22), xi and x∗i are the elements in x and x*, respectively. The higher the SNR, the
better the image quality is.

We adopt biomedical imaging, including a computer tomography (CT) image and a fundus image,
and the typical Lena image as the test objects. Figures 3–5 show the denoising effect of these six
algorithms intuitively. We can see that the denoising performance of FAL0 is close to that of AL0 and
AL0-L but better than that of MP, OMP, and BP.Materials 2019, 12, x FOR PEER REVIEW 7 of 9 
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Their SNR and time consumption are shown in Table 2. From Table 2, we can see that the
performance in the application of image denoising of FAL0 is better than that of BP, MP, and OMP and
quite close to that of AL0 and AL0-L. Moreover, FAL0 takes the least time, which proves that FAL0 is a
fast and effective sparse recovery algorithm.

Table 2. Denoising performance of the six algorithms.

Image Algorithm SNR (dB) Time (s) Memory Usage (MB)

CT

MP 26.30 46.58 65.76
OMP 26.19 43.72 60.58

BP 28.32 78.33 101.75
FAL0 33.19 10.79 22.37
AL0 34.01 22.24 36.68

AL0-L 32.17 15.76 33.52

Fundus

MP 27.52 44.57 68.32
OMP 26.88 42.16 61.07

BP 29.11 81.15 112.59
FAL0 33.12 11.70 20.45
AL0 33.45 21.12 37.95

AL0-L 32.77 15.69 36.58

Lena

MP 28.22 49.02 68.70
OMP 27.73 46.33 59.42

BP 29.45 85.19 127.34
FAL0 33.20 11.15 26.82
AL0 31.54 23.56 38.96

AL0-L 32.54 18.77 35.40

4. Conclusions

Based on the previous study of the approximate l0 norm, we present a fast and effective sparse
recovery algorithm for compressed sensing. We adopt a simple fractional function to approximate
the l0 norm and use the modified Newton method to implement the algorithm, which combines the
advantages of fast convergence of AL0 and high accuracy of the Newton method. The results of
computer simulation experiments indicate that FAL0 is fast and effective in the application of signal
recovery and image denoising.
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